APPLYING TWICE A MINIMAX THEOREM

BIAGIO RICCERI
To Professor Wataru Takahashi, with esteem and friendship, on his 75th birthday

$$
\begin{aligned}
& \text { Abstract. Here is one of the results obtained in this paper: Let } X, Y \text { be two } \\
& \text { convex sets each in a real vector space, let } J: X \times Y \rightarrow \mathbf{R} \text { be convex and without } \\
& \text { global minima in } X \text { and concave in } Y \text {, and let } \Phi: X \rightarrow \mathbf{R} \text { be strictly convex. } \\
& \text { Also, assume that, for some topology on } X, \Phi \text { is lower semicontinuous and, for } \\
& \text { each } y \in Y \text { and } \lambda>0, J(\cdot, y) \text { is lower semicontinuous and } J(\cdot, y)+\lambda \Phi(\cdot) \text { is } \\
& \text { inf-compact. } \\
& \text { Then, for each } r \in] \inf _{X} \Phi, \sup _{X} \Phi[\text { and for each closed set } S \subseteq X \text { satisfying } \\
& \left.\left.\qquad \Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty, r\right]\right),
\end{aligned}
$$

one has

$$
\sup _{Y} \inf _{S} J=\inf _{S} \sup _{Y} J .
$$

1. Introduction

A real-valued function f on a topological space is said to be inf-compact (resp. sup-compact) if $\left.\left.f^{-1}(]-\infty, r\right]\right)$ (resp. $f^{-1}([r,+\infty[)$ is compact for all $r \in \mathbf{R}$.

A real-valued function f on a convex set is said to be quasi-concave if $f^{-1}([r,+\infty[)$ is convex for all $r \in \mathbf{R}$.

In [3], we proved two general minimax theorems which, grouped together, can be stated as follows:

Theorem 1.1 ([3], Theorems 1.1 and 1.2). Let X be a topological space, Y a convex set in a Hausdorff real topological vector space and $f: X \times Y \rightarrow \mathbf{R}$ a function such that $f(\cdot, y)$ is lower semicontinuous, inf-compact and has a unique global minimum for all $y \in Y$. Moreover, assume that either, for each $x \in X, f(x, \cdot)$ is continuous and quasi-concave or, for each $x \in X, f(x, \cdot)$ is concave.

Then, one has

$$
\sup _{Y} \inf _{X} f=\inf _{X} \sup _{Y} f
$$

Theorem 1.1 was first proved in the case where Y is a real interval ([1], [2]) and successively extended to the general case by means of a suitable inductive argument.

In [1], we applied Theorem 1.1 (with Y a real interval) to obtain a result ([1], Theorem 1) about the following problem: given two functions $f, g: X \rightarrow \mathbf{R}$, find

[^0]a interval $I \subseteq g(X)$ such that, for each $r \in I$, the restriction of f to $g^{-1}(r)$ has a unique global minimum.

The aim of the present paper is to establish a new minimax theorem (Theorem 2.1) which is the fruit of a joint application of Theorem 1.1 and Theorem 1 of [1]. So, it follows, essentially, from a double application of Theorem 1.1, as the title stresses.

We then show some consequences of Theorem 2.1.

2. Results

In the sequel, X is a topological space, Y is a non-empty set, $J: X \times Y \rightarrow \mathbf{R}$, $\Phi: X \rightarrow \mathbf{R}, a, b$ are two numbers in $[0,+\infty]$, with $a<b$.

