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Abstract

We consider a class of stationary Schrödinger-Poisson systems with a general nonlinearity f(u)
and coercive sign-changing potential V so that the Schrödinger operator −∆+V is indefinite.
Previous results in this framework required f to be strictly 3-superlinear, thus missing the
paramount case of the Gross-Pitaevskii-Poisson system, where f(t) = |t|2t; in this paper we
fill this gap, obtaining non-trivial solutions when f is not necessarily 3-superlinear.
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1. Introduction

The dynamic of a Bose-Einstein condensate can be described (see [1, 2]) by the Gross-
Pitaevskii equation

i ∂tψ = −∆ψ + V ψ + g |ψ|2ψ

where ψ : R3× [0,+∞[→ C is the wave function of the condensate, V = V (x) is the potential,
|ψ|2 is the particle-density, whose integral gives the total (large) number of particles N and
g is related to the scattering length of the mutual short-range atomic interaction (resulting
in positive g for repulsive interaction and negative for attractive ones). The Gross-Pitaevskii
equation is a particular case of the nonlinear Schrödinger equation

i ∂tψ = −∆ψ + V ψ + g |ψ|p−1ψ

for p > 1. If the particles are electrically charged, long-range electrostatic interaction can be
effectively modelled by a potential term (see [3] for a formal justification), so that V = Vext+φ,
where Vext is the external potential and φ is the electrostatic potential determined by the
Poisson equation with charge density k|ψ|2 (typically, k > 0 giving repulsive interactions).
This gives rise to the Schrödinger-Poisson systemi ∂tψ = −∆ψ + (Vext + φ)ψ + g |ψ|p−1ψ

−∆φ = k |ψ|2
(1.1)
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which has been object of extensive studies in the last decades. Assuming vanishing boundary
conditions at infinity, the total energy

E :=

∫
R3

1

2
|∇ψ|2 +

Vext
2
|ψ|2 +

k

4
|∇φ|2 +

g

p+ 1
|ψ|p+1 dx

is conserved along the motion, as well as the total mass N = |ψ|22, where | · |q stands for
the Lq-norm over R3. A particularly interesting case of the previous system is when long-
and short-range mutual strengths compete, for example when k > 0 (repulsive electrostatic
interaction) and g < 0 (short-range binding). This is the case for a Bose-Einstein condensate5

of charged ions with attractive interatomic interaction, trapped in a potential well.
Standing waves for (1.1) are obtained through the ansatz ψ(x, t) = e−iωtu(x) with u :

R3 → R, resulting in {
−∆u+ V u+ φu− f(u) = 0

−∆φ = u2
(1.2)

where we set f(t) = |t|p−1t, V = Vext − ω and k = 1 for simplicity of notation. Conservation
of total energy E and mass N gives the relation ωN = E, so that ω represents the energy
per particle of the standing wave. A natural question, to which we will give a positive answer
in the present paper, is wether standing waves of arbitrarily large energy per particle can10

occur. Notice that for large values of ω, the potential V = Vext − ω is sign-changing and the
linearisation of the first equation turns out to be an indefinite Schrödinger operator.

Formally, the functional E : H1(R3)×D1,2(R3)→ R given by

E(u, φ) =
1

2

∫
R3

(
|∇u|2 + V u2

)
dx− 1

4

∫
R3

|∇φ|2 dx+
1

2

∫
R3

φu2 dx−
∫
R3

F (u) dx

where

F (t) =

∫ t

0

f(s) ds,

is such that critical points (u, φ) of E are solutions of (1.2). However, since E is strongly
indefinite and thus difficult to deal with, Benci et al. [4, 5] proposed the following reduction
procedure. For u ∈ H1(R3) let φu ∈ D1,2(R3) be the unique solution of −∆φ = u2 in (1.2).
Then, u is a critical point of the functional

J(u) :=
1

2

∫
R3

(
|∇u|2 + V u2

)
dx+

1

4

∫
R3

φu u
2 dx−

∫
R3

F (u) dx, (1.3)

if and only if (u, φu) solves (1.2); see [4, 5] or [6, pp. 4929–4932] for more details.
Based on this reduction method, ground states and, more generally, positive solutions to

system (1.2) have been obtained in a wide variety of assumptions, both on f and on V . With15

no attempt to give a complete account of the literature, we mention [7, 8, 9] for V ≡ const > 0
and [10, 11, 12] for V radial. More general asymptotically constant potentials are considered
in [13, 14, 15, 16]; [17, 18, 19] treat periodic ones and [6, 20] deal with (weakly) coercive
potentials. Sign-changing solutions are found in [21, 22] in the case V ≡ const > 0, in [23]
when V is asymptotically constant. Motivated by [24], nodal solutions to (1.2) with coercive20

potential are constructed in [25, 26].
We emphasize that in the aforementioned papers the Schrödinger operator −∆ + V is

always assumed to be positive definite (as when infR3 V > 0), so that u ≡ 0 is a local minimizer
of J , leading to a mountain pass geometry if f is 3-superlinear (actually, superquadratic will
often suffices, but require more intricate arguments). However, if we seek for standing waves
with large ω, then V = Vext − ω will be negative somewhere, disrupting the mountain pass
geometry. For stationary NLS equations

−∆u+ V u = f(u) (1.4)
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with indefinite Schrödinger operator −∆ + V , one usually applies the linking theorem to get
solutions, see e.g. [27, 28]. For system (1.2), however, it seems hard to verify the linking
geometry due to the nonnegative and nonlocal term involving φu; see [29, p. 47] for further
discussion on this issue. This is probably one of the reasons why there are very few existence25

results for (1.2) if the Schrödinger operator −∆ + V is indefinite. We are only aware of the
works [30, 31] which actually infer linking from a perturbative argument, (thus obtaining
solutions under a smallness assumption on the nonlocal term) and [29, 32], where critical
points for J are obtained via the local linking theory [33, 34].

In the previous papers, however, f is always assumed to be 3-superlinear, i.e.

lim
|t|→+∞

f(x, t)t

t4
= +∞ locally uniformly (1.5)

holds and, as far as we know, currently there is no existence result for system (1.2) with indef-30

inite potential without (1.5). The relevance of this latter framework is clear from the previous
discussion on Bose-Einstein condensates, since the reaction f(t) = |t|2t corresponding to the
Gross-Pitaevskii equation is exactly 3-linear.

