APPLYING TWICE A MINIMAX THEOREM

BIAGIO RICCERI

To Professor Wataru Takahashi, with esteem and friendship, on his 75th birthday

ABSTRACT. Here is one of the results obtained in this paper: Let X,Y be two convex sets each in a real vector space, let $J: X \times Y \to \mathbf{R}$ be convex and without global minima in X and concave in Y, and let $\Phi: X \to \mathbf{R}$ be strictly convex. Also, assume that, for some topology on X, Φ is lower semicontinuous and, for each $y \in Y$ and $\lambda > 0$, $J(\cdot,y)$ is lower semicontinuous and $J(\cdot,y) + \lambda \Phi(\cdot)$ is inf-compact.

Then, for each $r \in]\inf_X \Phi, \sup_X \Phi[$ and for each closed set $S \subseteq X$ satisfying

$$\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty,r]) ,$$

one has

$$\sup_{Y} \inf_{S} J = \inf_{S} \sup_{Y} J .$$

1. Introduction

A real-valued function f on a topological space is said to be inf-compact (resp. sup-compact) if $f^{-1}(]-\infty,r]$) (resp. $f^{-1}([r,+\infty[)$) is compact for all $r \in \mathbf{R}$.

A real-valued function f on a convex set is said to be quasi-concave if $f^{-1}([r, +\infty[)$ is convex for all $r \in \mathbf{R}$.

In [3], we proved two general minimax theorems which, grouped together, can be stated as follows:

Theorem 1.1 ([3], Theorems 1.1 and 1.2). Let X be a topological space, Y a convex set in a Hausdorff real topological vector space and $f: X \times Y \to \mathbf{R}$ a function such that $f(\cdot,y)$ is lower semicontinuous, inf-compact and has a unique global minimum for all $y \in Y$. Moreover, assume that either, for each $x \in X$, $f(x,\cdot)$ is continuous and quasi-concave or, for each $x \in X$, $f(x,\cdot)$ is concave.

Then, one has

$$\sup_{V} \inf_{X} f = \inf_{X} \sup_{V} f.$$

Theorem 1.1 was first proved in the case where Y is a real interval ([1], [2]) and successively extended to the general case by means of a suitable inductive argument.

In [1], we applied Theorem 1.1 (with Y a real interval) to obtain a result ([1], Theorem 1) about the following problem: given two functions $f, g: X \to \mathbf{R}$, find

 $^{2010\} Mathematics\ Subject\ Classification.\ 49J35,\ 49K35,\ 49K27,\ 90C47.$

Key words and phrases. Minimax theorem, global minimum; iniqueness.

The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, "Piano della Ricerca 2016/2018 Linea di intervento 2".

2 B. RICCERI

a interval $I \subseteq g(X)$ such that, for each $r \in I$, the restriction of f to $g^{-1}(r)$ has a unique global minimum.

The aim of the present paper is to establish a new minimax theorem (Theorem 2.1) which is the fruit of a joint application of Theorem 1.1 and Theorem 1 of [1]. So, it follows, essentially, from a double application of Theorem 1.1, as the title stresses.

We then show some consequences of Theorem 2.1.

2. Results

In the sequel, X is a topological space, Y is a non-empty set, $J: X \times Y \to \mathbf{R}$, $\Phi: X \to \mathbf{R}$, a, b are two numbers in $[0, +\infty]$, with a < b.

For $y \in Y$ and $\lambda \in [0, +\infty]$, we denote by $M_{\lambda,y}$ the set of all global minima of the function $J(\cdot, y) + \lambda \Phi(\cdot)$ if $\lambda < +\infty$, while if $\lambda = +\infty$, $M_{\lambda,y}$ stands for the empty set. We adopt the conventions inf $\emptyset = +\infty$, $\sup \emptyset = -\infty$. We also set

$$\alpha := \sup_{y \in Y} \max \left\{ \inf_{X} \Phi, \sup_{M_{b,y}} \Phi \right\} ,$$

$$\beta := \inf_{y \in Y} \min \left\{ \sup_{X} \Phi, \inf_{M_{a,y}} \Phi \right\} .$$

The following assumption will be adopted:

(a) Y is a convex set in a Hausdorff real topological vector space and either, for each $x \in X$, the function $J(x,\cdot)$ is continuous and quasi-concave, or, for each $x \in X$, the function $J(x,\cdot)$ is concave.