For $y \in Y$ and $\lambda \in[0,+\infty]$, we denote by $M_{\lambda, y}$ the set of all global minima of the function $J(\cdot, y)+\lambda \Phi(\cdot)$ if $\lambda<+\infty$, while if $\lambda=+\infty, M_{\lambda, y}$ stands for the empty set. We adopt the conventions $\inf \emptyset=+\infty, \sup \emptyset=-\infty$. We also set

$$
\begin{aligned}
& \alpha:=\sup _{y \in Y} \max \left\{\inf _{X} \Phi, \sup _{M_{b, y}} \Phi\right\}, \\
& \beta:=\inf _{y \in Y} \min \left\{\sup _{X} \Phi, \inf _{M_{a, y}} \Phi\right\} .
\end{aligned}
$$

The following assumption will be adopted:
(a) Y is a convex set in a Hausdorff real topological vector space and either, for each $x \in X$, the function $J(x, \cdot)$ is continuous and quasi-concave, or, for each $x \in X$, the function $J(x, \cdot)$ is concave.

Our main result is as follows:
Theorem 2.1. Besides (a), assume that:
$\left(a_{1}\right) \alpha<\beta$;
$\left(a_{2}\right) \Phi$ is lower semicontinuous;
$\left(a_{3}\right)$ for each $\left.\lambda \in\right] a, b[$ and each $y \in Y$, the function $J(\cdot, y)$ is lower semicontinuous and the function $J(\cdot, y)+\lambda \Phi(\cdot)$ is inf-compact and admits a unique global minimum in X.

Then, for each $r \in] \alpha, \beta[$ and for each closed set $S \subseteq X$ satisfying

$$
\begin{equation*}
\left.\left.\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty, r\right]\right) \tag{2.1}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sup _{Y} \inf _{S} J=\inf _{S} \sup _{Y} J \tag{2.2}
\end{equation*}
$$

Proof. Since $r \in] \alpha, \beta$, for each $y \in Y$, Theorem 1 of [1] (see Remark 1 of [1]) ensures the existence of $\left.\lambda_{r, y} \in\right] a, b\left[\right.$ such that the unique global minimum of $J(\cdot, y)+\lambda_{r, y} \Phi(\cdot)$, say $x_{r, y}$, lies in $\Phi^{-1}(r)$. Notice that $x_{r, y}$ is the only global minimum of the restriction of the function $J(\cdot, y)$ to $\left.\left.\Phi^{-1}(]-\infty, r\right]\right)$. Indeed, if not, there would exist $u \in$ $\left.\left.\Phi^{-1}(]-\infty, r\right]\right)$, with $u \neq x_{r, y}$, such that $J(u, y) \leq J\left(x_{r, y}, y\right)$. Then, (since $\left.\lambda_{r, y}>0\right)$ we would have

$$
J(u, y)+\lambda_{r, y} \Phi(u) \leq J\left(x_{r, y}, y\right)+\lambda_{r, y} \Phi(u) \leq J\left(x_{r, y}, y\right)+\lambda_{r, y} r=J\left(x_{r, y}, y\right)+\lambda_{r, y} \Phi\left(x_{r, y}\right)
$$

which is absurd. Therefore, since S satisfies (2.1), the restriction of $J(\cdot, y)$ to S has a unique global minimum. Now, observe that, for each $y \in Y, \rho \in \mathbf{R}, \lambda \in] a, b[$, one has

$$
\{x \in S: J(x, y) \leq \rho\} \subseteq\{x \in X: J(x, y)+\lambda \Phi(x) \leq \rho+\lambda r\} .
$$

By assumption, the set on the right-hand side is compact. Hence, the set $\{x \in$ $S: J(x, y) \leq \rho\}$, being closed, is compact too. Summarizing: for each $y \in Y$, the restriction of the function $J(\cdot, y)$ to S is lower semicontinuous, inf-compact and has a unique global minimum. So, $J_{\mid S \times Y}$ satisfies the hypoteses of Theorem 1.1 and hence (2.2) follows.
Remark 2.2. From the above proof, it follows that, when X is Hausdorff and each sequentially compact subset of X is compact, Theorem 2.1 is still valid if we replace "lower semicontinuous", "inf-compact", "closed" with "sequentially lower semicontinuous", "sequentially inf-compact", "sequentially closed", respectively.