Our first and by far easier result treats subquadratic nonlinearities. By σ(−∆ + V ) we
mean the spectrum of −∆+V , understood as the natural self-adjoint operator corresponding35

to the bilinear form given by (2.2) below.

Theorem 1.1. Suppose that V is coercive in the following sense

(V0) V ∈ C(R3) is bounded from below and |{V ≤ k}| <∞ for all k ∈ R,

and that inf σ(−∆ + V ) ≤ 0. If there exist C, v > 0, p, q ∈ ]1, 2[ such that

|f(t)| ≤ C(|t|p + |t|q) (1.6)

and F (t) =
∫ t
0
f(τ) dτ ≥ c |t|p+1

for all t ∈ R, then there are at least two nontrivial solutions
to (1.2).40

Under the stated assumptions, the functional J given in (1.3) is coercive, hence Palais-Smale
sequences are automatically bounded and precompact by (V0). Since J has a local linking at
0, Theorem 1.1 directly follows from [35, Theorem 2.2].

Our next and main result deals with the superquadratic case, including f(u) = |u|p−1 u
with p ∈ ]2, 5[. In addition to (V0), we will need the following assumptions45

(V1) V ∈ C1(R3) and there exists R > 0 such that 2V (x) +∇V (x) · x ≥ 0 for |x| ≥ R.

(V2) There exists κ > 0 and m ∈ R such that |∇V (x) · x| ≤ κ (V (x) +m) =: κ Ṽ (x) for all
x ∈ R3.

(f1) f ∈ C(R) and |f(t)| ≤ C(|t|+ |t|p) for some p ∈ (1, 5), C > 0.

(f2) There exists µ > 3 such that f(t)t ≥ µF (t) > 0 for all t ∈ R\ {0}.50

Clearly, any coercive, radially increasing potential with polynomial growth satisfies our as-
sumptions, an explicit example being V (x) = |x|2−ω (which, for ω large enough, gives rise to
an indefinite Schrödinger operator). For a more detailed discussion on (V1) and (V2), we refer
to the beginning of Section 3. Under assumption (V0), the Schrödinger operator operator
−∆ + V is essentially self-adjoint with discrete spectrum and we will let X+, X− and X055

denote its positive, negative and null eigenspaces, respectively.

Theorem 1.2. Assume (V0)–(V2), (f1)–(f2) hold. If either
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1. dimX− > 0, dimX0 = 0

2. dimX0 > 0 and F (t) =
∫ t
0
f(τ) dτ ≥ c |t|ν for some ν < 4,

then problem (1.2) has at least a nontrivial solution.60

Let us discuss some features of Theorem 1.2 in the model case f(u) = |u|p−1 u. The main
difficulty in studying (1.2) in the range p ∈ ]2, 3] is that it is not known whether Palais-Smale
(or even Cerami) sequences are bounded or not. This issue disappears when p > 3, thus
allowing an easier application of variational methods (this is also why most of the previous
papers on the subject assume (1.5)). To overcome this difficulty there are typically two65

approaches:

• Seek for a minimum on a suitable manifold M. Coercivity is still an issue for p ∈ ]2, 3]
and the standard Nehari manifold won’t help, so one usually works on the Pohozaev
manifold (or variants of it);

• Employ Struwe’s monotonicity trick, i.e., define monotonic perturbations of J and find a70

solution for almost every perturbation. Boundedness of the resulting sequence is proved
via the Pohozaev identity.

Both techniques can be successful when the Schrödinger operator −∆+V is positive definite,
but run into serious issues when it is not, for reasons which we will briefly outline.

For the NLS (1.4) with indefinite potential, the Nehari manifold N can be modified as75

in [36] to produce ground states. This is possible thanks to a linearity feature of the Nehari
manifold, as N is the set of critical points of J along lines through 0. On the contrary, the
natural curves defining the Pohozaev manifold (which is the one apparently needed to get co-
ercivity) are highly nonlinear and may have nothing to do with the orthogonal decomposition
of the space dictated by the linear operator −∆ + V .80

On the other hand, Struwe’s monotonicity trick is usually successful when a uniform
mountain pass geometry or more general linking geometry holds for the family of monotonic
perturbations of J , see [37, 38] respectively. This cannot hold for the indefinite Schrödinger-
Poisson systems we are considering because, as pointed out in [29, p. 47], our functional J
only has a local linking at the origin. Currently, it seems unclear how to implement the mono-85

tonicity trick in a local linking geometry, due to the lack of an explicit minimax description
of the critical values in this setting.

To get around these difficulties, inspired by [39], we add a dummy variable and consider
an augmented functional J̃ : R ×X → R, see (3.4). It turns out that J̃ solves all the issues
J had: it satisfies the (PS) condition (Theorem 3.6), and if (s̄, ū) is critical point of J̃ , then90

ū is critical point of J (Lemma 3.5). Moreover, J̃ preserves the local geometry of J at zero,
namely it has a local linking with a precise relationship with the one of J and, through a
highly nonlinear version of a by-now classical argument, its homology at infinity is trivial.
Eventually, we will apply Morse theory to get a critical point of J̃ and thus of J .

The paper is organized as follows. In Section 2 we recall the functional analytic tools we’ll95

need and prove Theorem 1.1. In Section 3, we deal with the superquadratic case and present
the proof of Theorem 1.2. To shorten the notation, all integrals will be on the whole R3,
unless otherwise specified.

