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2Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95125, Catania, Italy
3Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123, Catania, Italy
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We model the formation of multilayer transportation networks as a multiobjective optimization process,
where service providers compete for passengers, and the creation of routes is determined by a
multiobjective cost function encoding a trade-off between efficiency and competition. The resulting
model reproduces well real-world systems as diverse as airplane, train, and bus networks, thus suggesting
that such systems are indeed compatible with the proposed local optimization mechanisms. In the specific
case of airline transportation systems, we show that the networks of routes operated by each company are
placed very close to the theoretical Pareto front in the efficiency-competition plane, and that most of the
largest carriers of a continent belong to the corresponding Pareto front. Our results shed light on the
fundamental role played by multiobjective optimization principles in shaping the structure of large-scale
multilayer transportation systems, and provide novel insights to service providers on the strategies for the
smart selection of novel routes.

DOI: 10.1103/PhysRevLett.121.128302

The interactions among the basic units of many natural
and man-made systems, including living organisms, eco-
systems, societies, cities, and transportation systems, are
well described by complex networks [1–5]. Often these
systems are subject to different types of concurrent, and
sometimes competing, constraints and objectives, such as
the availability of energy and resources, or the overall
efficiency of the resulting structure. It is therefore reason-
able to assume that the systems that we observe today are
the result of a delicate balance between contrasting forces,
which can be modeled by means of an underlying opti-
mization process under a set of constraints [6–10]. For
instance, the emergence of scale-free networks can be
explained by simple optimization mechanisms [11–15],
while it has been found that many of the properties of
biological networks result from the simultaneous optimi-
zation of several concurrent cost functions [16–25].
However, multiobjective optimization has not yet been
linked to the most recent advances in network science,
based on multilayer network representations of real-world
systems [26–29]. Recent studies have shown that the
presence of many intertwined layers in a network is
responsible for the emergence of novel physical phenom-
ena including abrupt cascading failures [30–32], super-
diffusion [33], explosive synchronization [34], and the
appearance of new dynamical phases in opinion formation
[35,36] and in epidemic processes [37,38]. Moreover,
multiplexity can have an impact on practical problems
such as air traffic management [39–41] and epidemic

containment [42,43]. As a result, understanding how multi-
layer networks evolve [44–46] is becoming of central
importance in various fields.
In this Letter we propose a model of multilayer network

growth in which the formation of links at each layer is
the result of a local multiobjective optimization (MOO),
i.e., a process where two or more objective (cost) functions,
often in conflict with each other, have to be simultaneously
minimized or maximized. Within this framework, the
concept of Pareto optimality naturally arises. By introduc-
ing the dominance strict partial order [47], the solution of a
MOO problem consists of a set of nondominated or Pareto-
optimal points in the solution space. Intuitively, these
points represent those solutions for which no improvement
can be achieved in one objective function without hindering
the other objective functions. The collection of nondomi-
nated points constitutes the Pareto surface or Pareto front
(PF) [48,49].
The multiplex multiobjective optimization (MMOO)

model we propose is inspired by the observation that the
formation of edges in many real-world transportation
networks [50,51] is often subject to concurrent spatial
and economical constraints [52–54]. On the one hand, there
is the tendency to accumulate edges around nodes that are
already well connected, in order to exploit the economy of
scale associated with hubs. On the other hand, each service
provider usually tends to minimize the competition with
other existing service providers. We show that, by combin-
ing these two mechanisms, the MMOO model is able to
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reproduce quite accurately the structural features of three
large-scale multiplex transportation systems, namely, the
UK railway network, the UK coach network, and the six
continental air transportation networks [55–58]. The
MMOO model provides a reasonable explanation for the
emergence of highly optimized heterogeneous multiplex
networks.
Multiplex multiobjective optimization model.—Let us

consider a multiplex transportation network with N nodes
and M layers, where nodes represent locations and layers
represent service providers, e.g., airline, train, or bus com-
panies. Each layer is the graph of routes operated by one
of the service providers. The network can be described by
a set of adjacency matrices fA½1�; A½2�;…; A½M�g ∈ RN×N×M,

where the entry a½τ�ij is equal to 1 if i and j are connected by a
link at layer τ (meaning that provider τ, with τ ¼ 1; 2;…;M

operates a route between location i and j), while a½τ�ij ¼ 0

otherwise.We denote by k½τ�i ¼ P
ja

½τ�
ij the degree of a node i

at the layer τ, and byK½τ� ¼ 1
2

P
ik

½τ�
i the total number of links

of layer τ. An important multiplex property of a node i is the

overlapping (or total) degree oi ¼
P

τk
½τ�
i ¼ P

joij, namely,
the total number of edges incident on node i at any of the

layers of the multiplex [59], where oij ¼
P

τa
½τ�
ij is the

overlap of edge ði; jÞ [59,60], that is the number of layers
at which i and j are connected by an edge.
In the model we assume that service providers join the

