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APPLYING TWICE A MINIMAX THEOREM

BIAGIO RICCERI

To Professor Wataru Takahashi, with esteem and friendship, on his 75th birthday

ABSTRACT. Here is one of the results obtained in this paper: Let X,Y be two
convex sets each in a real vector space, let J : X XY — R be convex and without
global minima in X and concave in Y, and let ® : X — R be strictly convex.
Also, assume that, for some topology on X, ® is lower semicontinuous and, for
each y € Y and A > 0, J(-,y) is lower semicontinuous and J(-,y) + A®(:) is
inf-compact.
Then, for each r €]infx ®,sup ®[ and for each closed set S C X satisfying
() CSC (|~ o0r)),
one has
SI}I/p 1gf J = 1r§f Sl}l/p J.

1. INTRODUCTION

A real-valued function f on a topological space is said to be inf-compact (resp.
sup-compact) if f71(] — oo,7]) (resp. f~1([r, +o0[) is compact for all » € R.

A real-valued function f on a convex set is said to be quasi-concave if f~1([r, +00])
is convex for all r € R.

In [3], we proved two general minimax theorems which, grouped together, can be
stated as follows:

Theorem 1.1 ([3], Theorems 1.1 and 1.2). Let X be a topological space, Y a convex
set in a Hausdorff real topological vector space and f: X xY — R a function such
that f(-,y) is lower semicontinuous, inf-compact and has a unique global minimum
for ally € Y. Moreover, assume that either, for each x € X, f(z,-) is continuous
and quasi-concave or, for each v € X, f(x,-) is concave.

Then, one has

inf f = inf .
sup iy f=in sgpf

Theorem 1.1 was first proved in the case where Y is a real interval ([1], [2]) and
successively extended to the general case by means of a suitable inductive argument.

In [1], we applied Theorem 1.1 (with Y a real interval) to obtain a result ([1],
Theorem 1) about the following problem: given two functions f,g : X — R, find
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a interval I C g(X) such that, for each r € I, the restriction of f to ¢g~!(r) has a
unique global minimum.

The aim of the present paper is to establish a new minimax theorem (Theorem
2.1) which is the fruit of a joint application of Theorem 1.1 and Theorem 1 of [1].
So, it follows, essentially, from a double application of Theorem 1.1, as the title
stresses.

We then show some consequences of Theorem 2.1.

2. RESULTS

In the sequel, X is a topological space, Y is a non-empty set, J : X XY — R,
®: X — R, a,b are two numbers in [0, +oo], with a < b.

For y € Y and A € [0, +0c], we denote by M), the set of all global minima of
the function J(-,y) +A®(-) if A < +o0, while if A = +o00, M) , stands for the empty
set. We adopt the conventions inf ) = +o00, sup) = —oo. We also set

« :=supmax < inf &, sup ® p ,
yEY X Mb,y

:= inf mi ®, inf &, .
I3 ;gymln{s;l(p ’J\l/[riy }

The following assumption will be adopted:

(a) Y is a convex set in a Hausdorff real topological vector space and either, for
each z € X, the function J(z, -) is continuous and quasi-concave, or, for each z € X,
the function J(z,-) is concave.

Our main result is as follows:

Theorem 2.1. Besides (a), assume that:
(al) a < ﬁ ;
(a2) ® is lower semicontinuous ;
(ag) for each A €la,b] and each y € Y, the function J(-,y) is lower semicontinuous
and the function J(-,y)+ A®(+) is inf-compact and admits a unique global minimum
in X.

Then, for each v €|a, B[ and for each closed set S C X satisfying

dlr)cSCd (] - 00,1]), (2.1)

one has
supinf J =infsupJ . (2.2)
y S S vy

Proof. Since r €]a, [, for each y € Y, Theorem 1 of [1] (see Remark 1 of [1]) ensures
the existence of \,.,, €la, b[ such that the unique global minimum of J(-, y)+ A, ®(:),
Say Try, lies in ®~1(r). Notice that Zry is the only global minimum of the restriction
of the function J(-,y) to ® (] — oo,r]). Indeed, if not, there would exist u €
®~Y(] — o0, 7)), with u # ., such that J(u,y) < J(zry,y). Then, (since A, > 0)
we would have

J(u, y)“‘)\r,yq)(u) < J(xr,ya y)—&—)\,«,yq)(u) < J(xmp y>+/\r,yr = J(xr,ya y)+)‘r,yq>(xr,y)
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which is absurd. Therefore, since S satisfies (2.1), the restriction of J(-,y) to S has
a unique global minimum. Now, observe that, for each y € Y, p € R, X €a, b, one
has
{zeS:Jxy <ptC{reX:Jxy +AX0(x) <p+AIr}.