2. The coercive case

Let us discuss some first consequences of (V0), which we’ll assume from now on. From the
lower boundedness we can henceforth fix m > 2 such that

Ṽ (x) := V (x) +m >
m

2
> 1, for all x ∈ R3. (2.1)
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By [40] we see that the Hilbert space

X :=

{
u ∈ H1(R3) :

∫
Ṽ u2 dx < +∞

}
, (u, v)X =

∫ [
∇u · ∇v + Ṽ u v

]
dx

compactly embeds in L2(R3). Notice that since X also embeds into L6(R3), by interpolation,
X ↪→ Lr(R3) compactly for all r ∈ [2, 6[. From the compactness of X ↪→ L2(R3), we deduce
that the bilinear form

Q(u, v) =
1

2

∫
(∇u · ∇v + V u v) dx, u, v ∈ X, (2.2)

is essentially selfadjoint (by Kato’s criterion), semibounded from below on X ⊆ L2(R3) and
the spectrum of the corresponding Schrödinger operator σ(−∆ + V ) is discrete (with finite
multiplicity) and bounded from below. In the following, we will denote by X+, X− and X0

respectively the positive, negative and null eigenspaces of the Schrödinger operator, and by
u 7→ u± and u 7→ u0 the corresponding orthogonal projections. Accordingly, there exists
λ± > 0 such that

±Q(u, u) ≥ λ±‖u±‖2 for u ∈ X± ⊕X0, respectively. (2.3)

As already pointed out, solving (1.2) is equivalent to finding critical points of the C1

functional J : X → R,

J(u) =
1

2

∫ [
|∇u|2 + V u2

]
dx+

1

4

∫
φu u

2 dx−
∫
F (u) dx,

where φu is the unique solution of −∆φ = u2 in D1,2(R3). Recall that

0 ≤
∫
φu u

2 dx ≤ C‖u‖4, (2.4)

see e.g. [6]. We will also need the following estimate, whose proof is similar to [7, Eqn (19)],100

therefore is omitted.

Lemma 2.1. For any u ∈ H1(R3) we have∫
|u|3 dx ≤ 1

2

∫ [
|∇u|2 + φu u

2
]

dx. (2.5)

Given a Hilbert space X, we say that a functional J ∈ C1(X) has a local linking at 0 if
X = X− ⊕X+ for some closed proper subspaces X± and for some ρ > 0 there holds{

J > 0 in Bρ ∩ (X+ \ {0}),
J ≤ 0 in Bρ ∩X−,

where Bρ denotes the open ball in X of radius ρ and centered at zero. This implies that
u = 0 is a trivial critical point of J . The following three critical point theorem can be found
in [35, Theorem 2.2], which is a special case of [41, Theorem 2.1].

Theorem 2.2. Let J ∈ C1(X) satisfy the (PS)-condition, have a local linking at 0 with105

dimX− <∞, and be bounded from below. Then J has at least two nontrivial critical points.

Now we can start our investigation for the functional J .

Proposition 2.3. Suppose that (V0) holds and that there exist C ≥ 0, p, q ∈ [1, 2[ such that

|F (t)| ≤ C(|t|p+1 + |t|q+1) (2.6)

for all t ∈ R, then J is coercive on X.
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Proof. Let us choose m > 0 as in (2.1) and set Λ : X → R,

Λ(u) = −m
4

∫
u2 dx+

1

2

∫
|u|3 dx+

1

4

∫
V u2 dx−

∫
|F (u)|dx.

For u ∈ X, using (2.5) we have

J(u) =
1

2

∫ [
|∇u|2 + V u2

]
dx+

1

4

∫
φu u

2 dx−
∫
F (u) dx

=
1

4

∫ [
|∇u|2 + V u2

]
dx+

1

4

∫ [
|∇u|2 + φu u

2
]

dx+
1

4

∫
V u2 dx−

∫
F (u) dx

≥ 1

4
‖u‖2 − m

4

∫
u2 dx+

1

2

∫
|u|3 dx+

1

4

∫
V u2 dx−

∫
|F (u)|dx

=
1

4
‖u‖2 + Λ(u).

Therefore, it suffices to show that the functional Λ is bounded from below.
For any M > m, since V (x) ≥ −m for all x ∈ R, we have∫
V u2 dx =

∫
{V >M}

V u2 dx+

∫
{V≤M}

V u2 dx ≥M
∫
{V >M}

u2 dx−m
∫
{V≤M}

u2 dx,

so that

Λ(u) ≥ M

4

∫
{V >M}

u2 dx−m
4

∫
{V≤M}

u2 dx−m
4

∫
u2 dx+

1

2

∫
|u|3 dx−

∫
|F (u)|dx. (2.7)

Accordingly, we split all the remaining integrals on the two sets {V > M} and {V ≤ M},110

proving boundedness of the corresponding quantities separately.
On {V ≤M}, which has finite measure by assumption (V0), Hölder inequality gives

∫
{V≤M}

u2 dx ≤ C2

(∫
{V≤M}

|u|3 dx

) 2
3

.

Similarly, using (2.6) as well,

∫
{V≤M}

|F (u)|dx ≤ Cp

(∫
{V≤M}

|u|3 dx

) p+1
3

+ Cq

(∫
{V≤M}

|u|3 dx

) q+1
3

for some constants Cr depending on M , V and r ∈ [1, 2[. Hence

Λ−M (u) := −m
2

∫
{V≤M}

u2 dx+
1

2

∫
{V≤M}

|u|3 dx−
∫
{V≤M}

|F (u)|dx

≥ 1

2

∫
{V≤M}

|u|3 dx− mC2

2

(∫
{V≤M}

|u|3 dx

) 2
3

− Cp

(∫
{V≤M}

|u|3 dx

) p+1
3

− Cq

(∫
{V≤M}

|u|3 dx

) q+1
3

and since q, p ∈ [1, 2[, for any choice of M,m the right hand side is clearly bounded from
below.
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Consider now

Λ+
M (u) :=

M −m
4

∫
{V >M}

u2 dx+
1

2

∫
{V >M}

|u|3 dx−
∫
{V >M}

|F (u)|dx

≥ M −m
4

∫
{V >M}

u2 dx+
1

2

∫
{V >M}

|u|3 dx

− C
∫
{V >M}

|u|p+1 dx− C
∫
{V >M}

|u|q+1 dx. (2.8)

For r ∈ {p+ 1, q + 1}, by the interpolation inequality we have

∫
{V >M}

|u|r dx ≤

(∫
{V >M}

u2 dx

) rθr
2
(∫
{V >M}

|u|3 dx

) r(1−θr)
3

(2.9)

for θr ∈ [0, 1[ satisfying
r θr
2

+
r (1− θr)

3
= 1.

