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Cell-to-cell interaction and cell-to-extracellular environment communication are emerging

as new therapeutic targets in neurodegenerative disorders. Dynamic expression of

connexins leads to distinctive hemichannels and gap junctions, characterized by

cell-specific conduction, exchange of stimuli or metabolites, and particular channel

functions. Herein, we briefly reviewed classical physiological traits and functions of

connexins, hemichannels, and gap junctions, in order to discuss the controversial

role of these proteins and their mediated interactions during neuroprotection, with a

particular focus on Cx43-based channels. We pointed out the contribution of connexins

in neural cells populations during neurodegenerative processes to explore potential

neuroprotective therapeutic applications.
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INTRODUCTION

Gap junctions (GJs) are pivotal for the development andmaintenance of physiological arrangement
of multicellular organisms (Kandler and Katz, 1998; Krüger et al., 2000; Roerig and Feller,
2000), playing fundamental roles in a wide range of cellular activities, including cell signaling,
differentiation, and growth (Goodenough et al., 1996). These structures act as molecular substrate
of intercellular communication constituting so called plaques at sites of cell-to-cell interface but
also mediating GJs-independent signaling (Jiang and Gu, 2005; Zhou and Jiang, 2014). In fact,
connexins (Cxs), which represent the core proteins of GJs, also organize free hemichannels (HCs)
throughout the plasma membrane, allowing complex chemical trafficking between cytoplasm and
the extracellular environment (Cherian et al., 2005; Spray et al., 2006).

Disruption of GJs, HCs, and Cxs balance, affecting the finely regulated expression in healthy
tissues, allows cell elusion from normal physiological behavior by driving them to pathological
conditions with different degrees of severity, including cancer and degenerative processes (Decrock
et al., 2015b; Belousov et al., 2017). As such, Cxs expression in tissues and organs from embryo
to adult throughout life is strictly regulated. This control is particularly emphasized during the
developmental process, in which Cxs levels alterations lead to profound impairment of tissue
functions up to lethal phenotypes (Bruzzone et al., 1996; Davies et al., 1996).

In particular, Cxs, GJs, and HCs in the central nervous system (CNS) have always been in
the spotlight of research about homeostatic glia/neuron activities as well as aberrant organization
in different neurological disorders (Parenti et al., 2010; Orellana et al., 2014; Li et al., 2015;
Belousov et al., 2017). In the past years, much interest has been placed on neuroprotective
and self-repair processes in the CNS as a tool to approach neurodegenerative disorders.
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FIGURE 1 | Schematic representation of GJ intercellular communication (GJIC) and HC-mediated cell-to-extracellular environment communication. Cxs, composed by

4 transmembrane domains and an intracellular carboy-tail, are organized to homomeric or heteromeric HCs. GJ plaques are structures of hundreds up to thousands

of single channels, which mediate exchanges of small molecules, substrates and metabolites. Those structures show free HCs exposed to the plaque border, where

each cell adds newly synthetized HCs. These structures are crucial players of the GJIC and HCs-mediated cell-to-extracellular environment communication and lead

to the information exchanges between neighboring cells favoring synchronized and concerted responses. Cx, connexin; HC, hemichannel; GJ, gap junction.

However, the molecular mechanisms underpinning the
neuroprotective and regenerative processes are far to be fully
elucidated and the exploitation of such a promising approach
still remains elusive. In this field, GJs- and HCs-based signaling
is one of the most controversial mechanisms that take place
during degenerative and repairing processes (Andrade-Rozental
et al., 2000). Research focused on these pathways, which takes
advantages from pharmacological modulators, gene editing
and emerging high resolution imaging techniques, represents
an intriguing effort among all the explored neuroprotective
strategies in both in vitro and in vivo experimental models (Beyer
and Berthoud, 2002; Wong et al., 2016).

