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Optimizing Costs and Quality of Interior )
Lighting by Genetic Algorithm e

Alice Plebe, Vincenzo Cutello and Mario Pavone

Abstract This paper proposes the use of multi-objective optimization to help in the
design of interior lighting. The optimization provides an approximation of the inverse
lighting problem, the determination of potential light sources satisfying a set of given
illumination requirements, for which there are no analytic solutions in real instances.
In order to find acceptable solutions we use the metaphor of genetic evolution, where
individuals are lists of possible light sources, their positions and lighting levels.
We group the many, and often not explicit, requirements for a good lighting, into
two competing groups, pertaining to the quality and the costs of a lighting solution.
The cost group includes both energy consumption and the electrical wiring required
for the light installation. Objectives inside each group are blended with weights,
and the two groups are treated as multi-objectives. The architectural space to be
lighted is reproduced with 3D graphic software Blender, used to simulate the effect
of illumination. The final Pareto set resulting from the genetic algorithm is further
processed with clustering, in order to extract a very small set of candidate solutions,
to be evaluated by the architect.

Keywords Lighting design *+ Genetic algorithm + Decision maker - Blender

1 Introduction

In this paper we explore the possibility to support the task of designing light in
architecture, by a formulation of a multi-objective optimization problem, to be solved
using evolutionary algorithms, followed by a clustering technique to reduce the final
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Pareto set. The design of interior lighting is the crucial and complex process of inte-
grating luminaries into the fabric of architecture [1, 2]. Humans, like most primates
and several mammals, are predominantly visual creatures. Forms of artificial lighting
have been introduced since antiquity, to make visual perception possible when and
where sunlight lacks [3]. In most of the contemporary world a considerable amount
of time is spent indoors and with insufficient daylight illumination. Our ability to
move toward interior environments, orientate ourselves, and go about our business
relying on the perceptions we form of the surrounding objects, reckons on the level
and quality of ambient illumination. Contemporary lighting design has the goal of
selecting the lighting equipment and their placement in the interior environment that
result in a comfortable and pleasant visual experience. The design process should
take into account several aspects, such as the type of occupants and the type of
activities in the given space, or the interior surface finishes and furnishings.

Unlike most multi-objective optimization problem in other domains, such as
industrial engineering [4], in lighting design there is rarely an explicit formulation
of the requirements for the optimal solution. However, it is often possible to iden-
tify at least two types of objectives for a lighting system: on one side the properties
that enhance the quality and the pleasantness of the interior light, on the other side
the costs involved in providing the chosen lighting solution. The first component of
costs is related to the realization of the lighting plant. In addition, in the last decades
increasing attention has been paid to the issue of energy savings. In U.S. the energy
consumed for lighting accounts for about 30% of the total energy consumed by com-
mercial buildings [5], and in the European Union the yearly consumption is over 170
TWh [6]. Therefore, the concept of sustainable lighting design has become central
in architectural strategies [7].

In the approach here proposed we group objectives that belong to the quality or the
cost categories by weighted summations, and then treat the two combined values as
contrasting multi-objectives. It should be highlighted that lighting design is a process
that encompasses strict physical evaluations with aesthetic and stylistic evaluations,
upon the premise that the lighting condition has enormous emotional, psychological,
and physiological impact on people. It is not possible, nor even desirable, for a
computerized optimization to provide a single, deterministic solution. The great
help of a system like the one here proposed would be to shortlist a manageable small
set of lighting solution for the architect to be evaluated with her subjective expertise
and sensibility. As with most real problem solved with multi-objective optimization,
the final Pareto set is far too large for a visual evaluation. We apply a technique to
reduce it, even in the absence of known preferences of the decision maker, typically
assumed in literature [8, 9]. We partition the whole Pareto set into a small number
of clusters, and in each cluster we pick a representative solution.

The algorithm here presented is an extension of an earlier model [10], based on the
combination of the 3D graphic software Blender and a genetic algorithm for solving
the multi-objective optimization problem. Blender provides the rendering engine for
a physical simulation of the effect of a lighting solution on a model of the interior
environment. In the current version the problem objectives have been refined, with
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three components in the quality group and two components in the group related to the
cost of the lighting solution. In the latter, we compute an estimate of the realization
cost of each candidate lighting solution.