We can suppose that u 6= 0 on {V > M} (otherwise Λ+
M (u) = 0) and set

Ru =

(∫
{V >M}

u2 dx

)−1 ∫
{V >M}

|u|3 dx.

Then applying (2.9) for r = q + 1, p+ 1 to (2.8) we have

Λ+
M (u) ≥ M −m

4

∫
{V >M}

u2 dx+
1

2

∫
{V >M}

|u|3 dx

− C

(∫
{V >M}

u2 dx

) (p+1)θp+1
2

(∫
{V >M}

|u|3 dx

) (p+1)(1−θp+1)
3

− C

(∫
{V >M}

u2 dx

) (q+1)θq+1
2

(∫
{V >M}

|u|3 dx

) (q+1)(1−θq+1)
3

=

(
M −m

4
+
Ru
2
− C R

(p+1)(1−θp+1)
3

u − C R
(q+1)(1−θq+1)

3
u

)∫
{V >M}

u2 dx.

Because r(1−θr)
3 < 1 for r = p+ 1, q + 1, there exists M > m such that

M −m
4

+
R

2
− C R

(p+1)(1−θp+1)
3 − C R

(q+1)(1−θq+1)
3 > 0, for all R > 0. (2.10)

With this choice of M at the very beginning, the above argument shows that Λ+
M (u) ≥ 0.

Since Λ−M (u) + Λ+
M (u) is exactly the right hand side of (2.7), we deduce that Λ is bounded115

from below and the proof is concluded.

Remark 2.4.

• Regarding the potential, coercivity holds under slightly weaker assumptions, namely
that the measure of {V ≤ M} is finite for a suitable large M prescibed by the va-
lidity of (2.10). However, without assuming the full (V0) in the previous proposition,120

compactness starts becoming the main issue to prove existence of a solution.
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• The case 1 ≤ p < q = 2 can also be treated but is border-line: consider in (1.2) the
nonlinearity f(t) = λ|t|t for λ > 0. The previous proof still works for λ ≤ λ0 being
λ0 a small positive number that can be explicitly computed, but fails for λ > λ0. The
arguments in [7, Theorem 4.1] show that for λ > λ0 there are actually no solutions.125

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Notice that condition (2.6) trivially follows from (1.6). The arguments
of [6, p.4933] and the coercivity of J imply that the (PS) condition holds. Let X−, X+ and
X0 be the negative, positive and zero eigenspaces of the bilinear form Q defined in (2.2),
with u−, u+ and u0 being the respective orthogonal projections of u. We claim that J has a
local linking at 0 with respect to the decomposition (X−⊕X0)⊕X+. By the compactness of
X ↪→ L2(R3), both X− and X0 are finite dimensional and (X−⊕X0) has positive dimension
because inf σ(−∆ + V ) ≤ 0. By the embedding X ↪→ Lr(R3) for r ∈ {p + 1, q + 1}, there
holds ∣∣∣∣∫ F (u) dx

∣∣∣∣ ≤ C (‖u‖p+1 + ‖u‖q+1
)
,

so that
J(u) = Q(u, u) +G(u)

where, recalling that p, q > 1 and (2.4)

G(u) :=

∫ [
1

4
φu u

2 − F (u)

]
dx = o(‖u‖2), as ‖u‖ → 0.

This immediately forces J > 0 on BR ∩X+ \ {0} for suitably small R > 0. For u in the finite
dimensional space X− ⊕X0 (where all norms are equivalent), it holds∫

F (u) dx ≥ c
∫
|u|p+1 dx ≥ c̃‖u‖p+1,

for some c̃ > 0. Therefore, by (2.4) and (2.3) we deduce

J(u) ≤ −λ−‖u−‖2 + C ‖u‖4 − c̃ ‖u‖p+1 for u ∈ X− ⊕X0,

Since p+ 1 < 4, this implies that J < 0 in BR ∩ (X− ⊕X0) \ {0} for an even smaller R > 0.
The conclusion now follows from Theorem 2.2.

Remark 2.5. The condition F (t) ≥ c|t|p+1 is only used to deal with the case dimX0 > 0. If
dimX0 = 0 it is not needed and the multiplicity result above holds under the sôle assumption130

(1.6) with p, q ∈]1, 2[.

3. The superquadratic case

We first briefly discuss the assumptions used in this section to prove Theorem 1.2, namely
(V0)− (V2), (f1) and (f2), as well as some of their consequences.

• Assumption (V1) can be seen as a lack oscillation condition at infinity. For coercive135

radial potentials V (x) = v(|x|) it can be rephrased requiring that r 7→ v(r) r2 is non-
decreasing. An example of coercive potential failing to satisfy (V1) is V (x) = |x|2 +
|x| sin |x|2.

• Condition (V2) rules out exponentially growing potentials for which the implication u ∈
X ⇒ u(λ ·) ∈ X may fail for λ 6= 1. For example, if V (x) = e|x| and u = e−|x|/(1+ |x|4),140

then certainly u ∈ X but u(λ ·) fails to be in X for any λ ∈ ]0, 1[. A quantitative version
of this is given in Lemma 3.1.
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• Notice that condition (f1) implies that |F (t)| ≤ C (|t|2 + |t|p+1), p < 5, so that J is well
defined on X. We avoid the critical case p = 5, since the functional should satisfy (PS)c
for c less than some positive number c0. Since our functional only has a local linking145

structure, and currently all critical point theorems related to local linking require (PS)c
for all c ∈ R, at present the critical case cannot be treated.

• Hypothesis (f2) is a 3-superlinear condition of Ambrosetti-Rabinowitz type. By stan-
dard arguments, it implies that t 7→ F (t)/|t|µ−1t is non-decreasing and therefore,

F (t) ≤ C |t|µ for |t| ≤ 1, F (t) ≥ C |t|µ for |t| ≥ 1. (3.1)

Lemma 3.1. Assume (V2) holds and let Ṽ := V +m. Then for any t > 0, x ∈ R3

Ṽ (tx) ≤ max{tκ, t−κ} Ṽ (x). (3.2)

Proof. For t ≥ 1 we have

log
Ṽ (tx)

Ṽ (x)
= log Ṽ (tx)− log Ṽ (x) =

∫ t

1

d

ds
log Ṽ (sx) ds

=

∫ t

1

∇Ṽ (sx) · (sx)

Ṽ (sx)

1

s
ds ≤

∫ t

1

κ

s
ds = log tκ.