STRUCTURAL PROPERTIES AND
FUNCTIONS IN THE CENTRAL NERVOUS
SYSTEM (CNS)

Cxs are encoded by 21 genes in human, each one named
according to its theoretical molecular mass in kDa (Willecke
et al., 2002). They are structural transmembrane proteins
composing HCs, also named connexons, which dock plasma
membranes of adjacent cells forming GJs (Bruzzone et al., 1996;
White and Bruzzone, 1996). GJs aggregate in specific plasma
membrane regions of adjacent cells forming GJ plaques, which

are dynamic macrostructures easily assembled, disassembled, or
remodeled configuring a very eventful scenario. In physiological
conditions, new HCs are constantly added to the periphery of
existing plaques and remain in an inactive conformation until
they are aligned with HCs of adjacent cells, while old HCs
are removed from the central portion to be destroyed (Gaietta
et al., 2002; Figure 1). Finally, Cxs have a few hours half-life,
kinetics that are particularly short compared to other plasma
membrane proteins (Laird et al., 1991; Lampe, 1994; Beardslee
et al., 1998).

Most functions of Cx-formed structures depend on Cxs
dynamicity, including different Cxs combinations that convey
specific permeability properties and features. In fact, Cxs subunits
shape channel conductance, modulate electrical communication
and control metabolic coupling between cells (White and
Bruzzone, 1996; Salas et al., 2015; Karagiannis et al., 2016).
Notably, it is crucial to take into consideration Cxs direct
and indirect interactions, which affect many physio-pathological
functions (Bruzzone et al., 1996; Cina et al., 2009; Zappalà
et al., 2010; Saidi Brikci-Nigassa et al., 2012). On this regard
the cytoplasmic tail of Cxs, plays a prominent dynamic role
showing different phosphorylation sites and loci dedicated to
the interaction with other cytoplasmic proteins, modifying the
activity of the whole channel (Matsuuchi and Naus, 2013; Kotini
and Mayor, 2015).
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GJs, HCs, and Cxs play crucial roles in CNS throughout life
for several physiological processes being anatomical substrates
for electrical and metabolic synchronism. Their importance
is evident from the early stages of development, when GJs
intercellular communication (GJIC) and cell-to-extracellular
environment communications are key events to establish
connections, compartmentalization, differentiation, and finally,
cell identity (Davies et al., 1996; Bittman et al., 2002; Cina
et al., 2007). Even if during adult life some fully differentiated
cells do not express high Cxs levels, including some neurons
in addition to mature skeletal muscle fibers, red blood cells,
and spermatozoids (Bruzzone et al., 1996; Willecke et al.,
2002), electrical and metabolic intercellular through GJ- and
HC-based coupling remain fundamental in CNS of the adult
phenotype (Perlman and Ammermüller, 1994). Cxs also play
channel-independent role in cell adhesion, migration, formation
of neuronal networks, cellular division, differentiation, and
tumorigenicity, acting also synergistically with membranous
tunneling tubes (Rimkute et al., 2016). In particular, cell adhesion
and migration are key functions during CNS development
early in embryonic neuroepithelium and neural migration in
neocortex by providing contact interfaces with radial glia (Elias
et al., 2007) or along the rostral migratory route of subventricular
zone-derived cells (Marins et al., 2009). Cell adhesion is further
maintained for astrocytic network stabilization in mature CNS
(Haubrich et al., 1996; Lin et al., 2002). Here, complex levels
of Cxs organization create a functional unit, named neuro-glio-
vascular unit, maintaining both direct cell–cell coupling, via GJIC
and paracrine communication via the extracellular compartment
properties (Decrock et al., 2015a; De Bock et al., 2017).

A large number of experimental models of human diseases
have revealed key Cxs functions in physio-pathological
conditions, showing cell type specificity, mutual assistance and
redundant role depending on the functional context in which
Cxs operate (Nishii et al., 2014). In this field, research has
grown and changed remarkably, starting with the discovery of
new members of Cx family, describing their spatio-temporal
distribution, analysing their functional role and the pathological
consequences of their malfunction. In particular, in the neural
lineages, Cxs ensure functions ranging from cell division to
learning and memory and their disregulation, directly or
indirectly conducts to many pathological conditions including
epilepsy (Thompson et al., 2008), neuroinflammation (Orellana
et al., 2011a; Bennett et al., 2012), neurodegeneration (Orellana
et al., 2011b), ischemia (Contreras et al., 2004; Orellana et al.,
2010), behavioral alterations (Wang and Belousov, 2011;
Zlomuzica et al., 2012; Beheshti et al., 2017) and diverse
pathological conditions, including excitotoxic cell-death (Kondo
et al., 2000) and injurious depolarization (Schulz et al., 2015;
Lapato and Tiwari-Woodruff, 2017).