We now draw a series of consequences from Theorem 2.1
Corollary 2.3. In addition to the assumptions of Theorem 2.1, suppose that $\beta=$ $\sup _{X} \Phi$ and that Φ has no global maxima. Moreover, suppose that the function $J(x, \cdot)$ is upper semicontinuous for all $x \in X$ and $J\left(x_{0}, \cdot\right)$ is sup-compact for some $x_{0} \in X$.

Then, one has

$$
\sup _{Y} \inf _{X} J=\inf _{X} \sup _{Y} J
$$

Proof. Clearly, the assumptions imply that

$$
\left.\left.X=\bigcup_{\alpha<r<\beta} \Phi^{-1}(]-\infty, r\right]\right)
$$

Since the family $\left.\left.\left\{\Phi^{-1}(]-\infty, r\right]\right)\right\}_{r \in] \alpha, \beta[}$ is filtering with respect to inclusion, the conclusion follows from a joint application of Theorem 2.1 and Proposition 2.1 of [3].

Another corollary of Theorem 2.1 is as follows:
Corollary 2.4. Besides (a), assume that X is a convex set in a real vector space and that:
$\left(b_{1}\right) \Phi$ is lower semicontinuous and strictly convex ;
$\left(b_{2}\right)$ for each $\lambda>0$ and each $y \in Y$, the function $J(\cdot, y)$ is convex, lower semicontinuous and has no global minima, and the function $J(\cdot, y)+\lambda \Phi(\cdot)$ is inf-compact.

Then, for each $r \in] \inf _{X} \Phi, \sup _{X} \Phi[$ and for each closed set $S \subseteq X$ satisfying

$$
\left.\left.\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty, r\right]\right),
$$

one has

$$
\sup _{Y} \inf _{S} J=\inf _{S} \sup _{Y} J
$$

Proof. We apply Theorem 2.1 taking $a=0$ and $b=+\infty$. So, we have

$$
\alpha=\inf _{X} \Phi
$$

as well as

$$
\beta=\sup _{X} \Phi
$$

since $M_{0, y}=\emptyset$ for all $y \in Y$. By strict convexity, the function $J(\cdot, y)+\lambda \Phi(\cdot)$ has a unique global minimum for all $y \in Y, \lambda>0$. So, each assumption of Theorem 2.1 is satisfied and the conclusion follows.
Remark 2.5. We stress that, in Corollary 2.4, no relation is required between the considered topology on X and the algebraic structure of the vector space which contains it.
Remark 2.6. In the setting of Corollary 2.4, although J is convex in X, we cannot apply the classical Fan-Sion theorem when S is not convex.
If E, F are Banach spaces and $A \subseteq E$, a function $\psi: A \rightarrow F$ is said to be C^{1} if it is the restriction to A of a C^{1} function on an open convex set containing A.

A further remarkable corollary of Theorem 2.1 is as follows:
Corollary 2.7. Besides (a), assume that X is a closed and convex set in a reflexive real Banach space E and that:
$\left(c_{1}\right) \Phi$ is of class C^{1} and there is $\nu>0$ such that

$$
\left(\Phi^{\prime}(x)-\Phi^{\prime}(u)\right)(x-u) \geq \nu\|x-u\|^{2}
$$

for all $x, u \in X$;
$\left(c_{2}\right)$ for each $y \in Y$, the function $J(\cdot, y)$ is C^{1}, sequentially weakly lower semicontinuous and $J_{x}^{\prime}(\cdot, y)$ is Lipschitzian with constant L (independent of y) ;
$\left(c_{3}\right) \inf _{y \in Y} \inf _{M_{\frac{L}{\nu}, y}} \Phi>\inf _{X} \Phi$.
Then, for each $r \in] \inf _{X} \Phi, \inf _{y \in Y} \inf _{M_{\frac{L}{\nu}, y}} \Phi[$ and for each sequentially weakly closed set $S \subseteq X$ satisfying