Therefore Ṽ (tx) ≤ tκ Ṽ (x). The argument for the case 0 < t < 1 is similar.

For any t > 0 and u ∈ X define

ut(x) = t2 u(tx), (3.3)

and define on the Hilbert space R×X (with natural norm ‖(s, u)‖2 = s2+‖u‖2) the augmented
functional

J̃(s, u) :=
s2

2
+ J(ues). (3.4)

Remark 3.2. Obviously, for s, t > 0, from (3.3) we have (ut)s = uts = (us)t.

Proposition 3.3. Assume (V2) and (f1). Then the functional J̃ is well defined on R ×X,
of class C1 and

J̃(s, u) =
s2

2
+
e3s

2

∫ [
|∇u|2 +

1

2
φu u

2

]
dx+

es

2

∫
V (xe−s)u2 dx−e−3s

∫
F (e2su) dx, (3.5)

〈∂uJ̃(s, u), ϕ〉 = e3s
∫

[∇u∇ϕ+ φu uϕ] dx+ es
∫
V (xe−s)uϕdx− e−s

∫
f(e2su)ϕdx,

(3.6)

∂sJ̃(s, u) = s+
3

2
e3s
∫ [
|∇u|2 +

1

2
φu u

2

]
dx+

es

2

∫ [
V (xe−s)−∇V (xe−s) · xe−s

]
u2 dx

− e−3s
∫ [

2f(e2su) e2su− 3F (e2su)
]

dx. (3.7)

Proof. By changing variables, it suffices to prove the statement for J(t, u) = J(ut) on R+×X.
A simple scaling argument shows that φut(x) = t2φu(tx), so that the following change of
variables is justified by φu ∈ L6(R3) and u ∈ L12/5(R3)∫

φut u
2
t dx = t3

∫
φu u

2 dx.

9



Similarly, ∫
|∇ut|2 dx = t3

∫
|∇u|2 dx ≤ t3‖u‖2,∣∣∣∣∫ F (ut) dx

∣∣∣∣ ≤ Ct∫ u2 dx+ C|t|2p−3
∫
|u|p dx.

For the potential term, thanks to the continuity of V the change of variable x = y/t is justified
on any fixed ball BR and the previous Lemma ensures∫

BR

Ṽ u2t dx = t

∫
BtR

Ṽ (y/t)u2(y) dy ≤ max{tκ, t−κ}
∫
BtR

Ṽ u2 dy ≤ ct‖u‖2,

so that letting R → +∞ proves that J̃ is well-defined. Formula (3.5) directly follows from150

changing variables.
Formula (3.6) can be computed in a standard way, while (3.7) is obtained by deriving

under the integral sign in (3.5). Observe that∣∣2f(e2su) e2su− 3F (e2su)
∣∣ ≤ C(e4s|u|2 + e2ps|u|6) (3.8)

by the growth condition (f1) and∣∣V (xe−s)−∇V (xe−s) · xe−s
∣∣ ≤ ∣∣V (xe−s)

∣∣+
∣∣∇V (xe−s) · xe−s

∣∣
≤ m+ (1 + κ) Ṽ (xe−s) ≤ m+ (1 + κ) eκ|s| Ṽ (x) (3.9)

due to |V | ≤ Ṽ +m, (V2) and Lemma 3.1. Moreover both

s 7→
∫ ∣∣2f(e2su) e2su− 3F (e2su)

∣∣ dx, s 7→
∫ ∣∣V (xe−s)−∇V (xe−s) · xe−s

∣∣u2 dx

are continuous by dominated convergence and standard arguments yields the differentiation
formula (3.7). Finally, the estimates (3.8), (3.9) ensure the continuity of the corresponding
Nemitskii operators appearing in (3.6) and (3.7), so that J̃ is of class C1.

Proposition 3.4 (Pohozaev identity). Assume (V2) and (f1) and let u be a critical point of
J on X. Then

d

dt

∣∣∣∣
t=1

J(ut) = 0.

Proof. Let u(t)(x) = u(tx). The same argument used in the proof of Proposition 3.3 shows
that under assumption (V2) the curve t 7→ u(t) is continuous in X at t = 1, and the functions
ϕ(t) := J(ut) and ψ(t) := J(u(t)) are differentiable at t = 1. By the mean value theorem

ϕ(t)− ψ(t) = J(ut)− J(u(t)) = 〈DJ(ξt), ut − u(t)〉
= 〈DJ(ξt),

(
t2 − 1

)
u(t)〉

= (t2 − 1)〈DJ(ξt), u(t)〉 (3.10)

for some ξt lying on the segment from ut to u(t). Therefore ξt → u in X as t → 1, because
both ut and u(t) possess this property. Consequently, DJ(ξt)→ DJ(u) = 0 and∣∣〈DJ(ξt), u(t)〉

∣∣ ≤ ‖DJ(ξt)‖ ‖u(t)‖ → 0 for t→ 1

because u(t) is continuous. It follows from (3.10) and ϕ(1) = ψ(1) that ϕ′(1) = ψ′(1), that is,

d

dt

∣∣∣∣
t=1

J(ut) =
d

dt

∣∣∣∣
t=1

J(u(t)).

10



By the usual form of the Pohozaev identity3 the last term vanishes, thus proving the theorem.155

In the following, we denote by D̃J̃ the total differential of J̃ with respect to both variables
s and u.

Lemma 3.5. If (V2) and (f1) hold, then

D̃J̃(s̄, ū) = 0 ⇔ s̄ = 0 and DJ(ū) = 0.

