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1. Introduction

In this paper we investigate some connections between topological dynamics, the
theory of principal bundles, and the theory of locally trivial groupoids.

Topological dynamics is the study of continuous actions of Hausdorff topolog-
ical groups G on Hausdorff compact spaces (G-flows). For notations and results
of this theory we mainly follow and refer to [1], [14], and [7].

Every topological group G has some natural compactifications. They can be
described as the maximal ideal spaces of certain function algebras and using the
particular structures of those spaces it is possible to grasp new information about
the group itself. In particular, the greatest ambit S(G) is the compactification
corresponding to the algebra of all right uniformly continuous bounded functions
on G. There is a natural action of G on S(G) which has a universal property
with respect to all actions of G on compact spaces. There also exists the universal
minimal compact G-space M(G), which is a minimal G-flow that can be homo-
morphically and equivariantly mapped onto any other minimal G-flow. The flow
M(G) can be derived from S(G). Indeed, it can be constructed as any minimal
sub-flow of S(G). Therefore S(G) universally describes, in a sense, the dynamics
of G.

There is a natural correspondence, developed by C. Ehresmann in [2], be-
tween G-principal bundles over locally simply connected bases and locally trivial
groupoids; see [2, Section 3, Definition 4]. In order to exploit this correspon-
dence, we move from groups to locally trivial groupoids and from group actions
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on compact spaces to groupoid actions on spaces with proper maps onto a locally
compact base. This allows us to extend part of topological dynamic to groupoid
actions. For example, as we said above, every topological group G has a univer-
sal minimal flow M(G). Here we prove the existence of an analogous one for
groupoids § = (Go, Gy, s, 1, u, (-)™"), with locally compact unit space Gy and
which act on spaces Y with a proper map p: Y — Gg (see Section 2 for the def-
inition of a topological groupoid and Section 5 for the definition of a groupoid
action). This reveals a correspondence between the fixed point on compacta prop-
erty (e.g. extreme amenability) and the existence of global sections in the theory
of fiber bundles.

This paper is organized as follows. In Section 2 we review the concept of
topological groupoids. We also review the definition of a groupoid action.

In Section 3 we give a self-contained treatment of Ehresmann’s theory relating
locally trivial groupoids with principal bundles. In this theory, to any connected
locally trivial groupoid and any x¢ € Gy, it is associated a left G-principal bundle
P = s71(xo) over Go with structural group G = G[x¢], defined as the set of
arrows t € G such that s(t) = t(r) = xg. Conversely, to any right G-principal
bundle P — Gy it is associated a locally trivial groupoid reverting the above
construction, i.e. such that s~ (x) is the canonical left G-bundle associated to P.

In Sections 4 and 5 we generalize the notion of greatest G-ambit to the cat-
egory of actions of locally trivial groupoids G, by defining S(9, xo) as a relative
compactification of the G = G[xo]-principal bundle P = s '(xo). This means
that we introduce a proper map S(G, xo) — Gy such that the principal bundle
P = s71(xp) can be densely embedded in S(G, xo) in a compatible way with the
projection map to the base Gy.

In Section 6 we show how the locally trivial groupoid associated to P acts on
S(S, xo).

In Section 7 we show that S(G. xo) plays the same role for groupoid actions as
S(G) plays in the usual theory of G-actions on compact spaces, by showing that
it enjoys a similar universal property.

In Section 8 we show the existence and uniqueness up to isomorphisms of the
universal minimal flows M (G, x¢) for locally trivial groupoids G, which are defined
as a minimal subflows of S(9, xg), see Theorem 8.7. In Subsection 8.1 we show
how our theory reduces to the known construction and properties of the universal
minimal flow, in the case when the groupoid G is a group. In Theorem 8.8 we
describe the universal minimal flows M(9, x¢) as locally trivial fibrations over Gy.

In Section 9 we use the conceptual framework of the previous sections to prove
the following result. Let G be an extremely amenable group, like for example
U(H), for H a infinite dimensional separable Hilbert space and U(H) endowed
with the strong operator topology, or PU(H ) endowed with the quotient topology
from U(H). Then for any locally trivial principal bundle P — X, with X locally
compact, and for any G-flow K, the bundle with fibers K associated to P has a
global section, see Theorem 9.4.
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2. Preliminaries and Definitions

In the following we will consider groupoids in the context of topological spaces.
The most concise definition of a groupoid is the following.

Definition 2.1. A groupoid is a small category G in which every morphism is
invertible.

In order to make concrete the above definition, it is common to introduce the
following notations. The set of objects, or units, of § will be denoted by

Go = Ob(9).
The set of morphisms, or arrows, of G will be denoted by
G = Mor(9).

We will denote by s(g) the source, i.e. the domain (respectively ¢ (g) the target,
i.e. the range) of the morphism g. We thus obtain functions

s.t:G1 — Gy

The multiplication operator m: (g, h) — gh is defined on the set of composable
pairs of arrows G %, 5 G1 := {(g,h) | s(g) = r(h)}

m: Gy x5 Gy — G

The inversion operation is a bijection (-)~': ¢ — g~! of G,. Denoting by u(x)
the unit map of the object x € Gy, we obtain an inclusion of Gy into G;. We
see that a groupoid G is completely determined by the spaces Gy and G, and the
structural morphisms s, 7, m, u, (-)~'. The structural maps satisfy the following
properties:

(i) t(gh) = t(g).s(gh) = s(h) for any pair (g, h) € G %, G, and the partially
defined multiplication m is associative;

(i) s(u(x)) = r(u(x)) = x,forall x € Gy, u(t(g))g = g and gu(s(g)) = g, for
all g € G; and u: Gy — G, is one-to-one;

(iil) 1(g7") = s(g).s(g7") = 1(g).g¢™" = u(r(g)) and g~'g = u(s(g)).

Then one can define a topological groupoid as follows.

Definition 2.2. A groupoid § is a topological groupoid if Gy and G, are Haus-

dorfT topological spaces and all the structure maps s. 7, m, u, (-)~! are continuous
functions.
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Notation 2.3. For x, y € Gy we define

Glx,y] =1{g € G1 | s(g) = x, t(g) = y}.
Finally, we will denote
9[)&?] = S[X,X].

It is important to observe that G[x] is actually a group.

Definition 2.4. A groupoid § is transitive if for all x, y € G there exists g € G,
such that s(g) = x and 7(g) = v.

Some authors define such a groupoid as connected groupoid, we avoid this term
to prevent any confusion with its topological analogue. Henceforth we assume
that a groupoid § is always a transitive topological groupoid and we easily get the
following:

Proposition 2.5. If' G is transitive then all the groups SG[x] are isomorphic.

Notation 2.6. From now on we will adopt the inverse notation for the multipli-
cation m of the elements g, i € Gy, that is, we redefine the multiplication so that

s(gh) = s(g)and t(gh) = t(h).

2.1. Groupoid actions. We also recall the definition of right action of a topo-
logical groupoid on a topological space.

Definition 2.7. Let us consider two continuous maps

e p:Y — Gy, which we will call the anchor map;

o a:Y x5 Gy = Y, where Y x,, Gy = {(y.2) | s(g) = p(»)}.
Assume that for the maps above the following conditions are met:

p(yg) =1(g). (yhg = y(hg), yu(p(y)) = y.
Then we will say that the maps p, « define a right action of the topological
groupoid § = (Gyp, G1) on the topological space Y. When the structure maps are
fixed, we will use the simplified notation «(y, g) = vg.