$$
\left.\left.\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty, r\right]\right),
$$

one has

$$
\sup _{Y} \inf _{S} J=\inf _{S} \sup _{Y} J .
$$

Proof. For each $x, u \in X, y \in Y, \lambda \geq \frac{L}{\nu}$, we have

$$
\begin{gathered}
\left(J_{x}^{\prime}(x, y)+\lambda \Phi^{\prime}(x)-J_{x}^{\prime}(u, y)-\lambda \Phi^{\prime}(u)\right)(x-u) \\
\geq \lambda \nu\|x-u\|^{2}-\left\|J_{x}^{\prime}(x, y)-J_{x}^{\prime}(u, y)\right\|_{E^{*}}\|x-u\| \geq(\lambda \nu-L)\|x-u\|^{2} .
\end{gathered}
$$

Hence, the function $J(\cdot, y)+\lambda \Phi(\cdot)$, if $\lambda>\frac{L}{\nu}$, is strictly convex and coercive when X is unbounded ([4], pp. 247-249). Hence, if we consider X with the relative weak topology, we can apply Theorem 2.1 (in the sequential form pointed out in Remark 2.2) taking $a=\frac{L}{\nu}$ and $b=+\infty$, and the conclusion follows.

If E is a normed space, for each $r>0$, we put

$$
B_{r}=\{x \in E:\|x\| \leq r\} .
$$

If $A \subseteq E$, a function $f: A \rightarrow E$ is said to be sequentially weakly-strongly continuous if, for each $x \in A$ and for each sequence $\left\{x_{k}\right\}$ in A weakly converging to x, the sequence $\left\{f\left(x_{k}\right)\right\}$ converges strongly to $f(x)$.

Corollary 2.8. Let E be a real Hilbert space and let $X=B_{\rho}$ for some $\rho>0$. Besides (a) and (c_{2}), assume that

$$
\delta:=\inf _{y \in Y}\left\|J_{x}^{\prime}(0, y)\right\|>0
$$

Then, for each $r \in] 0, \min \left\{\rho, \frac{\delta}{2 L}\right\}[$, one has

$$
\sup _{Y} \inf _{B_{r}} J=\inf _{B_{r}} \sup _{Y} J
$$

Proof. Apply Corollary 2.7, taking $\Phi(x)=\|x\|^{2}$. Let $y \in Y$ and $\tilde{x} \in M_{\frac{L}{2}, y}$, with $\|\tilde{x}\|<\rho$. Then, we have

$$
J_{x}^{\prime}(\tilde{x}, y)+L \tilde{x}=0
$$

Consequently, in view of $\left(c_{2}\right)$, we have

$$
\left\|L \tilde{x}+J_{x}^{\prime}(0, y)\right\| \leq\|L \tilde{x}\|
$$

In turn, using the Cauchy-Schwarz inequality, this readily implies that

$$
\|\tilde{x}\| \geq \frac{\left\|J_{x}^{\prime}(0, y)\right\|}{2 L} \geq \frac{\delta}{2 L}
$$

Therefore, we have the estimate

$$
\inf _{y \in Y} \inf _{x \in M_{\frac{L}{2}, y}}\|x\| \geq \min \left\{\rho, \frac{\delta}{2 L}\right\}
$$

and the conclusion follows from Corollary 2.7.
We now apply Corollary 2.8 to a particular function J.
Corollary 2.9. Let E, X be as in Corollary 2.8, let $Y \subseteq E$ be a closed bounded convex set and let $f: X \rightarrow E$ be a sequentially weakly-strongly continuous C^{1} function whose derivative is Lipschitzian with constant γ. Moreover, let η be the Lipschitz constant of the function $x \rightarrow x-f(x)$, set

$$
\begin{gathered}
\theta:=\sup _{x \in X}\left\|f^{\prime}(x)\right\|_{\mathcal{L}(E)}, \\
L:=2\left(\eta+\theta+\gamma\left(\rho+\sup _{y \in Y}\|y\|\right)\right)
\end{gathered}
$$

and assume that

$$
\sigma:=\inf _{y \in Y} \sup _{\|u\|=1}\left|\left\langle f^{\prime}(0)(u), y\right\rangle-\langle f(0), u\rangle\right|>0
$$