Several approaches, aiming to modulate channel
activity including phosphorylation/de-phosphorylation and
nitrosylation until to knockout/knockin technology as well as
pharmacological approaches, have come to support their role
as emerging therapeutic target in neurodegenerative disorders
(Schultz et al., 2016). Thus, by now far from the idea that GJs
are simply direct connection between the cytoplasm of two

cells, is becoming clear over time that GJs as well as HCs play
homeostatic physiological functions whose delicate balance can
be altered by leading to pathological conditions of different
entities (Table 1).

GJs, HCs, AND CXs: ROLE IN
NEURODEGENERATION AND
NEUROPROTECTION

Neurodegenerative diseases are among the leading causes of
death and disability worldwide. This has led to a growing in-
depth research focusing on cellular and molecular mechanisms
underlying neurodegeneration to increasingly counteract this
phenomenon. In human and in experimental models, a number
of Cx alterations are differently involved in the development
of various neurodegenerative diseases so much so that they
are considered important therapeutic targets (Belousov et al.,
2017; Charvériat et al., 2017; Liu et al., 2017). Several
independent studies have pointed out that onset and progression
of homeostatic imbalances observed during neurodegeneration
could be associated with a GJ-independent increased membrane
permeability related to HCs activity in the CNS (Retamal
et al., 2007; Orellana et al., 2010; Burkovetskaya et al., 2014).
In addition, increased secondary damages via cytotoxicity
and inflammatory response, lead to secondary cell death and
propagation of neuronal loss (O’Carroll et al., 2013; Akopian
et al., 2014). This mechanism underlies a number of degenerative
disorders, including retinopathies, such as glaucoma (Akopian
et al., 2014, 2017), traumatic brain injury (Davidson et al., 2015b;
Chen et al., 2016), stroke (Nakase et al., 2009; Orellana et al.,
2014) as well as degenerative disorders of the CNS such as
Alzheimer’s disease (Nagy et al., 1996; Orellana et al., 2011b)
and amyotrophic lateral sclerosis (ALS)-related motor neuron
loss (Almad et al., 2016). These pathological conditions are
characterized by reactive astrogliosis, mononuclear phagocytes
activation, neuronal injury, and cell death typically linked to
affected activity and regulation of main Cxs of the CNS including
Cx36, Cx43, Cx30, Cx32, Cx29, and Cx47 (Decrock et al., 2015b;
Belousov et al., 2017). For a specific injury and stress condition,
up- or down-regulation of such proteins, likely influencing gate
properties of GJs and free HCs, may contribute to both neuronal
death or survival, representing the “kiss of death” and the “kiss
of life,” based on which Cx is expressed and on which level
(Andrade-Rozental et al., 2000). Even more, the neuronal fate
is linked to the intercellular or cell-to-extracellular environment
propagation of “pro-death” and “pro-survival” permeable signals
(Akopian et al., 2014; Decrock et al., 2015b; Belousov et al.,
2017). This complex scenario is emphasized for Cx43, one
of the most abundant Cxs in the CNS and main actor in
mediating glial responses to CNS injury. Many studies support
the potential therapeutic efficacy of Cx43-GJ blockade on cell
survival, suggesting a role of the GJs and HCs activity in
increasing secondary damages (Orellana et al., 2010; Bennett
et al., 2012; O’Carroll et al., 2013). Recent scientific evidence
supports a pivotal role for Cx43 in different mechanisms in CNS
and specifically in the microenvironment of the neurovascular
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TABLE 1 | Connexins expression and main functions in neurodegeneration.

Cell type Cxs Gene Ranking Functions References

Neurons Cx36 Gjd2 +++++ Memory and behavior Condorelli et al., 1998; Cicirata et al., 2000; Gulisano et al.,

2000; Parenti et al., 2000; Bittman et al., 2002; Wang and

Belousov, 2011; Zlomuzica et al., 2012; Beheshti et al., 2017

Cx45 Gjc1 + Memory and behavior Leung et al., 2002; Cina et al., 2007; Beheshti et al., 2017

Cx50 Gja8 ++++ Voltage dependent hemichannel Beahm and Hall, 2002

Astrocytes Cx26 Gjb2 +++ Degeneration and neurotoxic signaling Elias et al., 2007; Takeuchi et al., 2011; Koulakoff et al., 2012;