We can then give the natural analogue of the notion of G-flow of topological
dynamics.

Definition 2.8. A G-flow is a groupoid action as above with p: ¥ — Gy a proper
map. A minimal G-flow is a flow that does not strictly contain any subflow.

Definition 2.9. A universal minimal flow ppr: M — Gy for G actions is a flow
such that for any minimal G-flow p: Y — Gy there exists a G-equivariant map
M — Y (hence in particular compatible with the tho anchor maps)

It is immediate to observe that the map M — Y must be surjective, by
minimality of V.
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3. Ehresmann Groupoids

We begin this section with a self-contained review of some results due to C. Ehres-
mann, see [2], who established the equivalence between G-principal bundles and
locally trivial groupoids, see Definition 3.1 below.

Henceforth we will assume all topological spaces to be Hausdor{f spaces.

Definition 3.1. Let G be a groupoid. § is said locally trivial if for all xg € Gy
there exists an open neighborhood U of x¢ such that for any x € U there exists
a continuous section o,: U — G of the map s such that ¢ o ox(y) = x for all
v € U, or equivalently, such that r o oy is the constant map x. This property can
be rephrased by requiring that o (y) € Gy, x] forall y € U.

Remark 3.2. The definition above may be equivalently formulated by exchanging
the roles of s and 7.

Definition 3.3. A right principal bundle on a topological space X, with structural
topological group G, is the datum of topological space P and a continuous map
p: P — X such that

(1) there exists a right action P x G — P which preserves fibers of p and G
freely and transitively acts on p~!(x), for all x € X;

(2) the map p identifies X with the quotient space P/G.

Similarly one can also define the notion of a leff principal bundle with struc-
tural group G, in which case there is a left action G x P — P with analogous
properties as above.

Example 3.4. The simplest example of principal bundle on a space X is the trivial
bundle X x G with p the projection on the first coordinate. If the space X is
contractible then all the principal bundles on X are trivial.

Definition 3.5. A right principal bundle p: P — X is said locally trivial if for
any x € X there exists some open set U containing x over which p has a section,
i.e. there exists 0: U — P with poo = idy.

Then the following is well known.

Proposition 3.6. Let p: P — X be a locally trivial bundle. Then for all x € X
there exists a neighborhood U C X and x € U such that p|,—1yy: p WU)=U
is a trivial G-bundle. In particular there exists a homeomorphism p~'(U) =
U x G, that identifies the right action of G on p~"(U) with the right action on
U x G defined by the maps U x G 3 (x,h) — (x,hg), with g € G.
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Remark 3.7. If X is a locally contractible (namely, all x € X has a contractible
neighborhood), then all bundles p: P — X are locally trivial. In any case,
if p:P — X is a locally trivial principal bundle (even if X is not locally
contractible), if {U;} is a open covering of X such over any U; there exists a section
for p: P — X, then the bundle is defined by gluing maps ¢; ;j: (U; N U;) x G —
(Ui NU;j) x G of the form ¢; ;(x,h) = (x, gi,j(x)h), with g; ;j:U; ; — G suitable
continuous maps. The fact that g; ;(x) acts on the factor G of (U; N U;) x G by
multiplication on the left is meant to preserve the right action of G on (U; NU;)xG.
Of course if p: P — X is instead a left principal bundle, then one may identify
p Y (U;) = G x U; and, over U; N Uj, the gluing maps will have the form
$i,j(h,x) = (hgi,j(x), x).

Remark 3.8. To any right principal bundle p: P — X one can associate the left
principal bundle p: P — X by defining the left G-action as g-u = ug~!. Locally,
if p~1(U;) = U; x G one also has that p~'(U;) = G x U; and the homeomorphism
between the two is given by (x.h) — (h~!, x).

Example 3.9. Let P = C"*!\ {0}, X = CP" be the n-dimensional complex
projective space, let G be C*, the multiplicative group on the complex space, with
the topology induced by C, and p: P — X, the canonical projection v > [v],
where [v] is the equivalence class for the equivalence relation v ~ Av for A € C*.
This is an example of non trivial principal bundle with structural group G = C*.
The action of G on P is the multiplication v + Av, forv € C"*1\{0}and A € C*.
In this case it does not matter which action we decide to assume, whether right or
left, since the group is commutative. If n = 1 this is not a trivial bundle.

Definition 3.10. Given a (right) principal G-bundle =: P — X we introduce the
following canonical sets.

L] G(] =X.

e Forany x,y € Gy we denote

Splx,y] ={f:n " (x) = 771 (y) | f equivariant}.

Recall that one says that f is equivariant whenever f(zg) = f(z)g for any
zeXand g € G.
e G; = Ux!ylGO Splx. y].
We will call Gp the datum (Gg, Gy). Note that the set G| can be equivalently
regarded as the set of equivalence classes (P x P)/ ~ under the equivalence
relation where (u, v) ~ (u’, v’) if and only if there is ¢ € G such that ¥’ = ug and

v’ = vg. In other terms G, is the set of the orbits of the diagonal action of G on
P x P, defined by (u,v)g = (ug, vg).

Notation 3.11. We denote by [u, v] the orbit of (u, v) under the action of G.
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In the following proposition we describe the structural maps of Gp that make
it a groupoid.

Proposition 3.12. The couple of sets Gp = (G, Go) becomes a groupoid when
endowed with the following structural maps.

(i) The maps s,t: Gy — Gy are respectively defined by s([u,v]) = p(u) and
t([u.v]) = p(v), where p: P — X = Gy is the bundle map.

(ii) The map u: Gy — G is defined by u(x) = [v,v], withv € p~'(x) C P
arbitrary.

(iii) The composition law Gy x; 5 G; — G is defined by [u, v][v/, w'] = [ug, w’],
if and only if there exists g € G such that v/ = vg.

(iv) The inverse map (-)~': Gy — G is defined by [u, v] — [v, u].
Moreover, the groupoid Sp has the following properties.

(1) Forany fixed ug € P, let xo = p(ug). There exists a unique isomorphism

Pup: Slxe]l = {[u,v] € G1 | p(u) = p(v) = xo} > G
defined by
Buo([w.uo]) = g & w = uog.

For any other choice uy = ugh € p~'(xo) one has

buy ([, 0]) = h ™"y ([0, V],
for any [u, v] € G[xo].

(2) Forany fixedug € P, let xo = p(up). There exists a unique isomorphism

Yug: Slxo] = {[u,v] € Gy | p(u) = p(v) = xo} = G
defined by
1#uo([uﬂ, w]) = g_l — W =Upg.

For any other choice uy; = ugh € p~'(xo) one has

Yy ([, 0]) = ™ g ([, W],
for any [u, v] € G[xg].

(3) Fixing xo,uq as above, there exists a unique bijective map t,,:t ' (xo) — P
defined by t,,([w,up]) = w. If we change ug into uy = uoh then one
has ©, (y) = tu,(y)h for any y € 17" (xo). By identifying Glxo] = G

through Y, the map t,, becomes a right G-invariant map. Moreover one
has p o 1, =s.
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(4) Similarly, there exists a unique bijective map oy,:s~'(xo) — P defined by
Ouy (U0, w]) = w which, by identification G[xo] = G through the isomor-
phism ¢, is G-invariant with respect to the left actions of G[xo] on s~ (x¢)
and G on P, and one obtains p o oy, = 1.