By assumption, the set on the right-hand side is compact. Hence, the set {z €
S : J(z,y) < p}, being closed, is compact too. Summarizing: for each y € Y, the
restriction of the function J(-,y) to S is lower semicontinuous, inf-compact and has
a unique global minimum. So, J|g.y satisfies the hypoteses of Theorem 1.1 and
hence (2.2) follows. O

Remark 2.2. From the above proof, it follows that, when X is Hausdorff and
each sequentially compact subset of X is compact, Theorem 2.1 is still valid if we
replace “lower semicontinuous”, “inf-compact”, “closed” with “sequentially lower
semicontinuous”, “sequentially inf-compact”, “sequentially closed”, respectively.

We now draw a series of consequences from Theorem 2.1

Corollary 2.3. In addition to the assumptions of Theorem 2.1, suppose that [ =
supx ® and that ® has no global mazxima. Moreover, suppose that the function
J(x,-) is upper semicontinuous for all x € X and J(xo,-) is sup-compact for some
xg € X.
Then, one has
s;lp 121(f J = 1gl(f sgp J .

Proof. Clearly, the assumptions imply that
X=J o '(]-o0,1) .
a<rf

Since the family {®~1(] — 00,7])} )01 is filtering with respect to inclusion, the
conclusion follows from a joint application of Theorem 2.1 and Proposition 2.1 of
[3]. O

Another corollary of Theorem 2.1 is as follows:

Corollary 2.4. Besides (a), assume that X is a convex set in a real vector space

and that:

(b1) @ is lower semicontinuous and strictly convex ;

(be) for each A > 0 and each y € Y, the function J(-,y) is convezx, lower semicon-

tinuous and has no global minima, and the function J(-,y) + A®() is inf-compact.
Then, for each r €]infx ®,supy ®[ and for each closed set S C X satisfying

¢ (r) € S C@7(]—o0,r])
one has
sgp igf J = igf S;/lp J .
Proof. We apply Theorem 2.1 taking a = 0 and b = +00. So, we have

a=inf @
X
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as well as
B =sup®
X
since My, = 0 for all y € Y. By strict convexity, the function J(-,y) + A®(-) has a

unique global minimum for all ¥y € Y, A > 0. So, each assumption of Theorem 2.1
is satisfied and the conclusion follows. O

Remark 2.5. We stress that, in Corollary 2.4, no relation is required between the
considered topology on X and the algebraic structure of the vector space which
contains it.

Remark 2.6. In the setting of Corollary 2.4, although J is convex in X, we cannot
apply the classical Fan-Sion theorem when S is not convex.

If E, F are Banach spaces and A C E, a function ¢ : A — F is said to be C! if
it is the restriction to A of a C'' function on an open convex set containing A.

A further remarkable corollary of Theorem 2.1 is as follows:

Corollary 2.7. Besides (a), assume that X is a closed and convex set in a reflexive
real Banach space E and that:
(c1) @ is of class C* and there is v > 0 such that

(®'(z) — @' (u)(z —u) > vz —ul)?
forallz,u e X ;
(c2) for each y € Y, the function J(-,y) is C, sequentially weakly lower semicon-
tinuous and J.(-,y) is Lipschitzian with constant L (independent of y) ;
(03) infyey infML d>infxy & .
Y

Then, for each r € }infx ®,inf, cy infML’y ®| and for each sequentially weakly

closed set S C X satisfying
¢ H(r)CSC@(]—o0,7])

one has
supinf J =infsupJ .
Yp % % Yp

Proof. For each z,u € X, yeY, A > %, we have
(Jo(2,y) + AP (2) = T, (u,y) — AP (u)) (2 — u)
> Ml —ul® = [|73(2,y) — Jo(u,y) e e — ull = O = L)|la —ul® .
Hence, the function J(-,y) + A®(-), if A > %, is strictly convex and coercive when
X is unbounded ([4], pp. 247-249). Hence, if we consider X with the relative weak

topology, we can apply Theorem 2.1 (in the sequential form pointed out in Remark
2.2) taking a = % and b = 400, and the conclusion follows. g

If F is a normed space, for each r > 0, we put
B, ={zeE:|z|<r}.