2 The Lighting Problem and the Optimization Solution

The design of interior lighting is the crucial and complex process of integrating
luminaries into the fabric of architecture [1, 2]. The goal is to select the lighting
equipment and their placement in the interior environment that result in a comfortable
and pleasant visual experience. The design process should take into account several
aspects, such as the type of occupants and the type of activities in the given space,
or the interior surface finishes and furnishings. Since the discovery of the electric
light system by Thomas Edison in 1879, lighting design has experienced several
significant revolutions, such as fluorescent lamps in 1938 and, more recently, solid-
state lighting. Traditionally, illumination design has been seen as a blend of art and
practice, where all the challenges are left to the creativity and the experience of the
design architect. Given the aesthetic nature of the task, lighting design may seem
difficult to formally model. Nevertheless, in the last years the design process has
been increasingly considered as a mathematical and physical problem to be solved
with optimization techniques. A well established aids offered by computational tools
to the designer is by photorealistic architectural rendering, simulating in computer
graphics the effect of a lighting solution on a model of the interior environment
[11]. Mathematically, this is the solution of the direct lighting problem that is the
computation of radiance distribution in an environment that is completely known a
priori, including its lighting parameters. The drawback of adopting direct lighting as
the only aiding tool is that, if the achieved illumination is not satisfactory, it is not
easy to infer which modifications to the current solution may lead to improvements.
Very likely, the final solution chosen by the designer over a collection of trials will be
far from optimal. A more effective assistance would be given by computational tools
implementing the inverse lighting problem [12—15]: the determination of potential
light sources satisfying a set of given illumination requirements, for a pre-defined
interior space. For this problem there are no reliable analytic solutions, even for
simple geometries, One of the earliest attempt to solve this problem with optimization
[13] was based on the Broyden-Fletcher-Goldfarb-Shanno method [16] applied of the
Hessian of the matrix derived by the objectives of lighting uniformity. The limitation
of this class of methods is that the dependency from gradients leads easily to poor
local minima. In very simple cases constrained least squares based optimization may
work, for example when the position of the lights are fixed, and only their intensities
can be varied [14].

A system facing the inverse lighting problem must provide a virtual environ-
ment able to accurately reproduce the architectural space and its spectral reflecto-
metric properties. Moreover, a physical simulation platform must be considered as
well for correct illumination calculation in sample points of the architectural space.
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Several different tools can be considered for this purpose. Lightsolve [17] is an
interactive dedicated environment for daylight design, with a performance-driven
decision support system, however the system lacks a detailed architectural repro-
duction, and the inclusion of interior furniture is difficult to manage. In the work
of [18] the 3D models of building facades are obtained with the simple modelling
tool Google SketchUp, which offers a quick and easy way to outline an architectural
space, but resulting in a low level of realism. Conversely, the popular software Radi-
ance, widely used in the field of optimal lighting design [11, 19, 20], consists of a
sophisticated physically-correct rendering engine for illumination calculation, and
it allows architectural spaces reproduction at arbitrary levels of detail. Nevertheless,
it is a non-interactive system composed of a collection of command-line programs,
and all architectural specifications have to be coded into configuration files.

In this paper we adopt the 3D graphic software Blender as a unified solution to
the two requirements stated above. Firstly, Blender is the most comprehensive open-
source 3D computer graphic tool available. It is particularly suitable for modelling
architectural interiors, with the possibility of importing components from CAD files.
Secondly, Blender provides a physically-based rendering engine, able to exhaustively
evaluate lighting configurations needed for solving the inverse lighting problem.
Moreover, Blender embeds a Python interpreter, which can run scripts supplied by the
user, in order to extend its functionalities. Thanks to its intrinsic versatility, Blender
has already been applied to a number of different problems, from the medical field
[21] to industrial applications [22], and the inverse lighting problem itself [10].