Our main result is as follows:

Theorem 2.1. Besides (a), assume that:

- $(a_1) \alpha < \beta$;
- (a_2) Φ is lower semicontinuous;
- (a₃) for each $\lambda \in]a,b[$ and each $y \in Y$, the function $J(\cdot,y)$ is lower semicontinuous and the function $J(\cdot,y) + \lambda \Phi(\cdot)$ is inf-compact and admits a unique global minimum in X.

Then, for each $r \in]\alpha, \beta[$ and for each closed set $S \subseteq X$ satisfying

$$\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty, r]) , \qquad (2.1)$$

one has

$$\sup_{Y} \inf_{S} J = \inf_{S} \sup_{Y} J . \tag{2.2}$$

Proof. Since $r \in]\alpha, \beta[$, for each $y \in Y$, Theorem 1 of [1] (see Remark 1 of [1]) ensures the existence of $\lambda_{r,y} \in]a, b[$ such that the unique global minimum of $J(\cdot,y) + \lambda_{r,y} \Phi(\cdot)$, say $x_{r,y}$, lies in $\Phi^{-1}(r)$. Notice that $x_{r,y}$ is the only global minimum of the restriction of the function $J(\cdot,y)$ to $\Phi^{-1}(]-\infty,r]$). Indeed, if not, there would exist $u \in \Phi^{-1}(]-\infty,r]$), with $u \neq x_{r,y}$, such that $J(u,y) \leq J(x_{r,y},y)$. Then, (since $\lambda_{r,y} > 0$) we would have

$$J(u,y) + \lambda_{r,y}\Phi(u) \le J(x_{r,y},y) + \lambda_{r,y}\Phi(u) \le J(x_{r,y},y) + \lambda_{r,y}r = J(x_{r,y},y) + \lambda_{r,y}\Phi(x_{r,y})$$

which is absurd. Therefore, since S satisfies (2.1), the restriction of $J(\cdot, y)$ to S has a unique global minimum. Now, observe that, for each $y \in Y$, $\rho \in \mathbf{R}$, $\lambda \in]a, b[$, one has

$$\{x \in S : J(x,y) \le \rho\} \subseteq \{x \in X : J(x,y) + \lambda \Phi(x) \le \rho + \lambda r\}$$
.

By assumption, the set on the right-hand side is compact. Hence, the set $\{x \in S : J(x,y) \leq \rho\}$, being closed, is compact too. Summarizing: for each $y \in Y$, the restriction of the function $J(\cdot,y)$ to S is lower semicontinuous, inf-compact and has a unique global minimum. So, $J_{|S \times Y|}$ satisfies the hypoteses of Theorem 1.1 and hence (2.2) follows.

Remark 2.2. From the above proof, it follows that, when X is Hausdorff and each sequentially compact subset of X is compact, Theorem 2.1 is still valid if we replace "lower semicontinuous", "inf-compact", "closed" with "sequentially lower semicontinuous", "sequentially inf-compact", "sequentially closed", respectively.

We now draw a series of consequences from Theorem 2.1

Corollary 2.3. In addition to the assumptions of Theorem 2.1, suppose that $\beta = \sup_X \Phi$ and that Φ has no global maxima. Moreover, suppose that the function $J(x,\cdot)$ is upper semicontinuous for all $x \in X$ and $J(x_0,\cdot)$ is sup-compact for some $x_0 \in X$.

Then, one has

$$\sup_{Y} \inf_{X} J = \inf_{X} \sup_{Y} J .$$

Proof. Clearly, the assumptions imply that

$$X = \bigcup_{\alpha < r < \beta} \Phi^{-1}(] - \infty, r]) .$$

Since the family $\{\Phi^{-1}(]-\infty,r]\}_{r\in]\alpha,\beta[}$ is filtering with respect to inclusion, the conclusion follows from a joint application of Theorem 2.1 and Proposition 2.1 of [3].