Proof. The maps s,t are well defined since p(zg) = p(z) for any z € P and
g € G. The map u: Gy — G, is well defined as well, since a different choice
of v/ € p~Y(x) yields [v,v'] = [v,v]. In order to prove that the product is
well defined, let us consider [u,v] = [uh, vh], therefore, for v/ = vg, we get
[uh, vh][v', w] = [uh,vh][(vh)h ‘g, w] = [uh, wg™'h] = [u, wg~']. In a similar
way if [v”, w"”] = [v',w] then v = v'h = vgh and w' = wh, which in
turns implies [u, v][v”, w'] = [u,w'h~'g™ '] = [u,wg™']. The inverse map is,
obviously, well defined. The properties to be a groupoid are easily verified. For
example, since the product is well defined, we can deduce associativity from the
following fact

([, v][v. whlw. 2] = [u, z] = [u, v]([v. w][w, z]).

(1) The map ¢y, is bijective and well defined, since it is the unique represen-
tation of [u, v] € G[x] as [u,v] = [w,up] = [uog.uo]. Moreover ¢,,, is a group
homomorphism. Indeed, one has

bug ([Uog. uol[uoh. uo]) = duy([togh. uo])
= gh
= uo([1t0g, o)) bu, ([ttoh, uo)).

Since

bu, ([, v]) = du, ([wh, uoh])
= ¢u, ([wogh, u1])
= ¢u, (1h ™" gh, u1])
= h7'gh = h™ gy ([u, v])h.

(2) Similar to the proof of (1).

(3) The map 1,,:1 ' (x¢) — P is bijective and well defined. We observe that
again by replacing uo with u = uoh we gett,, ([w, uo]) = o, ([wh, u1]) = wh =
Ty, ([w, up])h. Let [u, v] € G[x], we may assume [u, v] = [ug. uog], therefore we
can identify this element with g=! € G trough v,,. We thus obtain

Tuo (W, 0] - €)= Tuy ([, uo][t0. U0g]) = Tuy ([w, Uog])
= Tuo[wg ™" w0l = wg™" = 1y ((w.uo))g ™"
Finally p(zu,([w.uo])) = p(w) = s([w. uo]).
(4) Analogous to the proof of (3), taking into account the definition of the left
action of G on P reviewed in Remark 3.8. O
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Remark 3.13. Let us assume X = Gop = {l}and P = G — X, with p
equal to the constant map G — {l}. Then §p = G x G/ ~ is the collection
of the orbits [a, b] with a,b € G. By choosing as canonical representatives
[ab™!, 1], if we proceed in analogy with the construction of Proposition 3.12, we
get Gp = G, using the bijection [g, 1] — g. In order to verify that the map
[g, 1] +— g is an isomorphism, it is sufficient to do the following calculation

[g. 1][h. 1] = [g. 1[I, A7 = [g. k"] = [gh.1].

Theorem 3.14 (Ehresmann). Let p: P — X be a locally trivial right G -principal
bundle. Then there exists a natural topology on Gp induced by P such that Gp is
a locally trivial topological groupoid.

Proof. In order to define a topology on the quotient (P x P)/ ~ in a meaningful
way, we use the second version of the Definition 3.10.

Assuming 7: P x P — Gp is the canonical projection, a set A is an open
set if and only if, given an arbitrary (u,v) € m !'(A), there exist two open
neighborhoods U, V respectively of u, v € P, such that U x V C 7~ (A), which
implies 7(U x V) C A, and in particular 7~ (m(U x V)) C 7~ (A).

Since 7 Y (n(U x V)) = {(wg.v'g) | W.,v) € UxV,g € G} =
Ugeg(U x V)g, then 7~ (m(U x V)) is an open set. Hence the collection of
sets as w(U x V) is a basis of Gp. Observe that, since U and V can be chosen
in an arbitrary basis of open sets, by Proposition 3.6 they, in particular, can be of
the following type U == Uy x Wy and V = Vy x Wi, with Uy and Vj contractible
neighborhood of x = p(u) and y = p(v) respectively, and W; in a basis of open
neighborhoods of the identity element 1 € G. Now we consider the following
sections Uy — U = Uy x Wy and Vo — V = V, x W) defined by the map
x — (x, 1) composed with the inverses of the above isomorphisms.

Notation 3.15. We denote by Uj. V the images of Uy and Vp inside U and V/
through the above sections, and x’, y’ the images of elements x € Uy and y € 1,
respectively.

Note that we can identify U = UgW; and V = VjW,. Then

UxV ={(x'g.y'h) | x' €Uy, vy eVy, g.he W}
7 YU x V)) = {(x'gk, y'hk) | X' € U}, y' € Vi, g.h € Wi,k € G}.

Since [x'gk. y'hk] = [x'gh™", '], we can find the bijection
WiW ! x Uy x Vo = (U x V),
which can be defined explicitly as follows:

YW x Up x Vo —> 7 (U x V), Y(r,x,y) = [x'r.y]. (1
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The map  is clearly surjective. Moreover if [x'r, y'] = [x"s, y”] then y' =
y"g and x'r = x"sg for some g € G, but, since y’, y” € V, with V local section
of p: P — X onto Vy, we deduce g = 1, hence y’ = y” and x'r = x"s, therefore
x" = x"sr~!. Since Ug is asection of p: P — X onto Uy, this yields s = r, hence
¥ is injective. Choosing U, V' as above then we obtain a concrete description of
an open basis of Gp.

Finally we fix arbitrarily x € X = Gg and [u, u] € Gp with p(u) = x. In this
case for the above construction we can choose U = V == Uy x Wj.

Therefore we can define the section o: Uy — Wi W, x Uy x Uy = w(U x U)
of the target map ¢ through y — (1, x, y) on the open set Uy C Gy. This section
has the properties requested by Definition 3.1. The continuity properties of the
structural maps can be obtained by routine arguments, so Sp is a topological
groupoid. O

Conversely, let § be a locally trivial topological transitive groupoid, then the
following holds.

Theorem 3.16 (Ehresmann). Let § a locally trivial transitive groupoid, then for
any xo € Gg the source map s: P = t~V(xo) — Gy is a locally trivial right
principal bundle with structural group G = SG[x] and one obtains a canonical
isomorphism G 2= Gp.

Similarly, the target map t: P = s~ (xq) — Gy is a left principal bundle with
structural group G = G[xp).

Sketch of proof. The right G = G[x¢] action on P = t~!(x¢) is the obvious one,
defined by P xG > (t, g) +> g, using the inner productof G,. Forany 7;, 7 € P
with s(71) = s(12) = x € Gy, it is clear that 1, = 14 1:1_1:2, with ‘.!.']_11'2 € G. This
allows one to prove show that the right action of G on the fiber of s: P — Gy
over x is free, and moreover, at least set-theoretically, that one has Gy = P/G.
That this is also a topological quotient follows from the local triviality of the
groupoid G, from which it follows that the map s: P = ¢ ~!(xg) — Gy is not only
continuous, but also open. Note moreover that by the transitivity of § we have
G[x] = G[xo] = G for any x € Gy. Hence s: P = t~'(x9) — Gy is a right G-
principal bundle. The fact that s: P = ' (x¢) — Gy is a locally trivial principal
bundle is an immediate consequence of Definition 3.1, since a local section of G,
as in that definition is actually a local section for P.