system one after the other, each one with a predetermined
number of routes that they can operate. This means that the
multilayer network acquires a new layer at each (discrete)
time step τ. When the layer joins the system, the new
provider tries to place its routes in order to maximize its
profit. To this end, a provider would prefer to have access to
as many potential customers as possible (i.e., to connect
locations with large population), while minimizing the
competition with other providers (i.e., to avoid to operate a
route if it is already operated by other providers). In order
to mimic these two competing drives, we set the probability
to create an edge between node i and node j at the new
layer τ as

p½τ�
ij ∝

o½τ−1�i o½τ−1�j þ c1

o½τ−1�ij þ c2
τ ¼ 2;…;M; ð1Þ

where o½τ−1�i and o½τ−1�ij are, respectively, the overlapping
degree of node i and the edge overlap of ði; jÞ at time τ − 1.
The non-negative constants c1 and c2 allow a nonzero
probability to create a new edge to a node that is isolated at
all the existing layers. The rationale behind Eq. (1) is that
the overlapping degree oi of node i can be used as a proxy
of the population living at that location. Hence, in the same
spirit of the “gravity model” [61,62], creating a link
between node i and node j with a probability proportional

to the product oioj will increase the chances for a provider
to access a large set of customers. Similarly, by requiring

that p½τ�
ij is inversely proportional to the edge overlap o½τ−1�ij

we discourage the creation of a new route between two
locations if they are already served by a large number of
other providers, thus modeling the tendency of providers to
avoid competition. The two competing mechanisms we
propose can be formalized as a MOO problem:

�
maxF

minG
¼

8
>>><

>>>:

F½τ� ¼ P

i;j∶a½τ�ij ¼1

ðoioj þ c1Þ

G½τ� ¼ P

i;j∶a½τ�ij ¼1

ðoij þ c2Þ
ð2Þ

where the efficiency function F½τ� accounts for the number
of potential customers, while G½τ� measures the competition
due to route overlaps.
The MMOO model is illustrated in Fig. 1. The first layer

is a connected random graph with K½1� edges. At each step
τ, with τ ¼ 2;…;M, a new layer is created. The first of the
K½τ� edges of the new layer is placed uniformly at random
among the ðN

2
Þ possible edges. In order to obtain a

connected network, the remaining K½τ� − 1 links are created
according to the probability in Eq. (1), yet ensuring that one
of the two endpoints of the selected edge belongs to the
connected component at that layer. The total number of
links at each of the M layers are external parameters of the
model. Although considering the routes of each company
as fixed over time may look like an unrealistic over-
simplification, in all the systems we have considered,
providers update their network of routes normally at a
very slow rate, which justifies our assumption to consider
the routes on each layer as quasi-static. In fact, rearranging
a set of train services or flights entails substantial logistic
and economic investments, since railway licenses and airport
slots are normally allocated over time scales of several years.
Results.—We have used the MMOO model to reproduce

the structure of three different multiplex transportation
systems. The first data set includes six multiplex air

(a) (b) (c)

FIG. 1. Illustration of the airline growth model. (a) At time
τ ¼ 2 a new layer arrives with K½2� links to be placed, and the first
edge is placed uniformly at random among all possible pairs of
nodes. (b) The remaining K½2� − 1 links are placed according to

the probability p½2�
ij in Eq. (1). (c) The same procedure is repeated

for each layer τ until a multiplex with M layers is obtained.
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transportation networks, each representing the airline
routes operated in a continent. Each network has between
200 and 1000 nodes (airports) and between 35 and 200
layers (carriers) [57]. We have constructed the other two
data sets, respectively, from the UK national railway
timetable (41 companies operating over about 1600 sta-
tions) and from the UK national coach timetable (1207
companies and over 12 000 coach stations). See Ref. [58]
for details. For each network, we generated 103 indepen-
dent permutations of the sequence fK½1�; K½2�;…; K½M�g of
the total number of links at each layer in the data set. Then,
for each permutation, we ran 50 independent realizations of
the model. In our simulations we used a Metropolis-
Hastings algorithm [63] to sample form the distribution
in Eq. (1). In Fig. 2 we report the distributions of layer
activity N½α� (number of nonisolated nodes at each layer),

total node degree oi, and edge overlap oij of the multiplex
networks obtained with the MMOO model, where we set
c1 ¼ c2 ¼ 1. The two-sample Cramer–vonMises statistical
test [64] provides convincing evidence that the synthetic
distributions are compatible with the original ones [p value
< 0.01, except for panel (c), where p < 0.2]. It is worth
noticing that the MMOO model naturally reproduces the
heterogeneous distribution of node total degree and the
decreasing exponential behavior of the edge overlap oij,
which respectively mirror the heavy-tailed distribution of
city size [65,66] and the tendency of service providers to
reduce the competition on single routes [56]. It is also
possible to fine-tune thevalues of c1 and c2 in Eq. (1) in order
to accurately reproduce also other structural properties of the
three transportation networks, such as the distributions of
node activity Bi (number of layers at which node i is not

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Distributions of layer activity N½α� (left column), node total degree oi (middle column), and edge overlap oij (right column).
The multiplex networks (red diamonds) of North America airlines (top row), UK train services (middle row), and UK coach services are
compared to the corresponding multiplex networks generated by the MMOO model (solid blue lines) and to multiplex networks whose
layers are Erdös-Rényi graphs [67] (dashed lines). The results shown are averaged over 103 realizations (standard deviations are
indistinguishable from the symbols).