Proof. (⇐) From (3.6), it follows that DJ(ū) = 0 implies ∂uJ̃(0, ū) = 0. Therefore, it
suffices to prove that ∂sJ̃(0, ū) = 0. From DJ(ū) = 0, Proposition 3.4 gives

d

dt

∣∣∣∣
t=1

J(ūt) = 0. (3.11)

The map t 7→ J(ūt) is C1 by Proposition 3.3 and

J(ūt) = J̃(log t, ū)− log2 t

2
,

so that (3.11) reads

0 =
d

dt

∣∣∣∣
t=1

(
J̃(log t, ū)− log2 t

2

)
=

(
∂sJ̃(log t, ū)

1

t
− log t

t

)∣∣∣∣
t=1

= ∂sJ̃(0, ū).

(⇒) From D̃J̃(s̄, ū) = 0, being D̃ = (∂s, ∂u), we immediately infer 0 = ∂uJ̃(s̄, ū) = ∂uJ(ūes̄)
and we only have to prove that s̄ = 0. Proposition 3.4 applied to v := ūes̄ gives

d

dt

∣∣∣∣
t=1

J(vt) = 0.

The function t 7→ J(vt) is C1 by Proposition 3.3 and

J(vt) = J(ūtes̄) = J̃(s̄+ log t, ū)− (s̄+ log t)2

2
,

where the first equality is due to Remark 3.2. By the Chain Rule and ∂sJ̃(s̄, ū) = 0 we
have

0 =
d

dt

∣∣∣∣
t=1

J(vt) =

(
∂sJ̃(s̄+ log t, ū)

1

t
− s̄+ log t

t

)∣∣∣∣
t=1

= ∂sJ̃(s̄, ū)− s̄ = −s̄.

Theorem 3.6. Suppose that (V0)–(V2) and (f1)–(f2) hold. Then J̃ satisfies the (PS) condi-
tion.160

Proof. Let {(sn, un)} be a (PS)-sequence for J̃ in R×X. Then

|J̃(sn, un)|+ |∂sJ̃(sn, un)| = O(1).

3This follows from the standard technique (see [42, 43]) of multiplying the strong form of the equation by

∇u · x (notice that u ∈ W 2,2
loc (R3) by elliptic regularity), integrate by parts in BR and use the finiteness of

the energy to get rid of the corresponding boundary terms for a suitable sequence of radii Rn → +∞. The
nonlocal term involving φu can be treated through [44, Proof of Theorem 1.3].
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Choose λ ∈ ]3, µ[, where µ > 3 is given by (f2). Then

(2λ− 3)J̃(s, u)− ∂sJ̃(s, u) =
2λ− 3

2
s2 − s+

λ− 3

2
e3s
∫
|∇u|2 dx

+
λ− 3

2
e3s
∫ [
|∇u|2 + φu u

2
]

dx+
es

2

∫ [
2(λ− 2)V (xe−s) +∇V (xe−s) · xe−s

]
u2 dx

+ 2e−3s
∫ [

f(e2su) e2su− λF (e2su)
]

dx.

Using (2.5) on the second integral and (f2) on the last, we thus obtain

(2λ− 3)J̃(s, u)− ∂sJ̃(s, u) ≥ 2λ− 3

2
s2 − s+

λ− 3

2
e3s
∫
|∇u|2 dx+ (λ− 3)e3s

∫
|u|3 dx

+
es

2

∫ [
2(λ− 2)V (xe−s) +∇V (xe−s) · xe−s

]
u2 dx+ 2(µ− λ)e−3s

∫
F (e2su) dx.

(3.12)

The third integral is bounded from below through (V0)-(V2) and Hölder’s inequality. Indeed,
set

v(x) = e3s/2u(xes), Wλ(x) := 2(λ− 2)V (x) +∇V (x) · x.
Then, by a change of variables,∫ [

2(λ− 2)V (xe−s) +∇V (xe−s) · xe−s
]
u2 dx =

∫
Wλ v

2 dx. (3.13)

As Wλ is bounded on bounded sets, we let Cλ ∈ R be such that Wλ ≥ −Cλ in BR, R given
in (V1). Then ∫

BR

Wλ v
2 dx ≥ −Cλ

∫
BR

v2 dx ≥ −Cλ
(∫
|v|3 dx

) 2
3

. (3.14)

On R3 \ BR, we split the integral on the two sets {V ≥ 0} and {V < 0}, the latter having
finite measure by (V0). Because 2(λ− 2) > 2, assumption (V1) implies that

Wλ(x) = 2(λ− 2)V (x) +∇V (x) · x ≥ 2V (x) +∇V (x) · x ≥ 0

for x ∈ {V ≥ 0} \BR. On the other hand, by (V2) and V ≥ −m we have

Wλ ≥ 2(λ− 2)V − κ(V +m) ≥ −(2(λ− 2) + κ)m on {V < 0}.

We thus have, for some possibily larger Cλ∫
R3\BR

Wλ v
2 dx ≥

∫
{V <0}\BR

Wλ v
2 dx ≥ −Cλ

∫
{V <0}

v2 dx ≥ −Cλ |{V < 0}| 13
(∫
|v|3 dx

) 2
3

.

(3.15)
Combining (3.13), (3.14), (3.15) and computing |v|3 in terms of |u|3 by changing variable, we
get ∫ [

2(λ− 2)V (xe−s) +∇V (xe−s) · xe−s
]
u2 dx ≥ −Cλ es

(∫
|u|3 dx

) 2
3

. (3.16)

Inserting the latter into (3.12), for our (PS)-sequence {(sn, un)}, we have

O(1) ≥ (2λ− 3)J̃(sn, un)− ∂sJ̃(sn, un)

≥ 2λ− 3

2
s2n − sn +

λ− 3

2
e3sn

∫
|∇un|2 dx+ 2(µ− λ)e−3sn

∫
F (e2snun) dx

+ (λ− 3)e3sn
∫
|un|3 dx− Cλ

(
e3sn

∫
|un|3 dx

) 2
3

.
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From λ > 3 we infer (λ − 3)ξn − Cλξ2/3n → +∞ if ξn = e3sn |un|33 → +∞, while also using
µ− λ > 0 and F ≥ 0 we deduce from the previous estimate that

|sn|,
∫
|∇un|2 dx,

∫
|un|3 dx,

∫
F (e2snun) are bounded, (3.17)

and recalling that J̃(sn, un) = O(1) we also get through the previous bounds∫
V (xe−sn)u2n dx ≤ O(1). (3.18)

To complete the proof of the boundedness of ‖un‖, let S ≥ 1 be such that |κsn| ≤ S. Applying
Lemma 3.1 for x being xe−sn and t being esn , we get

V (x) +m ≤ eS
(
V (xe−sn) +m

)
. (3.19)

Choose k ≥ m large enough such that

1

2
e−Sk ≥

(
1− e−S

)
m.