Then, for each $r \in] 0, \min \left\{\rho, \frac{\sigma}{L}\right\}[$ and for each non-empty closed convex set $T \subseteq Y$, there exist $x^{*} \in \partial B_{r}$ and $y^{*} \in T$ such that

$$
\left\|x^{*}-f\left(x^{*}\right)\right\|^{2}+\left\|f(x)-y^{*}\right\|^{2}-\|x-f(x)\|^{2} \leq\left\|f\left(x^{*}\right)-y^{*}\right\|^{2}=\left(\operatorname{dist}\left(f\left(x^{*}\right), T\right)\right)^{2}
$$

for all $x \in B_{r}$.

Proof. Consider the function $J: X \times Y \rightarrow \mathbf{R}$ defined by

$$
J(x, y)=\|f(x)-x\|^{2}-\|f(x)-y\|^{2}
$$

for all $x \in X, y \in Y$. Clearly, for each $y \in Y, J(\cdot, y)$ is sequentially weakly lower semicontinuos and C^{1}. Moreover, one has

$$
\left\langle J_{x}^{\prime}(x, y), u\right\rangle=2\langle x-f(x), u\rangle-2\left\langle f^{\prime}(x)(u), x-y\right\rangle
$$

for all $x \in X, u \in E$. Fix $x, v \in X$ and $u \in E$, with $\|u\|=1$. We have

$$
\begin{aligned}
& \frac{1}{2}\left|\left\langle J_{x}^{\prime}(x, y)-J_{x}^{\prime}(v, y), u\right\rangle\right| \\
&=\left|\langle x-f(x)-v+f(v), u\rangle-\left\langle f^{\prime}(x)(u), x-y\right\rangle+\left\langle f^{\prime}(v)(u), v-y\right\rangle\right| \\
& \quad \leq \eta\|x-v\|+\left|\left\langle f^{\prime}(x)(u), x-v\right\rangle+\left\langle f^{\prime}(x)(u)-f^{\prime}(v)(u), v-y\right\rangle\right| \\
& \quad \leq \eta\|x-v\|+\left\|f^{\prime}(x)(u)\right\|\|x-v\|+\left\|f^{\prime}(x)(u)-f^{\prime}(v)(u)\right\|\|v-y\| \\
& \quad \leq\left(\eta+\theta+\gamma\left(\rho+\sup _{y \in Y}\|y\|\right)\right)\|x-v\|
\end{aligned}
$$

Therefore, the function $J^{\prime}(\cdot, y)$ is Lipschitzian with constant L.
Fix $r \in] 0, \min \left\{\rho, \frac{\sigma}{L}\right\}[$ and a non-empty closed convex set $T \subseteq Y$. Clearly

$$
\inf _{y \in T}\left\|\mid J_{x}^{\prime}(0, y)\right\| \geq \inf _{y \in Y}\left\|J_{x}^{\prime}(0, y)\right\|=2 \sigma
$$

and

$$
\frac{\inf _{y \in T}\left\|\mid J_{x}^{\prime}(0, y)\right\|}{2 L}>r
$$

Then, applying Corollary 2.8 to the restriction of J to $B_{r} \times T$, we get

$$
\sup _{T} \inf _{B_{r}} J=\inf _{B_{r}} \sup _{T} J .
$$

By the weak compactness of B_{r} and T, we then infer the existence of $x^{*} \in B_{r}$ and $y^{*} \in T$ such that

$$
J\left(x^{*}, y\right) \leq J\left(x^{*}, y^{*}\right) \leq J\left(x, y^{*}\right)
$$