Another corollary of Theorem 2.1 is as follows:

Corollary 2.4. Besides (a), assume that X is a convex set in a real vector space and that:

- (b_1) Φ is lower semicontinuous and strictly convex;
- (b₂) for each $\lambda > 0$ and each $y \in Y$, the function $J(\cdot,y)$ is convex, lower semicontinuous and has no global minima, and the function $J(\cdot,y) + \lambda \Phi(\cdot)$ is inf-compact.

Then, for each $r \in]\inf_X \Phi, \sup_X \Phi[$ and for each closed set $S \subseteq X$ satisfying

$$\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty,r])$$
,

one has

$$\sup_Y \inf_S J = \inf_S \sup_Y J \ .$$

Proof. We apply Theorem 2.1 taking a = 0 and $b = +\infty$. So, we have

$$\alpha = \inf_X \Phi$$

B. RICCERI

as well as

4

$$\beta = \sup_X \Phi$$

since $M_{0,y} = \emptyset$ for all $y \in Y$. By strict convexity, the function $J(\cdot, y) + \lambda \Phi(\cdot)$ has a unique global minimum for all $y \in Y$, $\lambda > 0$. So, each assumption of Theorem 2.1 is satisfied and the conclusion follows.

Remark 2.5. We stress that, in Corollary 2.4, no relation is required between the considered topology on X and the algebraic structure of the vector space which contains it.

Remark 2.6. In the setting of Corollary 2.4, although J is convex in X, we cannot apply the classical Fan-Sion theorem when S is not convex.

If E, F are Banach spaces and $A \subseteq E$, a function $\psi : A \to F$ is said to be C^1 if it is the restriction to A of a C^1 function on an open convex set containing A.

A further remarkable corollary of Theorem 2.1 is as follows:

Corollary 2.7. Besides (a), assume that X is a closed and convex set in a reflexive real Banach space E and that:

 (c_1) Φ is of class C^1 and there is $\nu > 0$ such that

$$(\Phi'(x) - \Phi'(u))(x - u) \ge \nu ||x - u||^2$$

for all $x, u \in X$;

(c₂) for each $y \in Y$, the function $J(\cdot, y)$ is C^1 , sequentially weakly lower semicontinuous and $J'_x(\cdot, y)$ is Lipschitzian with constant L (independent of y);

 $(c_3) \inf_{y \in Y} \inf_{M_{\underline{L}_{\nu},y}} \Phi > \inf_X \Phi .$

Then, for each $r \in \left[\inf_X \Phi, \inf_{y \in Y} \inf_{M_{\frac{L}{\nu},y}} \Phi\right[$ and for each sequentially weakly closed set $S \subseteq X$ satisfying

$$\Phi^{-1}(r) \subseteq S \subseteq \Phi^{-1}(]-\infty,r]) ,$$

one has

$$\sup_{Y} \inf_{S} J = \inf_{S} \sup_{Y} J .$$

Proof. For each $x, u \in X, y \in Y, \lambda \geq \frac{L}{\nu}$, we have

$$(J'_x(x,y) + \lambda \Phi'(x) - J'_x(u,y) - \lambda \Phi'(u))(x-u)$$

$$\geq \lambda \nu \|x - u\|^2 - \|J_x'(x, y) - J_x'(u, y)\|_{E^*} \|x - u\| \geq (\lambda \nu - L) \|x - u\|^2.$$

Hence, the function $J(\cdot,y) + \lambda \Phi(\cdot)$, if $\lambda > \frac{L}{\nu}$, is strictly convex and coercive when X is unbounded ([4], pp. 247-249). Hence, if we consider X with the relative weak topology, we can apply Theorem 2.1 (in the sequential form pointed out in Remark 2.2) taking $a = \frac{L}{\nu}$ and $b = +\infty$, and the conclusion follows.

If E is a normed space, for each r > 0, we put

$$B_r = \{x \in E : ||x|| \le r\}$$
.