2.1 Non-dominated Sorting Genetic Algorithm

Due to the clashing of the multiple factors involved in interior lighting design,
the resulting problem is multi-objective in nature. In contrast to single-objective
optimization problems, where there is usually a single global minimum solution to
be found, the goal of multi-objective optimization is to determine the set of best
tradeoffs between all the conflicting criteria, namely the Pareto-optimal set. Genetic
algorithms are a popular class of computational models, which have been extensively
applied in various multi-objective optimization domains over the last decades. As the
name suggests, genetics algorithms mimic the working principles of natural genet-
ics and natural selection to construct robust search algorithms that require minimal
problem information. The algorithm structure is borrowed from the sexual genetic
reproduction process, divided into three fundamental phases: selection (or reproduc-
tion), mutation and crossover. Starting from a random population of solutions, the
algorithm iteratively computes fitness values for each in order to identify the best
solutions and to converge to a Pareto-optimal set. The selection operator is used to
promote the best individuals in the population, by duplicating good solutions and
discarding the bad ones, while it keeps the population size constant. Crossover and
mutation operators perform the creation of new solutions. The first randomly picks
two solutions from the mating pool, and exchanges some portion between the two
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chromosomes to create two new solutions. Afterwards, the mutation operator intro-
duces diversity in the populations by randomly mutating the chromosomes obtained
after crossover.

One of the key working principles of genetic algorithms is the chromosomal rep-
resentation of a solution. The algorithm works with a coding of decision variables,
instead of the variable themselves, and choosing the right representation scheme is
crucial to its performance [23]. The most traditional approach is to code the deci-
sion variables in a binary string of fixed length, which is a natural translation of
real-life genetic chromosomes. Such strings are directly manipulated by the genetic
operators, crossover and mutation, to obtain a new (and hopefully better) set of
individuals. Another well established method is the floating-point representation of
chromosomes, where each solution is coded as a vector of floating point numbers,
and crossover and mutation operators are adapted to handle real parameter values.
For the algorithm presented in this work, we adopted a novel chromosomal rep-
resentation of solutions, specifically tailored for lighting design optimization. As
will be further described in Sect. 3.1, each individual represents a possible illumi-
nation configuration, and it is coded as an ordered set of variable length containing
lamp specifications. Special operators of crossover and mutation are implemented to
handle this peculiar chromosomal representation.

The specific genetic algorithm adopted in the present paper is the Non-dominated
Sorting Genetic Algorithm II (NSGA-II), introduced by Deb et al. [24], an elitist
multi-objective genetic algorithm that performs well with real world problems, pro-
ducing Pareto-optimal solutions to the optimization problem. The elitist approach
favours the best solutions of a population by giving them an opportunity to be directly
carried over to the next generation. This strategy ensures that the best fitness values
do not deteriorate during the evolution, and it enhances the probability of creating
better offspring.

The elitism is integrated in the algorithm by selecting the next-generation pop-
ulation of size N among the best individuals from the offspring and the parent
population combined together (size 2N). This selection strategy, named crowded
tournament selection, takes into account two criteria: the non-domination and the
crowding distance of the individuals. The first is the non-domination rank of the
solution in the population, and it is used to classify the entire 2N population into non-
dominated fronts. The second criterion is a measure of the search space around the
solution, which is not occupied by any other solution in the population. Giving pref-
erence to solutions that are less crowded (with larger crowding distances) ensures a
better spread among the solutions during the evolution. These conditions make sure
that non-dominated individuals belonging to a high rank front and residing in a less
crowded area are selected to reproduce more than others. The result of the algorithm
is the set of non-dominated solutions of the whole final population, namely the Pareto
front.
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3 The Proposed Model

The algorithm presented in this paper has been implemented in the form of a Blender
script, structured in four groups of Python modules. The first group of modules,
which rely on Blenders modelling features, performs the set-up of the simulation
environment. The architectural interior scene of interest is represented inside the
computer graphics software by means of geometric meshes and material shaders. The
room structure (walls, floors, ceiling) and its furnishings are defined by the meshes,
while colours, textures and reflectivity properties of the objects are specified through
the shaders. Within the definition of the 3D model, the user has to provide a grid of
points on the ceiling and the walls corresponding to the feasible set of coordinates
for lamp positioning. This step is required because, depending on the room design,
there might be some areas where the lamp placement is not allowed, for example in
presence of windows, pillars, or supporting beams.