Observe that for x, y € Gy the set of arrows G[x, y] with source x and target y
can be obtained as the set of T = af~!, with @ € G[x, xo] and B € G[y, xo]. One
easily sees that o 871 = 85! if and only if @» = g and 8, = B, g for some
g € G = G[xo], we recover the fact that, at least set-theoretically, the groupoid G is
of the form Gp as in the construction of Definition 3.10. We omit the easy checks
that also the algebraic and topological structures provided by Proposition 3.12 and
Theorem 3.14 agree with the original ones on G.
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Finally, the fact that £: 57" (xg) — Gy is the left bundle structure canonically
associated to the right bundle P = 1 ~!(xg) can now be achieved as a consequence
of (4) of Proposition 3.12. O

Remark 3.17. For any given a transitive locally trivial groupoid G, the results
above allow to represent the arrow in G; as equivalence classes [z, T'] of couples
of elements 7, 7" € P = 1t~ !(xp), for any fixed xo € Gy as in Definition 3.10. Note
moreover that the algebraic and topological structure of § will be those described
in Proposition 3.12 and Theorem 3.14, that is we can represent G as Gp. This will
have many advantages when doing explicit computations on § and continuous
functions on it.

Example 3.18. Assume that X is arcwise connected and locally contractible space
and P — X is a universal covering of X, which one can see as a locally trivial
m1(X, xo) principal bundle. Then Gp with the topology constructed above is the
path groupoid of X .

4. Universal relative compactifications of principal bundles

We begin with a brief review of a compactification of topological groups G
endowed with a universal property with respect to actions of G on compact spaces,
widely studied in the theory of Universal Minimal Flows (see [1] and [14] for a
survey). Then we will explain how to generalize the construction to locally trivial
groupoids.

Notation 4.1. Let G be a topological group, we recall that the C*-algebra Rg =
RUC?(G) of right uniformly continuous functions, is defined as the algebra of
bounded continuous functions that satisfy the following:

for all € > 0 there exists V such that
|f(»)— f(gy)| <e forallg eV, y €G,

where the set V is an open neighborhood of the identity element |1 € G.

Endowed with pointwise addition, multiplication, complex conjugation and
with the sup norm, Rg is an abelian C *-algebra. The Gelfand duality associates
to R the compact space S(G) = Q(Rg), the space of non-zero C-algebra homo-
morphisms Rg — C. The space S(G) is also called the Samuel compactification
of the topological group G. There is a natural left action of G on S(G) that ex-
tends the left multiplication action on G itself, associated to the action of G on
Rg defined by h(f)(y) = f(h~'y). All minimal subflows of §(G), i.e. minimal
compact subsets of S(G) closed with respect to the action of (7, are isomorphic to
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cach other and it is known that they are universal minimal flows, that is they can
be mapped equivariantly onto any other minimal flow, see for example [14] or [7].

Starting with the present section, we will extend the result above to the flows
of any locally trivial groupoid G with Gy a locally compact space. The notion of a
G-flow has already been introduced in Definitions 2.7 and 2.8. In the articles [14]
and [7] the authors assume the topological group G metrizable, with right invari-
ant compatible metric, in order to separate the elements of G. In this paper we
will consider groups G with the same properties and we assume that G is a lo-
cally trivial groupoid with Gy locally compact, hence associated to a G-principal
bundle as shown in Section 3. The reason to assume Gy locally compact is to be
able to exploit the Gelfand construction. Hence we will be able to consider Gy
as the locally compact space associated to the C*-algebra Cy(Gy), the algebra of
continuous functions f: Gy — C vanishing at infinity, endowed with sup-norm.

Recall that Gelfand construction provides a categorical duality between the
category of compact Hausdorff spaces and the category of unital commutative
C*-algebras (see [11], Theorems 2.1.10 and 2.1.15). In the sequel we will need
the one directional functorial version of Gelfand construction dealing with locally
compact Hausdorff spaces instead of compact ones. Indeed, the space of charac-
ters ©2(A) of a commutative C*-algebra A is locally compact, A = Co(£2(A4)), see
[11] Theorems 1.3.5 and 2.1.10, and a homomorphism ¢*: A — B corresponds
to a continuous map ¢: Q(B) — Q(A). In particular the following holds:

Fact 4.2. Let A and B be two isomorphic commutative C*-algebras then the
related locally compact spaces Q2 A) and §2(B) are homeomorphic.

Observe that the existence of a continuous map f: X — Y between locally
compact spaces does not necessary implies the existence of a homomorphism
f*:Co(Y) — Co(X), since this happens only when the map f is proper.

4.1. Notational setup for locally trivial groupoids. Let § = (Gy, Gq,5,1,
u, ()7') be a transitive locally trivial groupoid with Gy locally compact. Let us
fix xo € Gy, let G be the group G[xo] and let us consider s: P = t ' (xq) — Go,
which a right G-principal bundle, in view of the results of Theorem 3.16. As
observed in Remark 3.17, we can represent § as the groupoid Gp. Then, again
by Theorem 3.16, one can identify the left G-principal bundle structure on P
with #:571(xg) — Go. Some times, with a slight abuse of notation, we will
call P both ¢~ (x¢) and s~!(xp), leaving to the context to decide whether we are
considering its right or left G-bundle structure, respectively. But we will denote
by p: P — Gy only the bundle projection defined by s: P = t~!(xg) — Gyg. Then
p1(x) =571 (x) Nt (xo) = G[x, xo] and, for example p~'(xg) = G[xo] = G.

As observed in Remark 3.17, the elements of G| can be represented as the
equivalence classes [, 7'], with 7.7’ € P = t~!(x¢) under the relation (7, t’) ~
(tg.t'g)for g € G.
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We will also set uy = u(xg) € Glxg], serving as the unit of G. Let us
also notice that in our notational setup, any element © € s~ !(xg) is uniquely
represented as T = [ug. y'], with ug € p~'(xp) = GJ[xo] as defined above and
y e p~Hy) = s7Hy) Nt Y(xg) = G[y.xo]. In this representation, the map
t:5 1 (x0) — Gy is clearly defined by t([ug, ¥']) = p(»") = .

The C *-algebra R(S, xo). The next definition generalizes RUC?(G) to the case
of a locally trivial groupoid § with Gy locally compact.

Definition 4.3. Denote R(S. xq) the set of functions f:s71(xg) — C with the
following properties:

(1) f bounded, continuous and there exists g € Cy(Gy) such that | f(u)| <
lg(t(u))| for any u € s~ (xp);

(2) for all local sections x — x’ of p: P — Gy defined on some open set
U C Gy with compact closure in Gq and for every € > 0, there exists an
open neighbourhood V of 1 € G such that for every g € V, forevery h € G
and for every x € U we have | f([uogh, x']) — f([uoh, x'])| < e.

It is not difficult to see that R(S, x¢) is a C*-algebra with respect to complex
conjugation and the sup norm. We omit the details.

Proposition 4.4. The open set 'V in the definition above is independent from the
choice of the section x — Xx’.