for all $x \in B_{r}, y \in T$ which is equivalent to the conclusion. To show that $x^{*} \in \partial B_{r}$, notice that if $\left\|x^{*}\right\|<r$ then we would have $J_{x}^{\prime}\left(x^{*}, y^{*}\right)=0$ and so

$$
r<\frac{\sigma}{L} \leq \frac{\left\|J_{x}^{\prime}\left(0, y^{*}\right)\right\|}{2 L} \leq \frac{L\left\|x^{*}\right\|}{2 L}<r
$$

an absurd.
From Corollary 2.9, in turn, we draw the following characterization about the existence and uniqueness of fixed points:

Corollary 2.10. Let the assumptions of Corollary 2.9 be satisfied.
Then, for each $r \in] 0, \min \left\{\rho, \frac{\sigma}{L}\right\}\left[\right.$ such that $f\left(B_{r}\right) \subseteq Y$, the following assertions are equivalent:
(i) the function f has a unique fixed point in B_{r} and this lies in ∂B_{r};
(ii) the function f has a fixed point in ∂B_{r};
(iii) for each $x \in \partial B_{r}$ for which $f(x) \notin B_{r}$, there exists $v \in B_{r}$ such that

$$
\|f(x)-x\|^{2}>\|f(v)-v\|^{2}-\|f(v)-f(x)\|^{2}
$$

Proof. The implications $(i) \rightarrow(i i) \rightarrow(i i i)$ are obvious. So, suppose that (iii) holds. Apply Corollary 2.9 taking $T=\overline{\operatorname{conv}}\left(f\left(B_{r}\right)\right)$. Let x^{*}, y^{*} be as in the conclusion of Corollary 2.9. Then, we have

$$
\left\|f\left(x^{*}\right)-y^{*}\right\|=\operatorname{dist}\left(f\left(x^{*}\right), T\right)=0
$$

and

$$
\begin{equation*}
\left\|x^{*}-f\left(x^{*}\right)\right\|^{2}+\left\|f(x)-f\left(x^{*}\right)\right\|^{2}-\|x-f(x)\|^{2} \leq 0 \tag{2.3}
\end{equation*}
$$

for all $x \in B_{r}$. Clearly, in view of (iii), we have $f\left(x^{*}\right) \in B_{r}$. So, in particular, (2.3) holds for $x=f\left(x^{*}\right)$ and this implies that

$$
\left\|x^{*}-f\left(x^{*}\right)\right\| \leq 0
$$

that is x^{*} is a fixed point of f in B_{r}. Finally, if $\tilde{x} \in B_{r}$ and $\tilde{x}=f(\tilde{x})$, from (2.3) it follows that $f(\tilde{x})=f\left(x^{*}\right)$, and so $\tilde{x}=x^{*}$. That is, x^{*} is the unique fixed point of f in B_{r}.

Remark 2.11. It is important to notice that, when $\operatorname{dim}(E)<\infty$, Corollaries 2.4, 2.5 and 2.6 are still valid replacing B_{r} with any closed set S satisfying $\partial B_{r} \subseteq S \subseteq B_{r}$.

References

[1] B. Ricceri, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim. 40 (2008), 389-397.
[2] B. Ricceri, Multiplicity of global minima for parametrized functions, Rend. Lincei Mat. Appl. 21 (2010), 47-57.
[3] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2 (2017), 99-152.
[4] E. Zeidler, Nonlinear functional analysis and its applications, vol. III, Springer, 1985.

[^1]
[^0]: 2010 Mathematics Subject Classification. 49J35, 49K35, 49K27, 90C47.
 Key words and phrases. Minimax theorem, global minimum; iniqueness.
 The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, "Piano della Ricerca 2016/2018 Linea di intervento $2 "$.

[^1]: B. Ricceri

 Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

 E-mail address: ricceri@dmi.unict.it