The evaluation of light quality in the 3D interior space is achieved performing
individual lighting measurements over some supporting elements, called samplers,
composed by surfaces with plain materials, which are introduced in the scene by the
second group of python modules. The resulting rendered images are stored in HDR
format, in order to preserve all the information of the dynamic range. Their pixel
values are used, in the third group of modules, by the genetic algorithm to compute
the actual fitness values of a solution, as will be detailed in Sect. 3.1. After evaluat-
ing the entire current population and selecting the mating pool, the genetic operators
of crossover and mutation are applied to generate the offspring. The operators are
specifically implemented for the presented case problem, as further described in
Sect. 3.2, with the support of an evolutionary computation python framework named
DEAP [25], which allows to freely customizing any component of the genetic algo-
rithm workflow. At the end of the evolution, the obtained result is the Pareto front of
the final population, namely the set of non-dominated solutions, each one of them
representing an optimal lighting configuration for the given interior environment.
A decision maker is then used to select a small number of best representative solu-
tions, as will be described in Sect. 3.3. The Fig. 1 shows a flowchart representing the
overall optimization process.

3.1 Definition of the Objectives

We can first split the requirements of our problem into two different overall goals:
on the one hand the achievement of the highest quality of the lighting for the interior
space for which it has to be designed, on the other hand the minimization of lighting
costs. The two groups of objectives are clearly contrasting: it is easier to achieve a
uniform and well adequate level of illumination with an expensive illumination plant.
The objective functions related with the quality of the lighting are computed using
the rendering of a solution S performed by Blender, and measuring the illumination
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Fig. 1 Flowchart summarizing the proposed optimization model

on a set of samplers placed in the interior space. A solution S is, similarly to [10],
the coding for a set of lamps with their specifications and placement:

S=(Ly, Ly ..., LL), (1)
L={d{C,W},v,l,w,k). 2)

The genetic code of a solution S is an ordered set of lamp descriptions £, in which
d is a code identifying the type of commercial lamp, the second parameters specify
the type of placement: C for ceiling and W for wall. The vector v specifies the 3D
coordinates of the lamp placement, / is the intensity of the lamp in lumen, w its
electrical efficiency in lumen/watt, and k the color temperature in kelvin degrees.
The many possible combinations of parameters in a lamp description are restricted
to a feasible subset accordingly to a list of predefined lamp definitions. The lamp
code d specifies a real commercial light fixture, and the possible combinations of
intensity /, consumption w, color temperature k and type of placement are extracted
from the specification sheets provided by the manufacture.

We define P the ordered set of vectors p;, each of them made by N pixel values
measured on one of the M samplers in the scene:

P(S) = (p1(S), p2(S), - .. pu(S5)). 3)

The desired level of illumination in the environment is specified with the target
value #, and in each sampler the deviation from the target is averaged:

1 N
APS) =15 2 lp—il. peP©) . )

pep

The quality of the lighting solution S is evaluated with the following three objective
functions:
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1
NS = > d 5)
deAP(S)
2 (S) = max AP(S), 6)
1 _
G = |53 D D =D (7)
peP(S) pep

where 5 is the average value of the pixels in the sampler. The first two functions, in
Egs. (5) and (6), evaluate the compliance with the target level of light, respectively
in the average and in the worst case among the samplers. Function g3 in Eq. (7) is
an evaluation of the overall uniformity of lighting. Treating those three functions as
separate fitness in multi-objective optimization would be incorrect, because they are
not conflicting. It can be easily verified in the limit case of an individual S that illu-
minates all samplers exactly at target level £, we obtain ¢, (S) = ¢2(S) = ¢3(S) = 0.
Therefore, the fitness function for lighting quality is combined from the three objec-
tive functions:

a0 S) = wi”q1 (S) + w342 () + w3 (5. @®)
where wgq) + wéq) + wgq) =1.

The second group of objective functions to minimize are related to the cost of the
lighting solution, both in term of the initial cost for its realization, and the running
cost when the lights are switched on.

The realization cost is dominated by the electrical wiring, and its dependence on
the solution S is related to the placement of the lamps. We compute an estimate of
this dependency using an approximate solution of the rectilinear Steiner problem,
appropriate for the wiring pattern adopted in houses. The general Steiner problem
asks for a minimum spanning networks connecting a given set of points, allowing
for the introduction of new auxiliary points so that a spanning network of all the
points will be shorter than otherwise possible [26]. In a rectilinear Steiner tree only
horizontal or vertical line segments in a plane can connect the points [27], a situation
of great importance in VLSI design [28]. Note that an efficient minimum spanning
computation is out of the scope, for the purpose of evaluating the dependency of the
installation cost on the lighting solution a rough approximation is enough, therefore
we adopted a simple heuristic, called refined single-trunk tree [29]. In the “simple”
single-trunk tree it is assumed that there is a main trunk that goes horizontally or
vertically, and all points are connected with stems orthogonal to the trunk. In the
refined version, for each point it is checked if it is shorter to connect it to the trunk,
or to the nearest stem connecting another point to the trunk. If the latter holds, the
point is connected to this stem. The Fig. 2 shows the different structures resulting
from the two approaches in the computation of the single-trunk Steiner tree, from an
example of lighting configuration.