Proof. Letus assume x — x” is a different section of p on U, then one can write
x" as x"k(x), with k: U — G a suitable continuous function. Hence [ugh, x”'] =
[uoh.x'k(x)™'] = [uohk(x),x']. Then a function f satisfying the properties of
the definition above is such that | f([ugghk(x).x']) — f([uohk(x),x'])| < ¢, for
any x € U and g € V, by the arbitrariness of # in the Definition 4.3. Therefore for
any g € V we have | f([uogh, x"]) — f([uoh, x"])| <e. O

We will use the above argument to replace in Definition 4.3 the sentence
“for all sections” with “there exists a section.” This modification has significant
advantages, since, using local sections, one can introduce a more classical local
notation for functions f € R(S, x¢).

Proposition 4.5. Let U C Gy be an open set and assume that on U is given a
section x — x' of the projection p: P — Gy. As above we identify P = s '(x¢) as
a left G-bundle. Then the map V': G xU — p~ Y (U) defined by (h, x) — [ugh. x’]
is a homeomorphism. In particular the restrictions of all functions f: P — C to
p~YU) can be identified with the functions F: G x U — C by putting F(h, x) =
f([uoh. x')). Moreover, the condition (2) of Definition 4.3 can be rephrased with
the inequality |F(gh,x) — F(h,x)| <eforanvx e U, he Gand g € V.
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Proof. The map v is a restriction of the homeomorphism v defined by (1) in the
proof of Theorem 3.14. This in turns implies that ¥’ is a homeomorphism and,
by a straightforward calculation, it also implies the statement on the condition (2)
of Definition 4.3. |

Using the following lemma one can construct many useful examples of func-
tions in R(9, xp).

Lemma 4.6. Let n: Go — C be a continuous function belonging to Co(Gyg). Then
n o p belongs to R(G, xy). Moreover let U be an open set of Gy on which there
exists a section of p: P — Gg and let 0: G — C be a function in Rg and n as
above. Then, using the notations of Proposition 4.5, the function F: G x U — C
defined by F(h,x) = n(x)0(h) belongs to R(S, xgp).

Proof. The property (1) of the Definition 4.3 is immediately verified. Property (2)
follows by the inequality

|F(gh.x) — F(h.x)| = (max|n|)|0(gh) —6(h)]

and the fact that 6 € Rg. O
The construction of the greatest G-ambit S(G, xq)

Definition 4.7. Denote by S(9, xo) = Q(R(G, xp)), the locally compact space
corresponding, by Gelfand construction, to the commutative C *-algebra R(9, xo).

The space S(G, xo) will be shown later to be an adequate generalization of the
notion of greatest G-ambit S(G) to the theory of groupoid flows, for the locally
trivial groupoid G with locally compact Go.

Recall that the space S(G, xg) = Q(R(9. xp)) is the set of the surjective ring
homomorphisms &: R(S, xg) — C and that there exists a natural map i: P —
S(G, xp) defined as follows: i(7) = 7, where T € §(G, x¢) is the homeomorphism
7: R(G, xo) — Csuchthat (/) = f(1).

Theorem 4.8. i: P — S(8, xo) is a continuous injective map with dense image.

Proof. Since the topology of S(9, xo) has the subbasis made of subsets of the
form f~1(B), with f € R(G, xo) and B C C open set, whose preimages by i are
open sets of P, the continuity of i easily follows.

Moreover, a continuous function f € R(G, x¢) which is zero in i (P) is equal
to zero since f(7) = ©(f) = f(r) = 0for any t € P. Therefore the subspace
i(P) C S(Y, xg) is dense.

Let[ug, v] and [ug, w] a pair of distinct elements of P. If p(v) # p(w) then,
since Gy is locally compact, we can find a function n € R(S, x¢) as in Lemma 4.6,

such that n(p(v)) # n(p(w)). hence i([ug, v]) # i([uo, w]).
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If p(v) = p(w) = y, then [ug, w] = [ug. vh™'] = [uph, v] for some h € G
with 7 # 1. Consider a function 6: G — C in Rg such that 6(1) # 6(h). It
follows that there exists a local section x + x’ defined in a neighborhood U of
y € Gg such that y' = v. Let 5 be a function with compact support inside U such
that n(y) = 1. Using notations of Proposition 4.5, the function G: G x U — C
built in Lemma 4.6 is such that F(h,y) = 8(h) # 8(1) = F(l, y). Therefore

i([uo, v]) # i([uo, V']). O

5. The space S(G, x¢) as a G -bundle on G,

Let, as in the previous section, § be a transitive locally trivial groupoid with a
locally compact unit space Gg. Recall that § = Gp with P = 1~ (x¢) considered
as aright G = G[xo] bundle by means of the projection s:¢~!(xg) — Gy, which
will be denoted also as p: P — Gy. Recall that for any fixed xo € Gy, the map
t:57(xg) — Gy can also be denoted p: P — G, and regarded as the left G-
bundle structure on P. We set up = u(xp).

We consider the locally compact space S(9, xo) associated with the C *-algebra
R(G, xo). There exists a natural inclusion p3: Co(Go) < R(S, xo) well defined by
n+ not, by Lemma 4.6.

Since Gy is locally compact, by Gelfand construction, Gy is the space as-
sociated to its C*-algebra Co(Go). It follows that the inclusion pg: Co(Go) —
R(SG, xo) is the dual of a continuous surjective map

pg: S(G, x9) — Gy. 2

Theorem 5.1. The map pg is proper and it has all the fibers isomorphic to
S(G). Moreover there exists an open covering {U;} of Gy, whose elements are
contractible open sets with compact closures, with the following properties.

(D) p§1 (Ui) = S(G) x U; and the left action of G on pgl(U,-) is given by the left
action of G on S(G).

(2) Denoting g;, ;(x) the transition functions of the left G-bundle P associated
to the covering {U;}, then the transition functions

Qij:pf_}l(UiNUint - pf_jl(Uj)|U,'ﬂUj
are defined by t — tg; j(x), Le. they are induced by the functions g; ;j(x).

Proof. Let us first observe that P|y, is dense in pg5'(U;), hence Co(pg' (U)) is
isomorphic to the restriction of R(G, xo) to P|y,. Since {U;} is an open covering
of Go with U; compact, then the image of Cy(Gy) by the restriction map from Gy
to U; is actually C ([7,-). Moreover, up to a suitable refinement of the covering, we
can assume U; contractible, hence the bundle P |5,i =71 ((7,-) has a section on Uj;.



528 R. Re and P. Ursino

Let us denote such a section by x + x’. Then there exists a homeomorphism
P| b = G xUj; as in the notations of Proposition 4.5. We calculate the left action of
G = §[xo] on P, asfollows. Letusidentify g € G with [ugg. uo] € 5[xo], acting
as in the definition of the isomorphism ¢y, introduced in (1) of Proposition 3.12.
Then we have

Sluo, v] = [uog. uoluo, v] = [uog, v] = [uogh, x'] — (gh.x) € G x Uj.