Karagiannis et al., 2016

Cx30 Gjb6 ++

Cx43 Gja1 +++++ Adhesion, energy metabolism, and degeneration Lin et al., 1998; Elias et al., 2007; Pellerin et al., 2007;

Takeuchi et al., 2011; Salmina et al., 2014; Suzuki et al.,

2014; Salas et al., 2015; Almad et al., 2016

Oligodendrocytes Cx29 Gjc3 +++ Remyelination and regeneration Altevogt et al., 2002; Nagy et al., 2003a,b; Parenti et al.,

2010; Markoullis et al., 2012

Cx32 Gjb1 +++++

Cx47 Gjc2 ++

Microglia Cx32 Gjb1 +++++ Inflammation Takeuchi et al., 2006, 2008

Cx36 Gjd2 ++ Neurotoxic signaling Yawata et al., 2008

Cx43 Gja1 + Inflammation Orellana et al., 2009

Endothelial cells Cx37 Gja4 +++ Regeneration and healing Li et al., 2016

Cx40 Gja5 +++++

Cx43 Gja1 +++++

Ranking: +, very low; ++, low; +++, medium; ++++, high; +++++, very high. This table includes information from more than one experimental approach.

unit, from the regulation of the blood brain barrier (BBB) to
the modulation of integrative brain functions (i.e., learning,
memory, and behavior), indicating Cx43 as an attractive target
for therapeutic strategies in different brain pathologies (Salmina
et al., 2014). Using a pharmacological approach we recently
demonstrated a neuroprotective effect on in vitro neuron-like
cultures exposed to hypoxic stress conditions reducing cell-
to-cell and cell-to-extracellular environment communication
through carbenoxolone (non-selective GJs inhibitor), ioxynil
octanoato (selective Cx43-based GJs inhibitor), and Gap19
(selective Cx43-based HCs inhibitor; Vicario et al., 2017). Our
results were in accordance with previous evidences which
demonstrated an abnormal and progressive increase in Cx43
expression, enhancing GJs-mediated coupling, and increased
HCs activity, as one of the mechanisms for astrocyte-mediated
toxicity in an in vivo model of neurodegenerative disorder
(Almad et al., 2016). The use of both GJs or HCs blockers
conferred neuroprotection also to motor neurons cultured with
SOD1G93A astrocytes, suggesting a detrimental role of Cx43 in
neurodegenerative models of ALS (Almad et al., 2016). Similar
protective effects of blocking Cx43 have been described in
other neurodegenerative injury including hypoxia, ischemia,
Alzheimer’s disease, and glaucoma (Chew et al., 2010;Wang et al.,
2014; Chen et al., 2016; Giaume et al., 2017).

However, experimental results support the idea that Cx43
involvement is strictly context-dependent and related to the
effects of specific phosphorylation sites in the C-terminal tail

and inter-protein interaction, affecting trafficking, turnover,
assembly, and gating (Cooper and Lampe, 2002; Richards et al.,
2004; Yoon et al., 2010; Márquez-Rosado et al., 2012; Dunn and
Lampe, 2014; Davidson et al., 2015a; Schulz et al., 2015), which
prevent a generalization and stimulate further investigations
on Cxs involvement in neurodegenerative and neuroprotective
processes.

CONCLUDING REMARKS

Our knowledge about Cxs-mediated neuroprotection is doomed
to grow quickly. The possibility to potentiate endogenous
neuroprotective mechanisms represents certainly a fascinating
approach for powerful therapeutic applications after CNS injury.
GJs and HCs involvement in maintaining the balance of
CNS microenvironment strongly stimulate research toward the
development of new modulators for Cxs-based channels to
be used as novel therapeutic agents against CNS disorders. A
number of studies have pointed out the beneficial effect of
drugs targeting Cxs-based channels, paving the way to develop
complementary cell-specific approaches for the treatment of a
broad range of diseases. Finally, since experimental evidences
solidly demonstrate that astrocytes and Cx43 have a prominent
role in neurodegenerative processes, this cell population and its
molecular tools, including Cx-based structures, are more and
more going to be confirmed as the indispensable guardians of
neuronal activities.
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