For simplicity’s sake, let v., = [x;, ;1T be the 2D position of the lamp £; € S
on the ceiling plane, and y, the coordinate of the trunk, supposed to run horizontally
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(a) (b)

Fig. 2 Difference between a simple single-trunk Steiner tree (a) and a refined single-trunk Steiner
tree (b), connecting all the lamps in a room

all across the room. As mentioned above, the exact computation of the optimal tree
is not the aim of this work, therefore all the lamps can be considered on the same
2D plane. The contribution of lamp L£; to the length of the approximate rectilinear
Steiner tree is the following:

vi —yo if v, closer to the trunk,
(L) = {x;i —x, ifvg, closer to the vertical stem connecting v, , )
yi —yn if vz, closer to the horizontal stem connecting v, .

The cost function derived by the electrical wiring is computed cumulating all stem
lengths:

1
()= 7= > e, (10)

LeS

where A is the area in m? of the interior environment to be lighted.

Energy consumption represents the second objective in the group of costs to
minimize, and is quantified as the overall power consumption of the lamps (measured
in Watt) divided by the volume of the room:

1
(8= Ce (11)

LeS

where C. is the amount of Watts consumed by the lamp £ of the individual S,
V the volume of the interior space in m*.
The fitness function related to costs is the weighted sum of the installation cost

and the energy consumption costs:

£ (S) = w%; (S) +wier (S), (12)
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where w'” + w{’ = 1.
Finally, the bi-dimensional fitness function used in the genetic algorithm is the

following:
£(S) = [Jj} gﬂ . (13)

3.2 Genetic Operations

At each step ¢ of evolution, there is a population G ) = {S;}, which elements are
individuals coding a lighting solution, as described in Eqs. (1) and (2). The population
size |G| = N is constant during the evolution. The initial population G’ is generated
randomly. Note that the number L of lamp descriptions in a single solution is not
fixed, but constrained: Lyyn < L < Lyax. The variation of the population is based
on two fundamental operations: crossover and mutation. Given two individuals:

Si=(c ), (14)
S =P, ....) (15)

we define as two-points crossover the following function:

X ((S1, 82)) =<

(1) 1 A2 (2) (1) (1

Vo S o PR S Y s SRR iy (16)
@) 2 pM) (¢)) 2 @)

(e, ...c? ). L ,...,£j+1,...,,cL<2))>,

where i and j are random integers such that 1 < i < j < min{L", L®}. Note that
X takes two solutions as input and returns two modified solutions. The operator can
guarantee consistent results thanks to the fact that the set of lamps in a solution
is ordered by their locations v in the interior space. This expedient implies that the
choice of i and j is tantamount to partitioning the room into simply-connected spaces.
Therefore the crossover is able to propagate the topological relationship in the parent
solutions through the new individuals.

The mutation function w operates on a single individual, and it is the composition
of two different levels of mutation. The upper level is that of the ordered set of lamp
descriptions, and it is mutated as following:

oy () = |5\ & ifr <0.5 an
TS ULLL) ifr =05
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where r, here and in all the following equations, is arandom number inrange [0 - - - 1],
and i is arandom integer in range [1 - - - L]. The lamp description £, 1 is a new lamp
generated randomly from the set of possible lamps. Mutation at the lower level, that
of single lamp description, is given by:

(d,{C, W}, v+ Av,l,w, k) ifr >m,
wr (L) = (d, {C, W}, v,T, w, k) ifr > m (18)

~

(dAC, W}, v, [, w, k) if r > m

where I is anew level of lighting, selected randomly from the possible light intensities
for the lamp of type d, similarly for k. The displacement Av of lamp positioning
is computed in a random direction from center v, with a random offset within a
neighborhood, decreased in the course of the evolution. The parameters 7, ; k) are
the mutation probabilities for, respectively, lamp position, lighting level, and color
temperature.