Using (3.19), if V (x) > k, we have

V (xe−sn) ≥ e−SV (x)−
(
1− e−S

)
m ≥ e−S

2
V (x).

Thus, also using V ≥ −m on {V ≤ k}, we deduce∫
V (xe−sn)u2n dx =

∫
{V >k}

V (xe−sn)u2n dx+

∫
{V≤k}

V (xe−sn)u2n dx

≥ e−S

2

∫
{V >k}

V u2n dx−m
∫
{V≤k}

u2n dx

≥ e−S

2

∫
{V >k}

V u2n dx−m |{V ≤ k}|1/3
(∫
|un|3

)2/3

≥ e−S

2

∫
{V >k}

V u2n dx−O(1),

where we used (V0) and (3.17) in the last inequality. From (3.18) we thus infer∫
{V >k}

V u2n dx ≤ O(1).

Finally, due to k > m it holds V +m ≤ 2V on the set {V > k} and V +m ≤ 2k on {V ≤ k},
thus

‖un‖2 ≤
∫
|∇un|2 dx+ 2

∫
{V >k}

V u2n dx+ 2k

∫
{V≤k}

u2n dx

≤
∫
|∇un|2 dx+ 2

∫
{V >k}

V u2n dx+ 2k |{V ≤ k}| 13
(∫
|un|3 dx

) 2
3

≤ O(1)

by (3.17), proving the boundedness of {un} in X. Finally, the proof of the strong compactness
of {un} again follows as in [6] thanks to the compactness of X ↪→ Lp(RN ) for p ∈ [2, 6[.

Lemma 3.7. Assume (f1)-(f2), (V0)-(V2). For any λ ∈ ]3, µ[, there exists Mλ ≥ 0 such that

d

dt
J̃(τ, ut) ≤

2λ− 3

t

(
J̃(τ, ut) +Mλ

)
, t > 0, u ∈ X, τ ∈ R. (3.20)
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Proof. The estimate is independent of τ and u, so we let v = ueτ and observe that

J̃(τ, ut) =
τ2

2
+ J(uteτ ) =

τ2

2
− log2 t

2
+ J̃(log t, v) ≥ J̃(log t, v)− log2 t

2
(3.21)

d

dt
J̃(τ, ut) = − log t

t
+

1

t
∂sJ̃(log t, v). (3.22)

We claim that for given λ ∈ ]3, µ[, there exists Mλ > 0 such that

∂sJ̃(s, v)− s ≤ (2λ− 3)

(
J̃(s, v)− s2

2
+Mλ

)
(3.23)

for all s ∈ R and v ∈ X. Then, using (3.21) and (3.22), with s = log t and v = ueτ in (3.23)
we deduce

d

dt
J̃(τ, ut) = − log t

t
+

1

t
∂sJ̃(log t, v)

≤ 2λ− 3

t

(
J̃(log t, ueτ )− log2 t

2
+Mλ

)
=

2λ− 3

t
(J(uteτ ) +Mλ)

≤ 2λ− 3

t

(
J̃(τ, ut) +Mλ

)
,

proving (3.20). To prove (3.23) ignore the nonnegative terms involving ∇u and F in (3.12)
and use (3.16) to get

(2λ− 3)J̃(s, v)− ∂sJ̃(s, v) ≥ 2λ− 3

2
s2 − s+ (λ− 3) e3s

∫
|v|3 dx− Cλ

(
e3s
∫
|v|3 dx

) 2
3

.

The last two terms are bounded from below thanks to λ > 3, thus (3.23) is proved.

Lemma 3.8. Suppose (f1)-(f2) and (V1) hold true. Then, for any (s, u) ∈ R × X \ {0} it
holds

lim
t→+∞

J̃(s, ut) = −∞.

Proof. Considering v = ues it suffices to prove that J(vt)→ −∞ as t→ +∞. As in the proof
of (3.5) we get

J(vt) =
t3

2

∫ [
|∇v|2 +

1

2
φv v

2

]
dx+

t

2

∫
V t3v2(tx) dx− t−3

∫
F (t2v) dx.

Since v 6= 0, we can suppose that for some ε > 0, |{|v| ≥ ε}| is finite and positive and by
(3.1) we have∫

F (t2v) dx ≥ C
∫
{|v|≥ε}

t2µ |v|µ dx ≥ C εµ |{|v| ≥ ε}| t2µ =: Cv t
2µ,

for some Cv > 0 and t2 ≥ 1/ε. V is bounded on BR, therefore∫
BR

V t3v2(tx) dx ≤ ‖V ‖L∞(BR)

∫
t3v2(tx) dx = ‖V ‖L∞(BR)

∫
v2 dx.

Assumption (V1) implies that for any |ω| = R and r ≥ 1

d

dr

(
Ṽ (rω)r2

)
= r

(
2Ṽ (rω) +∇V (rω) · rω

)
≥ 0,
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where as usual Ṽ = V +m, so that

H(x) = Ṽ (x) |x|2 χR3\BR(x) is radially non-decreasing.

Letting w(x) = v(x)/|x|, we have∫
R3\BR

Ṽ t3v2(tx) dx = t2
∫
H t3w2(tx) dx = t2

∫
H(x/t)w2 dx,

and by the monotonicity of H, H(x/t)w2 ↘ 0 as t→ +∞, so that by monotone convergence
the last integral vanishes as t→ +∞. Therefore∫

V t3v2(tx) dx ≤
∫
BR

V t3v2(tx) dx+

∫
R3\BR

Ṽ t3v2(tx) dx ≤ ‖V ‖L∞(BR)

∫
v2 dx+ o(t2).