If $A \subseteq E$, a function $f: A \to E$ is said to be sequentially weakly-strongly continuous if, for each $x \in A$ and for each sequence $\{x_k\}$ in A weakly converging to x, the sequence $\{f(x_k)\}$ converges strongly to f(x).

Corollary 2.8. Let E be a real Hilbert space and let $X = B_{\rho}$ for some $\rho > 0$. Besides (a) and (c₂), assume that

$$\delta := \inf_{y \in Y} ||J'_x(0, y)|| > 0.$$

Then, for each $r \in \left[0, \min\left\{\rho, \frac{\delta}{2L}\right\}\right]$, one has

$$\sup_{Y} \inf_{B_r} J = \inf_{B_r} \sup_{Y} J .$$

Proof. Apply Corollary 2.7, taking $\Phi(x) = ||x||^2$. Let $y \in Y$ and $\tilde{x} \in M_{\frac{L}{2},y}$, with $||\tilde{x}|| < \rho$. Then, we have

$$J_r'(\tilde{x}, y) + L\tilde{x} = 0.$$

Consequently, in view of (c_2) , we have

$$||L\tilde{x} + J_x'(0,y)|| \le ||L\tilde{x}||$$
.

In turn, using the Cauchy-Schwarz inequality, this readily implies that

$$\|\tilde{x}\| \ge \frac{\|J_x'(0,y)\|}{2L} \ge \frac{\delta}{2L}$$
.

Therefore, we have the estimate

$$\inf_{y \in Y} \inf_{x \in M_{\frac{L}{2},y}} \|x\| \geq \min \left\{ \rho, \frac{\delta}{2L} \right\}$$

and the conclusion follows from Corollary 2.7.

We now apply Corollary 2.8 to a particular function J.

Corollary 2.9. Let E, X be as in Corollary 2.8, let $Y \subseteq E$ be a closed bounded convex set and let $f: X \to E$ be a sequentially weakly-strongly continuous C^1 function whose derivative is Lipschitzian with constant γ . Moreover, let η be the Lipschitz constant of the function $x \to x - f(x)$, set

$$\theta := \sup_{x \in X} \|f'(x)\|_{\mathcal{L}(E)} ,$$

$$L := 2 \left(\eta + \theta + \gamma \left(\rho + \sup_{y \in Y} ||y|| \right) \right)$$

and assume that

$$\sigma := \inf_{y \in Y} \sup_{\|u\|=1} |\langle f'(0)(u), y \rangle - \langle f(0), u \rangle| > 0.$$

Then, for each $r \in \left]0, \min\left\{\rho, \frac{\sigma}{L}\right\}\right[$ and for each non-empty closed convex set $T \subseteq Y$, there exist $x^* \in \partial B_r$ and $y^* \in T$ such that

$$||x^* - f(x^*)||^2 + ||f(x) - y^*||^2 - ||x - f(x)||^2 \le ||f(x^*) - y^*||^2 = (\operatorname{dist}(f(x^*), T))^2$$
 for all $x \in B_r$.

6 B. RICCERI

Proof. Consider the function $J: X \times Y \to \mathbf{R}$ defined by

$$J(x,y) = ||f(x) - x||^2 - ||f(x) - y||^2$$

for all $x \in X$, $y \in Y$. Clearly, for each $y \in Y$, $J(\cdot, y)$ is sequentially weakly lower semicontinuous and C^1 . Moreover, one has

$$\langle J'_x(x,y), u \rangle = 2\langle x - f(x), u \rangle - 2\langle f'(x)(u), x - y \rangle$$

for all $x \in X$, $u \in E$. Fix $x, v \in X$ and $u \in E$, with ||u|| = 1. We have

$$\frac{1}{2} |\langle J'_x(x,y) - J'_x(v,y), u \rangle|
= |\langle x - f(x) - v + f(v), u \rangle - \langle f'(x)(u), x - y \rangle + \langle f'(v)(u), v - y \rangle|
\leq \eta ||x - v|| + |\langle f'(x)(u), x - v \rangle + \langle f'(x)(u) - f'(v)(u), v - y \rangle|
\leq \eta ||x - v|| + ||f'(x)(u)|| ||x - v|| + ||f'(x)(u) - f'(v)(u)|| ||v - y||
\leq \left(\eta + \theta + \gamma \left(\rho + \sup_{y \in Y} ||y||\right)\right) ||x - v|| .$$