Crossover and mutation are applied to the solutions selected from the current
population G using the concept of crowded tournament selection, introduced in
Sect. 2.1. We compare two randomly selected individuals and keep one winner, tak-
ing care that each solution of G will never be selected for more than two different
couples. The comparison metrics requires first the partitioning of G into progres-
sively non-dominated Pareto fronts, and a related ranking r(S) of the solutions:

G=FUF--- (19)
r(S)=iifSeF. (20)

In addition, each solution has an associated crowding distance c¢(S), measuring how
crowded with other solutions is the neighborhood of the given solution. We skip the
details of this computation, which follows the conventional niche count metric [30].
By combining r(S) and ¢(S) we define a comparison operator <, indicating when a
solution S; wins a tournament with another solution S;:

r(S;) <r (Sj),

r(Si):r(Sj)Ac(Si)>c(Sj). @1

S,' < Sj if {
For the construction of the set M of mating couples, two random perturbations of
[1.-- N]are generated: [if” e i;vl)] and [ifz) e i,(vz)]. Each couple is made by two
winning solutions of the tournament:
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|

<arg min S ) S; (1)} arg m1n {S w, S, m} , >,
(22)
<arg min HS o, S, <z>] arg mln {S o, S, (2)} >

Equation (22) ensure that the two solutions in a couple are always different, and
that the same solution can appear in no more than two different couples. Note that
M| = X and the strategy in Eq. (22) requires that N is a multiple of 4. The operator
X 1s apphed on the couples of M with the crossover random probability, and on
both elements of the couple the operator w can be applied, with random mutation
probability. Let us express with the composite operator ¢ the generation of M from G,
followed by the application of crossover and mutation, and the flattening of the
couples into a set of new individual solutions, which will be of size N again.
One complete step of evolution can then be described as:

N
g(z+1) - L[ (g(t) U ¢(g(t))) (23)

where ]_[f is the reduction of a set its first N elements, ranked with the comparison
operator <. The size N of the population remains constant during evolution. When
t = ty, the final generation programmed for the evolution, a Pareto set 7 is available,
as the non-dominated set of solutions in G/,

In the presented problem of lighting optimization there are some conditions on
the design process to be satisfied, therefore a constraint handling method has to be
considered as well. The constrains in question concern positioning the lamps inside
the interior environment:

e alamp must be placed inside the room and in contact with the room surface;

e two lamps can not be placed in the same location;

e a lamp should be mounted on the walls or on the ceiling in accordance with its
model of light fixture;

e some areas of the room are not suitable for lamp placement.

The constraint specifications are provided to the system within the 3D model of the
environment itself. As stated in the beginning of Sect. 3, the walls and ceiling are
structured as a discrete grid of vertices, each representing a feasible position for a
lamp. With this approach, the set of constraints can be effortlessly reformulated for
different experiments, ensuring absolute flexibility in the design process.

Since the satisfaction of the above constraints is mandatory for the problem, they
can be referred as hard constraints. To handle them, we adopted a strategy based
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on preserving feasibility of solutions, where crossover and mutation operations are
designed to always produce feasible offspring from feasible individuals. By con-
struction, the mutation operator is only able to produce solutions that satisfy all the
constraints. Conversely, if the crossover generates an infeasible solution, the last one
is discarded and the operation is repeated with a different choice of crossover points.

3.3 Partitioning the Final Pareto Set

As in most multi-objective optimization problems, our lighting design system typi-
cally generates too many solutions in the final Pareto set, and selecting a single one
that best reflects the preferences of the architect can be a daunting task. A consid-
erable amount of research effort has been devoted to alleviate this inconvenience
in the general multi-objective case, with several proposed methods that reduce the
Pareto optimal set to a set of solutions that is attractive to the decision maker. A large
part of the proposed methods assumes that the preferences of the decision maker are
well known in advance, and can be expressed in mathematical terms and incorpo-
rated in the optimization algorithm [8, 9]. The situation of the architectural lighting
design is different. Although the objectives defined in our optimization problem cap-
ture important requirements of the design process, there are aesthetic and stylistic
components of the design process that elude mathematical formulations.

The great advantage of a tool like the one here proposed is for the architect
to drastically restrict the search space of solutions, and to concentrate his or her
creativity on a small number of simulated solutions. It is difficult to prescribe in
advance any preferred part of the Pareto front, in principle the entire front can offer
attractive solutions to the lighting designers, the choice is up to their expertise and
aesthetic disposition. For this reason we focused on methods commonly classified
as a posteriori [31], where the selection of a small subset of solutions is made on
the entire final approximate Pareto front, computed without the incorporation of
preferences from the decision maker.