We can regard such action as the left action of G on G x U;. Proposition 4.5 and
Definition 4.3 show that the functions f on P|g, that are restrictions of functions
in R(G, x¢) can be described as continuous functions F(h, x) such that for any
€ > 0 there exists aneighborhood V > 1 € G such that | F(gh, x)— F(h, x)| < € for
any x € U;, h € G and any g € V. Hence the algebra of such functions coincides
with C(S(G) x U;) which in turns implies that S(S,xo)hfjf_ is homeomorphic to
S(G) x U;. The action of G on the functions f (. x) obtained from R(S. xo) can
be calculated through the formula F2(h,x) = F(g~' - (h,x)) = F(g"'h.x), and
this action corresponds to the left action of G on S(G) x U; induced by the natural
left action of G on §(G) = 2(Rg). Then pgl(Ui) =~ S(G) x U;, with left action
of G induced by the canonical one defined on S(G). Let be Ply, = G x U;
and Ply, = G x U; two trivializations, related by a transition isomorphism
(h,x) — (hg; j(x)"',x)on U; N U;.

This isomorphism corresponds to the relation x” = x”g; ;(x), for x’ section on
U; and x” section on U;. Hence it can be identified with the following composition
of isomorphisms

(h, x) > [uoh, x'] = [uoh, x"gi,; ()] = [uohgi,j (x)", x"] > (hgi; (x)~", x).

As usual, the induced action on the functions F(h, x) from R(9G, x¢), with
x € UynUj,is F(h,x) = F(hgi ;(x),x), and this maps R(G, xo) to itself, as
one can easily see. Therefore it induces an automorphism of S(G) x (U; N U;)
compatible with the left G-action. This is enough to show that a gluing map exists
between pg' (U;) and pg'(U;) along pg' (Ui N U;) which extends the given one
for Ply; and P|y;. O

6. The right action of G on S(G, x¢)

Here we again identify § = Gp, hence its elements will be represented as classes
[v, w] with v, w € P as in Definition 3.10 and section 4.1.

Then we will also be able to identify s (x) = P and ¢:57'(xg) — Go will
be identified with the left G-bundle structure for p: P — Gg. The elements of
s~ (xp) will be represented as classes [ug. ¥'].
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Theorem 6.1. The right groupoid action
ag: P x; 3Gy — P

defined by wg([ug. v], [v, w]) = [uo, w] has an extension to a continuous right
groupoid action
ag: S(9, x0) Xpg.s G1 —> S(S, xo0)

with anchor map pg.

Proof. The groupoid action ag: P x; s Gy — P defined by ag([ue. v], [v, w]) =
[g, w] is a restriction of the multiplication map of G, hence it is continuous.
Let us now consider an open covering {U;} of contractible open sets of Gy as
in Theorem 5.1, consequently Ply, = G x U; e pgl(Uj) ~ S(G) x U;. Let
Gi,j = ¥ (G x U; xU;) the open covering of Gy, constructed by means of the map
Y defined by ¥r(k, x, y) = [x'k, y'], using the notation (1) introduced in the proof
of Theorem 3.14. Then for any i, j, the map «g restricts to a continuous map

g PlUf Xt,s G,‘J — P|UJ--
Let us notice that Py, %, G;,; = G x G x U; x U; by the map
1,7/:G xGx Uy xUj — Ply, X5 Gi,j

defined by v (h.k,x,y) = ([uoh.x'],[x’k, y']). Using the above identifications
the map «g can be regarded as the map

ag: (h k,x, ) +— (hk,y).

We consider the pull-back of functions f € R(SG, xp) through ag. Recall
that the functions f € R(9, xp) restricted to P\Uj., in the identification P|UJ. o~
G x Uy, are continuous functions F(k, y) such that for any € > 0 there exists a
neighborhood V > 1 € G such that |F(gk, y) — F(k, y)| < € forany k, y and any
g € V. Then the function F(h,k,x,y) = flag(h,k,x,y)) = F(hk,y) satisfies
the property |F(gh,k,x,v) — F(h,k,x,y)| < e forany x,y, h, k and any g € V.
Consequently the algebra ag(R(S Xp)) restricted to P |y, X G; ; is contained in
Co(S(G) x U; x Gj ), and therefore in Co(S(G. xo)|y; x Gj, ;). Hence the action
ag extends a continuous map

ag: S(G. xo)|lu; Xpg,s Gi,j —> S(5.x0)lu; 3)

for any 7, j, by Fact 1. Since those actions restricted to P x G; glue each other to
form the given action ag: P x; s G — P, and by density of P|y; in S(G, xo)|u;
for any i, then the functions (3) can be glued together to form a global action
ag:S(5. x0) Xpq,s Gt — S(G, xo). The required properties for the groupoid action
are easy to prove, for example by using the density of P in S(9, x¢) and the same
properties of the action of G; on P. O
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7. Universal property of S(SG, x¢)

Let B:Y %, G; — Y be aright action of a transitive locally trivial topological
groupoid § = (Gy, G1) on a space ¥ with proper anchor map p: ¥ — Gy.

Theorem 7.1 (Universal Property of S(G, x¢)). For any action
ﬁ: Y Xp,s G, — Y

with proper anchor map p:Y — Gg and for any fixed y € p~'(xo) there exists a
unique continuous map ly: S(§G. xq) — Y such that I, (ug) = y and compatible
with the actions ag and f.

Proof. 1t is sufficient to prove that the homomorphism of algebras /7: Co(Y) —
C(P) defined by I§ f([uo. v]) = f(B(y, [uo, v])), where C(P) is the algebra of all
continuous functions on P, actually has its image in R(G, xo). We will adopt
the multiplicative notation f(y[ue,v]) = y[uo, v] for the action of Gy on Y.
Let y, = y[uo,v] and, since [J f([uo.v]) = f(yy), we see thatif |f| < e
outside p~!(K), for some K C G, compact, then, since p(y,) = p(v), one has
113 (f)] < e outside t~1(K). Hence condition (1) of the Definition 4.3 is verified.
For an open set U C Gy with local section x + x’ assume

F(h,x) =17 f(luoh. x') = 17 f(luo. x'h™") = f(yxp-1).

Let us fix & > 0. Observe that | f| < £/2 outside some compact p~'(K). Then
there exists V, a neighborhood of 1 € G, such that for any x € K, any # € G and
any g € V we have

|[F(gh,x)— F(h,x)| <e.

By Proposition 4.5, this implies condition (2) of the Definition 4.3.

Since 15: Co(Y) — R(S. xo) is a homomorphism of C*-algebras, then there
exists a map /,: S(G,x9) — Y as desired. Moreover, this map is uniquely
determined by its restriction to P, which is the map [ug,v] — y[ug,v]. This
shows the uniqueness of /,, by density of P in S(§, xo). Finally, using again the
density of P and the compatibility of the restriction of /, to P, we deduce the
compatibility of /, with the given actions on S(§. x¢) and on Y. O

8. Existence and uniqueness up to G-invariant isomorphisms
of the universal minimal G-flows

In this section we will show the existence and uniqueness up to isomorphisms
of universal minimal flows G-actions, with G a locally trivial groupoid with Gy
locally compact. We refer to Section 2.1 for the definitions of flows, minimal
flows and universal minimal flows for topological groupoids.
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For the reader’s convenience we briefly recall some notations and results in
the classical case of topological groups. Let G be a topological group, a G-space
is a topological space Y with a continuous action of G. A G-space Y is minimal
if the orbit Gy is dense in ¥. The universal minimal compact G-space M(G) is
characterized by the following property: M(G) is a minimal compact G-space,
and for every compact minimal G-space Y there exists a G-map of M(G) onto Y.
It is well known that any two universal minimal compact G spaces are isomorphic,
see for example [1] or [14].