If A C E, afunction f: A — F is said to be sequentially weakly-strongly continuous
if, for each x € A and for each sequence {z;} in A weakly converging to x, the
sequence {f(xy)} converges strongly to f(z).
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Corollary 2.8. Let E be a real Hilbert space and let X = B, for some p > 0.
Besides (a) and (c2), assume that

§ := inf ||.J’ .
yngHJx(O,y)H >0

Then, for each r € ]O,min {p, %} [, one has

inf J = inf J .
Sl}l/p 1& 1}& sgp

Proof. Apply Corollary 2.7, taking ®(z) = ||z||?>. Let y € Y and & € Méyy, with
|Z|]] < p. Then, we have
J(Z,y)+ Lz =0.
Consequently, in view of (¢2), we have
1Lz + JL(0,9)]| < [ILz]| .
In turn, using the Cauchy-Schwarz inequality, this readily implies that

1750.9)] &

Sl > .
12l 2 =572 57

Therefore, we have the estimate

inf inf ||z]| > mi 0
11 11 X min -
yey LEGM%’U - P 2L

and the conclusion follows from Corollary 2.7. U

We now apply Corollary 2.8 to a particular function J.

Corollary 2.9. Let E, X be as in Corollary 2.8, let Y C E be a closed bounded
convex set and let f : X — E be a sequentially weakly-strongly continuous C*
function whose derivative is Lipschitzian with constant ~v. Moreover, let 1 be the
Lipschitz constant of the function x — x — f(x), set

0 := sup || f'(2)|zm)
rzeX

L:=2 <n+9+7 (p+sup!y\|>>
yey

o= ?jg}f/\\ilnllz)l [{(f(0)(u), ) = (£(0),u)| >0 .

and assume that

Then, for each r € }0, min {p, %} [ and for each non-empty closed convex setT CY,
there exist x* € 0B, and y* € T such that

lz* = Fa)P + [ f(z) =y I = llz = f@)* < |f(*) — y*[|* = (dist(f (%), T))?
forall x € B, .
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Proof. Consider the function J : X x Y — R defined by

J(z,y) = | f(@) — x| = | /(=) — yl
for all x € X, y € Y. Clearly, for each y € Y, J(-,y) is sequentially weakly lower
semicontinuos and C'. Moreover, one has

(Jo(x,y) u) = 2(x — f(z),u) = 2(f'(z)(u), z — y)
forallz € X, ue€ E. Fix z,v € X and u € E, with |lu]| = 1. We have

ST, y) — (o, )
= I{z — f(z) — v+ F0), ) — (F @) w), 7~ y) + (F ) ), 0~ 3]
< e — v+ 1 (@) (w), — )+ (F ) () — 7 (@) a0), 0 — )]
< nlle =l + 17/ @)@l — oll + 1)) — £ @)@l ]

< n+0+~{p+suplyl ] | llz—o].
yey

Therefore, the function J'(-,y) is Lipschitzian with constant L.
Fix r € ]0, min { 0, %} [ and a non-empty closed convex set 7' C Y. Clearly

inf [[[72(0, y)|| > inf [|J5(0,y)] = 2
inf [17200.9)Il = inf 120, y)l| = 20

and
infyer |||/ (0, 9)||
2L
Then, applying Corollary 2.8 to the restriction of J to B, x T, we get

supinf J = 1nf supJ .
T Br Br

By the weak compactness of B, and T, we then infer the existence of * € B, and
y* € T such that
J(@*y) < J(a% ") < J(2,y")
for all x € B,., y € T which is equivalent to the conclusion. To show that z* € 0B,
notice that if ||z*|| < r then we would have J.(z*,y*) = 0 and so
o _ [0,y _ Lll*|
"STS e S o ST
an absurd. 0

From Corollary 2.9, in turn, we draw the following characterization about the
existence and uniqueness of fixed points:

Corollary 2.10. Let the assumptions of Corollary 2.9 be satisfied.
Then, for each r € ]0, min {p, %} [ such that f(By,) CY, the following assertions
are equivalent:
(i) the function f has a unique fixed point in B, and this lies in OB, ;
(ii) the function f has a fized point in OB, ;
(7i1) for each x € OB, for which f(x) & By, there exists v € B, such that

I () =l > [ f(v) = ol* = | f(v) = F(2)]* .
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Proof. The implications (i) — (i7) — (iii) are obvious. So, suppose that (iii) holds.
Apply Corollary 2.9 taking T = conv(f(B,)). Let z*,y* be as in the conclusion of
Corollary 2.9. Then, we have

1 (@) =y = dist(f(z"),T) = 0
and
lz* = f@*)P + [ (2) = @) =z = f@)]> <0 (2.3)
for all z € B,. Clearly, in view of (iii), we have f(z*) € B,.. So, in particular, (2.3)
holds for z = f(x*) and this implies that

[ = f(z")I <0

that is #* is a fixed point of f in B,. Finally, if € B, and = f(), from (2.3) it
follows that f(Z) = f(z*), and so & = x*. That is, * is the unique fixed point of f
in B,. O

Remark 2.11. It is important to notice that, when dim(E) < oo, Corollaries 2.4,
2.5 and 2.6 are still valid replacing B, with any closed set S satisfying 9B, C S C B,.
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