Therefore, the function $J'(\cdot, y)$ is Lipschitzian with constant L. Fix $r \in]0, \min \{\rho, \frac{\sigma}{L}\}[$ and a non-empty closed convex set $T \subseteq Y$. Clearly

$$\inf_{y \in T} ||J'_x(0,y)|| \ge \inf_{y \in Y} ||J'_x(0,y)|| = 2\sigma$$

and

$$\frac{\inf_{y \in T} \||J_x'(0,y)\|}{2L} > r .$$

Then, applying Corollary 2.8 to the restriction of J to $B_r \times T$, we get

$$\sup_{T} \inf_{B_r} J = \inf_{B_r} \sup_{T} J .$$

By the weak compactness of B_r and T, we then infer the existence of $x^* \in B_r$ and $y^* \in T$ such that

$$J(x^*, y) \le J(x^*, y^*) \le J(x, y^*)$$

for all $x \in B_r$, $y \in T$ which is equivalent to the conclusion. To show that $x^* \in \partial B_r$, notice that if $||x^*|| < r$ then we would have $J'_x(x^*, y^*) = 0$ and so

$$r < \frac{\sigma}{L} \le \frac{\|J_x'(0, y^*)\|}{2L} \le \frac{L\|x^*\|}{2L} < r$$
,

an absurd. \Box

From Corollary 2.9, in turn, we draw the following characterization about the existence and uniqueness of fixed points:

Corollary 2.10. Let the assumptions of Corollary 2.9 be satisfied.

Then, for each $r \in]0, \min \{\rho, \frac{\sigma}{L}\}[$ such that $f(B_r) \subseteq Y$, the following assertions are equivalent:

- (i) the function f has a unique fixed point in B_r and this lies in ∂B_r ;
- (ii) the function f has a fixed point in ∂B_r ;
- (iii) for each $x \in \partial B_r$ for which $f(x) \notin B_r$, there exists $v \in B_r$ such that

$$||f(x) - x||^2 > ||f(v) - v||^2 - ||f(v) - f(x)||^2$$
.

Proof. The implications $(i) \to (ii) \to (iii)$ are obvious. So, suppose that (iii) holds. Apply Corollary 2.9 taking $T = \overline{\text{conv}}(f(B_r))$. Let x^*, y^* be as in the conclusion of Corollary 2.9. Then, we have

$$||f(x^*) - y^*|| = \operatorname{dist}(f(x^*), T) = 0$$

and

$$||x^* - f(x^*)||^2 + ||f(x) - f(x^*)||^2 - ||x - f(x)||^2 \le 0$$
(2.3)

for all $x \in B_r$. Clearly, in view of (iii), we have $f(x^*) \in B_r$. So, in particular, (2.3) holds for $x = f(x^*)$ and this implies that

$$||x^* - f(x^*)|| \le 0$$

that is x^* is a fixed point of f in B_r . Finally, if $\tilde{x} \in B_r$ and $\tilde{x} = f(\tilde{x})$, from (2.3) it follows that $f(\tilde{x}) = f(x^*)$, and so $\tilde{x} = x^*$. That is, x^* is the unique fixed point of f in B_r .

Remark 2.11. It is important to notice that, when $\dim(E) < \infty$, Corollaries 2.4, 2.5 and 2.6 are still valid replacing B_r with any closed set S satisfying $\partial B_r \subseteq S \subseteq B_r$.

References

- [1] B. Ricceri, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim. 40 (2008), 389–397.
- [2] B. Ricceri, Multiplicity of global minima for parametrized functions, Rend. Lincei Mat. Appl. **21** (2010), 47–57.
- [3] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2 (2017), 99–152.
- [4] E. Zeidler, Nonlinear functional analysis and its applications, vol. III, Springer, 1985.

Manuscript received , revised ,

B. RICCERI

Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail address: ricceri@dmi.unict.it