First, we partitioned the set of solutions into a predefined number of clusters N,,
using the subtractive clustering algorithm [32, 33]. Let us define O the set of vectors
in the fitness space of the final solutions F:

O=1{f(S)|S e F} (24)

The vectors are normalized with all dimensions in range [0 - - - 1], we call O the set
of normalized vectors. For each solution a “potential” function ) is introduced, that
captures the neighborhood size of the solutions:

VO (0;) = Zew%”"”‘””, 0i € O. (25)

0O
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The superscript (0) is meant because Eq. (25) provides the initial values of the
potentials, which are updated recursively, each time identifying as a cluster center
the solution with the largest potential:

cp = arg mag( {v®(0)}, (26)
oe
%D (0,) = p® (0;) — ero7Ploi—l (e, 0 €O, 27)

Equation (26) computes the center of the k-th cluster, the recursive loop is terminated
when k = N,, the predefined number of clusters. The parameters r; in Eq. (25) and
ro in (27) act effectively as radii, influencing, respectively, the range of neighborhood
of a solution and the closeness of distinct cluster. Their values are computed as a
function of the number of desired clusters N,:

2

rr=—, (28)
Ne
2.5

ro = VC (29)

All solutions S in F are partitioned in the clusters according to the distance of the
vectors in fitness space to the cluster centers. Calling S® the solution in F that is
center of cluster k, corresponding to the normalized vector ¢, the partitioning is
done as following:

Q
. _p SN —
{S arg, max {1 - 1S 1}’ (30)

S : argkerﬂ%r]{”f(S)—f(é:(k))”}:Nc}>.

For each cluster, a central representative is picked, so that the final set of solutions
presented to the designer is very small.

4 Results

As discussed in Sect. 1, a satisfactory lighting quality is dependent on the visual
tasks that are to be performed in the interior space, and on specific requirements
of visual interest within the space. The translation of these user’s requirements in
the model is basically by means of the placement of samplers in the areas most
critical from the lighting point of view, and by imposing the target illumination level.
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All genetic parameters of the model have been tuned in a preliminary phase on simpler
and smaller rooms, and these settings did not required further tweaking in the case
studies eventually considered. The two case environments chosen for evaluating
empirically our lighting optimization algorithm, are complex architectural interiors,
with irregular and non-convex planimetries. The first case study is a reproduction of a
coffee shop, the dimensions of the environment are 14 x 10 x 2.8 m. The architecture
of this room is characterized by a narrow dining area leading to a wider space with
a lounge room and a bar counter. A total of 13 samplers have been used to evaluate
illumination levels, placed in key areas where light should create visual interest. The
genetic algorithm has been run with a population of 200 individuals, the final Pareto
front is shown in Fig. 3, where it is possible to appreciate how the solutions smoothly
span a large front of the two fitness. In the upper plot the complete population of
final solution is shown, together with the Pareto front. The lower plot contains the
partitioning of the final front in three clusters, and the solutions highlighted in red
are the best representatives of each cluster. The solutions in cluster 1 and 2 are the
solutions most qualified for, respectively, a lighting plan that privileges optimal cost
and energy, or one that gives more importance to the quality of illumination.

The plots in the left column of Fig. 4 shows the structure of the Steiner tree wiring
the lighting solutions, in (a) the solution with optimal light quality, in (c) that with
the lower cost. It can be seen that the overall wiring is shorter in (c) than in (a).
The plots in the right column of Fig. 4 are the isophotes computed in the room at a
surface 1.5 m above the floor, for the solution with best quality in (b), and that with
lowest costs in (d). The target level is well approximated in the solution (b), even
close to the internal walls. In the solution (d) the overall level is slightly below the
target, especially in the center of the shop, the uniformity is still acceptable, except
the lower side of the horizontal internal wall, an area difficult to light properly with
few lamps.