In this section we will show that any minimal G-subflow of S(9, x¢) has
the analogous universal property for minimal G-flows. Our proof is a slight
modification of the one contained in [14]. Let us consider P = s~ !(xp) and
the anchor map pg: 5(9, x9) — Gy, which extends the map 1: P — Gy. By
Theorem 6.1 for any y € pgl(xg) there exists a unique map /,:5(9, x9) —
S(SG, xo) such that 7, (ug) = y. If y # y"thenl, # I,/, moreover, by Theorem 5.1,
pg' (x0) = S(G) and, by such isomorphism, the element 1o € p~' (xo), identified
with [ug.ug] € t71(x9) C pgl(xo), corresponds to 1 € G. We now can define
a left action ®: S(G) x S(G,x0) — S(G, xp) such that ®(y,z) = /,(z). Notice
that, by the universal property of S(G), for y,z in $(G) = pgl(x()), the product
ly(z) = yz is the same as the one that gives §(G) a semigroup structure, defined
in Theorem 2.1 of [14]. However we warn the reader that in [14] the product in
S(G) is defined as yz = r;(y), that is, by means of similar maps r; as the /,
defined here, such that r; is invariant for the /eft action of G on S(G), whereas we
have a right G invariance for the maps /,.

Notation 8.1. For y,z € pgl(xo) 2= §(G), wedenote I, (z) = yz.
Proposition 8.2. For y,z € pgl(xo) we have I,l; = 1I,;.

Proof. The maps [/, and /,; are G;-maps that send v, to the same element y:z.
By uniqueness the thesis follows. O

Proposition 8.3. Let f:5(9,x0) — S(S,x0) be a Gy-map (in particular a
G-map) then f = I, for some y € ps‘;l(xo)

Proof. Denote f(ug) = y and consider the map /,,. Then f and /,, send u to the
same point and by uniqueness of [, we have f =[,. O

Proposition 8.4. Let M(SG, xo) be a G-minimal flow of S(G, xo) then M(G, x¢) =
[,(S(S. xo)) for some idempotent y € pgl(xo) N M(SG. x9). Moreover l, is the
identity on M(S, xo).

Proof. First observe that M (G, xo) N p§1 (x¢) is necessarily a G-minimal subflow
of pg'(xo) = S(G), otherwise (M(G, xo) N pg'(x0))G1 would be a proper
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subflow of M(SG, x¢), against the minimality of M(SG, xo). By the results of
Section 3 of [14] there exists a idempotent y € M(G, xp) N pgl(xo) and one
can consider the map /,: (G, xo) — S(9, xo), which, by minimality, is such that
Iy, (M(S, xo)) = M(G, xo). More precisely, from y? = y one finds yyz = yz for
any z € M(SG. xp) and, since the yz span M (G, x¢), the map /, is the identity on
M(S, xo). O

Proposition 8.5. Every G-map f: M(9, xo) — M(G, x¢) is bijective.

Proof. Composing f with /,: §(G. xo) — M(S. xo) of the Proposition 8.4, and
using Proposition 8.3, we obtain f ol = [, for some z € M(§G, x9). As Iy |p1(5,x0)
is the identity map of M(G. xo), we obtain f = I;|p(g.x,)- The rest of the proof
runs exactly as the proof of Proposition 3.4 of [14]. O

Theorem 8.6. M(S, xq) is unique up to G-invariant isomorphism.

Proof. Let M and M’ be two minimal flows of S(9, x¢), then, by universality
of S(9. xp), there exists a Gy-map f:S(G,x9) — M’', sothat f|py: M — M’.
By reversing roles we obtain a similar map from M’ to M. By minimality of
M and M’ they are both surjective functions, moreover their composition is G-
map from M to M, and, according to Proposition 8.5 is actually a bijection,
hence f is injective, from which, using the properness over Gy of M and M’
and the compatibility of these maps with the anchor map, one sees that they are
homeomorphic. O

Theorem 8.7. Any minimal G-subflow M(SG, xo) of S(G. xo) is a universal mini-
mal flow for right G-actions with proper anchor map.

Proof. If M is a minimal flow, consider a G-invariant map f:S(9.x¢) — M,
whose existence is guaranteed by the universal property of S(SG, x¢). By minimal-
ity, f(M(S.x0)) = M. O

8.1. Reduction to the classical case when the groupoid G is a group. A
groupoid G is a group when Gy = {e}, in which case G; = G. For any action of
G as groupoid, as defined in section 2.1, the anchor map p is a constant and the
continuous action « is automatically a function defined on the whole of ¥ x G.
From this we easily conclude that « is a continuous action of G on Y.

Then we show that S(G,xg) = S(G), for G equal to a group G. Indeed
Definition 4.3 in this case says that the C*-algebra R(9, x¢) is made of right
uniformly continuous functions on G, i.e. it coincides with RUCp(G). This
implies that S(9, xg) and S(G) coincide. Finally all the statements of the universal
properties for (G, xp) and M(SG, xo) reduce to those already known for S(G) and
M(G), see for example [14].
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8.2. Description of the universal minimal flows for G as locally trivial fibra-
tions. One can easily describe a universal minimal flow M(G, xo) for § in the
following way.

Theorem 8.8. Any minimal subflow M(S, xo) of S(S. xo) has the form M - Gy,
i.e. it is the orbit of M under the S action, with M C pg Y(x) = S(G) some G-
minimal subflow. In particular M(G. x9) — Gy is a l()cally trivial fibration with
fibers isomorphic to M(G), the universal minimal flow for the group G.

Proof. Indeed, since p(,‘(x) N M(G, xo) is G = G[x]-invariant, it is easy to see
that p(Jl(t) N M(SG, xg) contains some M - G, with M a minimal G-flow for

'(x), hence M(G.x9) = M - Gy, by G-invariance and minimality. Recall from
Theorem 5.1 that S(G, xo) is locally of the form S(G) x U and that its fibers
,o§1 (x) are isomorphic to §(G), the Samuel compactification of G. It immediately
follows that M =~ M(G), the universal minimal flow of G. Recall also that in
Theorem 5.1 the projection pg: S(G.x9) — Go has been proved to be a locally
trivial fibration with gluing maps defined by unique extension of the gluing maps
between Py, = G xU; and Py, = G xUj given by the a transition isomorphism
(h,x) + (hgi,j(x)~1, x) on U; N U;. Then the extension to S(G) x (U; NU;) must
preserve the chosen mm1mal flow M C S(G) over some point x € U; N U This
shows that M (G, xo) — Gy is a locally trivial fibration. O

9. Considerations in the case of extremely amenable groups

It turns out that most well known groups, e.g. discrete groups, Lie groups, or in
general locally compact groups, have very big compactifications S(G) and also
very big universal minimal flows M(G). For example when G is discrete then
S(G) = M(G) = BG, the Stone—Cech compactification of G, a fact originally
proved by Ellis and also a consequence of Veech’s theorem [15]. On the other hand
some very huge groups, like Homeo (S'), the group of orientation preserving
self-homeomorphism of S, with the compact open topology, or U(H ), the unitary
group of a infinite dimensional separable Hilbert space, with the strong operator
topology, have small M(G), i.e. M(G) = S for the first and M(G) = {*}is a
singleton in the latter case. We refer to section 4 of [13] for a detailed discussion
of these and many other examples. In particular U(H ) is a prototypical example of
a extremely amenable group, a fact proved in [6]. We recall the general definition
of this class of groups.