Summing up,

J(vt) ≤
t3

2

∫ [
|∇v|2 + φv v

2
]

dx+
t ‖V ‖L∞(BR)

2

∫
v2 dx+ o(t3)− Cv t2µ−3 → −∞,

as t→ +∞, because 2µ− 3 > 3.

Theorem 3.9. Assume (f1)-(f2) and (V0)-(V2). Then for any sufficiently negative a ∈ R, it
holds

Hq(R×X, {J̃ ≤ a}) = 0 for any q ∈ {0, 1, 2, . . . , }.

Proof. Let Ẋ = X \ {0} and consider the continuous map

R× Ẋ × R+ 3 (s, u, t) 7→ (s, ut) ∈ R× Ẋ.

Fix λ ∈ ]3, µ[ and a < −Mλ, where Mλ ≥ 0 is given in Lemma 3.7. Then, by the previous
Lemma, for any (s, u) ∈ R× Ẋ

lim
t→+∞

J̃(s, ut) = −∞.

Therefore, we infer from (3.20) that the implicit equation J̃(s, ut) = a has a unique solution
t = ϕ(s, u) for any (s, u) ∈ R× Ẋ such that J̃(s, u) > a, and

ϕ : {(s, u) ∈ R× Ẋ : J̃(s, u) > a} → R+

is continuous by a standard application of the implicit function theorem. The map

Φ : [0, 1]× R× Ẋ → R× Ẋ, Φ (ξ, (s, u)) =

{(
s, u1−ξ+ξϕ(s,u)

)
if J̃(s, u) > a,

(s, u) if J̃(s, u) ≤ a,

is a deformation retract of R× Ẋ onto {J̃ ≤ a}, so that by homotopy invariance

H∗(R×X, {J̃ ≤ a}) = H∗(R×X,R× Ẋ).

Since R × Ẋ deformation retracts to {0} × S∞, which is contractible in itself, we get the165

claim.

Recall that X+, X− and X0 are the negative, positive and null eigenspaces of the bilinear
form defined in (2.2).
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Lemma 3.10. Assume (f1)-(f2), (V0)-(V2) and consider the decomposition R×X = X̃−⊕X̃+

where
X̃− = X− ⊕X0, X̃+ = R⊕X+.

Then the functional J̃ has a local linking in the following cases

1. dimX− > 0, dimX0 = 0.170

2. dimX0 > 0 and F (t) ≥ c |t|ν for some ν < 4.

Proof. We first show that for some r > 0

J̃(s, u) > 0 for |s| < r, u ∈ X+, ‖u‖ < r. (3.24)

We have ∫
V (xe−s)u2 dx =

∫
V u2 dx+

∫ (∫ 1

0

d

dτ
V (e−sτx) dτ

)
u2 dx

=

∫
V u2 dx− s

∫ (∫ 1

0

∇V (e−sτx) · (e−sτx) dτ

)
u2 dx,

therefore∣∣∣∣∫ V (xe−s)u2 dx−
∫
V u2 dx

∣∣∣∣ ≤ |s|∫ (∫ 1

0

∣∣∇V (e−sτx) · (e−sτx)
∣∣ dτ

)
u2 dx

≤ κ |s|
∫ (∫ 1

0

Ṽ (e−sτx) dτ

)
u2 dx by (V2)

≤ κ |s|
∫ (∫ 1

0

eκ|s|τ Ṽ (x) dτ

)
u2 dx by (3.2)

≤
(
eκ|s| − 1

)∫
Ṽ u2 dx ≤ O(s) ‖u‖2 = o(‖(s, u)‖2)

since, as (s, b)→ (0, 0), sb2 = o(|(s, b)|2). Moreover, (f1) and (3.1) imply that

|F (t)| ≤ C
(
|t|µ + |t|p+1

)
,

so that, for ‖(s, u)‖ → 0, we have

e−3s
∣∣∣∣∫ F (e2su) dx

∣∣∣∣ ≤ C ∫ |u|µ + |u|p+1 dx ≤ o(‖u‖2),

while by (2.1) we easily have |V | ≤ 2Ṽ , hence

|s|
∫
|V |u2 dx ≤ 2|s|

∫
Ṽ u2 dx = o(‖(s, u)‖2).

Gathering these estimates and recalling (2.4), we get

J̃(s, u) =
s2

2
+
e3s

2

∫ [
|∇u|2 +

1

2
φu u

2
]

dx+
es

2

∫
V (xe−s)u2 dx− e−3s

∫
F (e2su) dx

=
s2

2
+

1 +O(s)

2

∫
|∇u|2 dx+

1 +O(s)

2

∫
V u2 dx

+O(‖u‖4) + o(‖(s, u)‖2) + o(‖u‖2)

=
1

2

∫ [
|∇u|2 + V u2

]
dx+

s2

2
+O(‖u‖4) + o(‖(s, u)‖2).
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The latter readily yelds (3.24) and, for s = 0,

J̃(0, u) < 0 for u ∈ X−, ‖u‖ < r,

proving the claimed local linking in case (1).
In case (2) we proceed as in Theorem 1.1: the previous computations yield

J̃(0, u) ≤ 1

2

∫ [
|∇u|2 + V u2

]
dx+O(‖u‖4)− c

∫
|u|ν dx,

and being all norms in X− ⊕X0 equivalent we deduce

J̃(0, u) ≤ −λ−‖u−‖2 +O(‖u‖4)− c′ ‖u‖ν for u ∈ X− ⊕X0.

Thanks to ν < 4, we infer

J̃(0, u) < 0 for u ∈ X− ⊕X0, ‖u‖ < r,

concluding the proof in this case.

Theorem 3.11. Assume (f1)-(f2), (V0)-(V2) and either

1. dimX− > 0, dimX0 = 0.175

2. dimX0 > 0 and F (t) ≥ c |t|ν for some ν < 4 .

Then problem (1.2) has at least a nontrivial solution.

Proof. Theorems 3.6, 3.9 and the previous Lemma allow to apply [45, Corollary 2.3], giving a
critical point (s̄, ū) 6= (0, 0) for J̃ . But then Lemma 3.5 forces s̄ = 0, ū 6= 0 andDJ(ū) = 0.
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