The Fig. 5 shows photorealistic renderings of the interior space from two different
points of view, (a) and (b) refer to the solution with optimal light quality, while
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Fig. 3 Final Pareto front of the optimization of the coffee shop case. In the upper plot there is
the complete populations at the end of the optimization, and the Pareto front. In the lower plot the
solutions are grouped in three clusters, and for each cluster the best representative is marked in red
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Fig. 4 Results of the optimization for the coffee shop case. Plots on the left are schemes of the
Steiner tree for the electrical wiring of the light fixture. Plots on the right are isophotes at 1.5 m
level, colors are coded with green the perfect matching of the desired target of illumination, and
hues towards yellow, orange, red, and purple, are progressive displacements from the target level.
Plots a and b refer to the solution with best quality, plots ¢ and d to that with lower costs. In all
plots the internal walls and pillars are shown

(c) and (d) refer to the solution with minimum cost. It can be seen that even this
solution, which saves 67% of the energy consumption of the previous solution, has
an acceptable level of lighting with fair uniformity.

The second case study is a reproduction of a hall in a shopping mall, with dimen-
sions of 12 x 11 x 4.0 m, composed of a central area connected to secondary small
shop. The main space contains a column with display stands and an area serving as
lounge room, while the secondary area for the small shop has a lower ceiling level
and contains several product racks and a counter with the cash register.

A total of 14 samples have been used, with a genetic population of 200 individuals.
As in the previous case study, there is a wide and smooth coverage of the Pareto front
in Fig. 6, although some solutions of this case study reached poor level of quality
fitness, compared to the previous case. This result can be explained by the brighter
shading of walls and floors in the mall environment (pale yellow and white) reflecting
more light than the deep red and beige color tones of the coffee shop, which requires
more intense light sources in order to reach the same perceived illumination level.
Moreover, the construction of the suboptimal Steiner tree is less straightforward than
in the coffee shop case, because it is not possible to set up a trunk exploiting symmetry
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Fig. 5 Rendering of two views inside the coffee shop, lighted with two different solutions, the
representative of the cluster with best quality in (a) and (b), and the representative of lower costs
in (¢) and (d)
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Fig. 6 Final Pareto front of the optimization of the shopping mall case. In the upper plot there is
the complete populations at the end of the optimization, and the Pareto front. In the lower plot the
solutions are grouped in three clusters, and for each cluster the best representative is marked in red

along the horizontal dimension, as visible in the left columns of Fig. 7. Nonetheless,
the visual results are rather satisfying, as shown in the photorealistic renderings of
two of the best representative solutions in Fig. 8, the first one preferring light quality
and uniformity, the second one considering optimal level of energy saving and costs.
The solution illustrated in (c) and (d), even though is clearly darker than the other, its
energy saving is as high as 66% with respect to the light configuration in (a) and (b).
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Fig. 7 Results of the optimization for the shopping mall case. Plots on the left are schemes of the
Steiner tree for the electrical wiring of the light fixture. Plots on the right are isophotes at 1.5 m
level, colors are coded with green the perfect matching of the desired target of illumination, and
hues towards yellow, orange, red, and purple, are progressive displacements from the target level.
Plots a and b refer to the solution with best quality, plots ¢ and d to that with lower costs. In all
plots the internal walls and pillars are shown

This case study demonstrates how the presented algorithm can be a suitable tool
to effectively design light configuration for a frequently changing environment, a
shopping mall, with minimum effort from the user.

5 Conclusions

In this paper we described a system for inverse design of interior lighting based on the
integration between the 3D computer graphic software Blender, a NSGA-II based
multi-objective genetic algorithm, and a post-selection of best solutions based on
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®_

Fig. 8 Rendering of two views inside the shopping mall, lighted with two different solutions, the
representative of the cluster with best quality in (a) and (b), and the representative of lower costs
in (¢) and (d)

cluster analysis. The system takes as input an arbitrary interior environment, includ-
ing realistic furniture and materials, with the description of the lighting requirements
in terms of desired average illumination, and placement of samplers in the key loca-
tions of the interior space. We grouped two conceptually different sets of objective
functions: on one side those contributing to the pleasantness of the lighting, and on
the other side those contributing to the expenses in the realization and the function-
ing of the lighting system. In the implementation here described, we chosen specific
objectives, common in the lighting design process: for the first group the compliance
with the target illumination level, the uniformity of light distribution in the interior
space; for the second group the overall length for electrical wiring, and the con-
sumption of electric power. The generality of our approach allows for easy addition
of other requirements, like, for example, a desired distribution of color spectra, of
glaring avoidance. The cases presented as results demonstrate the effectiveness of
the system in helping the process of interior lighting design.
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