Definition 9.1. A topological group G is said extremely amenable if any continu-
ous action of G on a compact Hausdorff space has a fixed point. This is equivalent
to saying that M(G) is a point.
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Assume that G is a transitive groupoid with G[x] = G an extremely amenable
group. If Gy is locally compact, then all the results of the preceding sections apply.
In particular the result of Theorem 8.8 holds, and, since G extremely amenable,
one has M(G) = {%}. This means that pg: S(G, xo) — Go has a G-invariant
section. Then, by the universal property of §(9, x¢), any p: ¥ — G, with a right
G-action has a G-invariant section.

But actually the same result holds even when Gy it is not locally compact, and
hence one cannot apply Theorem 8.8.

Theorem 9.2. Let G be a topological group. Then G is extremely amenable if
and only if for any locally trivial transitive groupoid G with structural group G
and any action of G on a topological space Y with proper anchor map p: Y — Gy
there exists a continuous G-invariant section Go — Y of p.

Proof. (=) Leta:Y x,5 Gy — Y be an action of § on Y with p:Y — Gg a
proper map. Then for any x € Gy there exists an induced action §[x] = G on
p~'(x), which is a compact space.

Since G is extremely amenable there exists a fixed point z € p~!(x). Let us
consider the orbit zG; C Y and let us show that it is the image of a continuous
section o: Gy — Y. The fact the zG; is the image of a set-theoretical section is a
consequence of the following.

Claim. Forany x’ € Go one has |p~'(x") N zGy| = 1.

Indeed, by the transitivity of G there exists g € G such that s(g) = x and
tg = x'. Thent(zg) = x', therefore |[p~ 1 (x")NzG,| > 1. If 2/, 2" € p~ 1 (x")Nz G,
then z' = zg and z” = zh for suitable g,h € G, and one has #(g) = t(h) =
p(z') = p(z”) = x'. Hence gh™! € G[x] and one has z = zgh~!, which implies
Zi=zg=zh="z".

Now let us show that the section o: Gy — Y with Im(o) = zG is continuous.
As o is a bijection between Go and Im(c) = zG,, with inverse equal to the
restriction p|;g,, then it is sufficient to show that p|.G, is an open map. Let
W M zGy be an open set in the induced topology on zG,, with W open in Y.
If z2 € zGy N W then 2 = zh for some h and p(z’) = t(h). It follows that
p(zGy N W) = {t(h) | zh € W}. The set {(z,h) | zh € W} is equal to
a~ (W) N (z x s~(x)), which is homeomorphic to an open set Wy C s~!(x),
since (W) C Y x,5 G1, by the continuity of the action «, is an open set,
as well. Now let us consider the restriction of the target map ;s !(x) — Go.
It is easy to see that G locally trivial implies that ¢ is open. Then we have
p(zGy N W) ={t(h) | zh € W} = t(Wp) open.

(<=)LetY x G — Y an action G on a compact Y. We consider the group
as a groupoid, i.e. G; = G, Gy = {1} and the group action as a groupoid action
Y xp5s Gy — Y, with trivial anchor map p:Y — {1}. Then p is proper and
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an invariant section corresponds to a fixed point x = o(1) € Y for the action
of G. O

The theorem above has an interesting consequence for the theory G-principal
bundles, in the case when G is an extremely amenable group. First we set some
notation.

Notation 9.3. Let G be a topological group and p: P — X alocally trivial right
G -principal bundle. Let K be any G-flow, i.e. a compact space for which there
exists a continuous right action of K x G — K. Let ¥ — X be the bundle
with fibers K induced by P. We recall that the bundle ¥ — X can be defined
as follows. One sets ¥ = (K x P)/ ~, where ~ is the equivalence relation
(k,u) ~ (k',u’) if and only if there exists g € G such that ¥’ = kg and v’ = ug.
The projection map ¥ — X is defined by means of p([k,u]) = p(u). Note that
if P is locally defined by trivializations P |y, = U; x G and transition functions
(x.h) = (x,gij(x)h) for x € U; N Uy, then Y|y, = K x U;, with transition
functions (k, x) +— (kgi,; (x) ", x)forx e Ui N U;. But we will not use transition
functions in the proof of the next result.

Theorem 9.4. Under the notations above, if G is extremely amenable, then for
any choice of a locally trivial principal bundle P — X and for any G -flow K, the
associated bundle Y — X has a global section.

Sketch of proof. There is aright Gp action on Y defined by [k, u]-[u’, v'] = [kg, v]
if and only if ¥’ = ug. Then one can apply Theorem 9.2 to obtain a G-invariant
section of ¥ — X, in particular a global section. g

Remark 9.5. The theorem above is definitely false for locally compact groups.
Indeed even for the compact group S there exist non trivial principal S !-bundles,
that therefore do not admit any global section. In this case the flow K is the
group itself. For example the famous Hopf bundle $* — S? with fibers S'!
is a non-trivial S!-principal bundle, that can be defined as the restriction to
§3 ={(z.w) € C? | |z|> + |w|? = 1} of the C*-principal bundle C?\ {0} — CIP!
of Example 3.9, setting n = 1 and recalling that CP! =~ §2.

Remark 9.6. Recall that if a principal bundle P — X has a global section,
then it is trivial. On the other hand, if the group G is extremely amenable,
then for any principal bundle » — X, the bundle 5(G,x9) — X = Gy
constructed in this paper does have global sections, by the theorem above. Recall
that S(S, xo) — X has fibers homeomorphic to the compactifications S(G) of
the fibers of P, homeomorphic to G. One might wonder if this is sufficient to
ensure that P is trivial. The answer is negative. Indeed the existence of non-trivial
bundles for a group G is related to the homotopy theory of G. Recall that if for
an arcwise connected and compactly generated group G any principal G-bundle
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is trivial, then G is aspherical or quasi-contractible, that is all homotopy groups
7; (G) are trivial. Indeed, from the theory of fiber bundles, it is well known that the
set Pring ($") of isomorphism classes of principal G-bundles with base X = §” is
in bijective correspondence with m,_;(G), for any n > 1. But there exist arcwise
connected and compactly generated non-aspherical extremely amenable groups.
For example consider a separable infinite dimensional Hilbert space H , its unitary
group U(H) with the strong topology, and the projective linear group PU(H)
obtained as the quotient of U(H)/U(1), being U(1) the center of U(H). Then
IPU(H) is extremely amenable as well (any of flow of PU(H) is also a U(H)
flow and therefore it has fixed points). On the other hand, it is well known that
w2 (PU(H)) = m1(U(1)) = Z, as one can see for example considering the long
homotopy exact sequence (see for example [9] chapter 9 section 3) derived from
the exact sequence of groups (1) — U(l) — U(H) — PU(H) — (1) and using
the fact that U(H) is aspherical, by Kuiper’s theorem [8]. In particular there exist
non-trivial PU(H ) principal bundles over S3.
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