(a) (b)

FIG. 3. Observed (solid green line) and theoretical (dashed blue line) Pareto fronts for the continental airline networks of (a) North
America and (b) Africa. The top ten airlines by number of passengers in 2013 are highlighted. For each system, the theoretical Pareto
front was obtained as the nondominated points of 105 realizations of the MMOO model (the range of variability of the simulations is
indicated by the shaded grey region).
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isolated) and the pattern of pairwise interlayer correlations.
See Ref. [58] for more details.
Pareto fronts and system efficiency.—By considering the

multiobjective optimization framework formally defined in
Eq. (2), it is possible to compare providers by looking at
their position in the efficiency-competition plane defined
by the two functions F and G and shown in Fig. 3. We
focused on the air transportation networks and extracted
from the empirical data the observed Pareto front of each
continental network, i.e., the set of all the nondominated
points in the F-G plane. Surprisingly, we found that most of
the Pareto-optimal points correspond to the most important
companies in the continent (e.g., flagship, mainline, and
large low-cost carriers), and in particular with those
carrying the largest number of passengers.
In order to quantify the potential improvement attainable

by a system in the F-G plane, we used a multiobjective
optimization algorithm [68] to generate 105 synthetic
multiplex networks for each continent. We then computed
the so-called theoretical Pareto front, consisting of the
Pareto-optimal points resulting from all the simulations,
reported in Fig. 3 as a dashed blue line. The closer the
observed PF is to the theoretical PF, the better the system
approaches the best possible solution in the F-G plane.
Interestingly, the observed PF of the North American
airline network is relatively closer to its theoretical PF,
while for the African airlines we observe a larger gap
between the two curves. This means that, on average, the
African airlines may obtain a greater improvement in the
F-G plane than North American companies. A quantitative
way to associate a number to a Pareto FrontP is bymeans of
the hypervolume indicator IHðPÞ, that is the Lebesgue
measure of the union of the rectangles defined by each point
in the front P and a reference point [58,69,70]. The distance
between an observed PF, Pobs, and the corresponding
theoretical PF, Pth, can be quantified through the relative
normalized hypervolume ΔH ¼ jIHPobs

− IHPth
j=ðIHPth

KÞ.
By dividing the relative hypervolume difference by the total
number of routes K, it is possible to compare the level of

potential improvement of two multiplex networks with
respect to their corresponding theoretical PF. We argue that
the value of ΔH can be used as a proxy of the technological
advancement of a transportation system, with smaller values
of ΔH indicating more optimized configurations. Table I
reports the ranking of the continents induced by ΔH, where
North America and Asia lead the pack, while Africa
is lagging behind. Interestingly, that ranking is positively
correlated with the ranking induced by continental GDP per
capita [71] (Kendall’s τb ¼ 0.6, p ≈ 9 × 10−2).
Finally,we show that ourmodel can in principle be used by

new companies entering the market, as a guide to place their
routes in the most effective way. We run simulations of a
slightly different version of the model, where all the layers
are fixed and identical to the observed ones except for one
of them, which represents a new service provider. The last
layer is constructed according to Eq. (1). As shown in Fig. 4,
we found that in general the companies lying on the observed
Pareto front cannot substantially improve their position in the
F-G plane, meaning that their routes have evolved over time
according to an effective optimization process. Conversely,
our model is able to improve the position in theF-G plane of
suboptimal and nonoptimal airlines.
Conclusions.—The introduction of multiobjective opti-

mization principles in the modeling of multilayer systems
allows us to obtain simple, effective explanations for the
evolution of real-world transportation networks. In particu-
lar, the systematic exploration of the possible local improve-
ments in the efficiency-competition plane at the level of
single carriers, that we have used here to characterize the
technological advancement of a continent and the effective-
ness of the network of single carriers, can be employed in
practice to inform the placement of new routes, and to
compare alternative expansion strategies. The proposed
methodology can be readily applied to any system whose

FIG. 4. Reshaping the routes of two North American airlines in
the F-G plane. United Airlines, a Pareto-optimal company (blue
diamonds), cannot be improved any further by our model, while
Great Lakes Airlines (brown squares) can potentially get much
closer to the Pareto front.

TABLE I. The potential improvement attainable by a system in
the F − G plane is measured by the normalised relative hyper-
volume ΔH, where smaller values of ΔH correspond to more
optimized networks. The ranking of continents by ΔH is reported
in the table together with the economical performance of each
continent, as measured by the average GPD per capita.

Continent ΔH GDP (US $)

North America 6.82 × 10−5 17 892
Asia 7.79 × 10−5 14 070
Europe 1.07 × 10−4 36 784
South America 5.50 × 10−4 9359
Oceania 5.81 × 10−4 13 064
Africa 8.82 × 10−4 2843
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multilayer structure is the result of the interactions between
two or more conflicting objective functions, paving the way
to a more accurate characterization of many different natural
and man-made complex systems.
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(2003).

[7] M. T. Gastner and M. E. J. Newman, Eur. Phys. J. B 49, 247
(2006).
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