
Computer Physics Communications 256 (2020) 107433

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

The Control Unit of the KM3NeT Data Acquisition System✩

S. Aiello 1, F. Ameli 2, M. Andre 3, G. Androulakis 4, M. Anghinolfi 5, G. Anton 6, M. Ardid 7,
J. Aublin 8, C. Bagatelas 4, G. Barbarino 9,10, B. Baret 8, S. Basegmez du Pree 11,
M. Bendahman 12, E. Berbee 11, A.M. van den Berg 13, V. Bertin 14, V. van Beveren 11,
S. Biagi 15, A. Biagioni 2, M. Bissinger 6, J. Boumaaza 12, S. Bourret 8, M. Bouta 16,
G. Bouvet 17, M. Bouwhuis 11, C. Bozza 18,∗, H. Brânzaş 19, M. Bruchner 6, R. Bruijn 11,20,
J. Brunner 14, E. Buis 21, R. Buompane 9,22, J. Busto 14, D. Calvo 23, A. Capone 24,2, S. Celli 24,2,49,
M. Chabab 25, N. Chau 8, S. Cherubini 15,26, V. Chiarella 27, T. Chiarusi 28,∗, M. Circella 29,
R. Cocimano 15, J.A.B. Coelho 8, A. Coleiro 23, M. Colomer Molla 8,23, S. Colonges 8,
R. Coniglione 15, P. Coyle 14, A. Creusot 8, G. Cuttone 15, A. D’Onofrio 9,22, R. Dallier 17,
M. De Palma 29,30, I. Di Palma 24,2, A.F. Díaz 31, D. Diego-Tortosa 7, C. Distefano 15,
A. Domi 5,14,32, R. Donà 28,33, C. Donzaud 8, D. Dornic 14, M. Dörr 34, M. Durocher 15,49,
T. Eberl 6, I. El Bojaddaini 16, H. Eljarrari 12, D. Elsaesser 34, A. Enzenhöfer 14, P. Fermani 24,2,
G. Ferrara 15,26, M.D. Filipović 35, A. Franco 29, L.A. Fusco 8, T. Gal 6, A. Garcia Soto 11,
F. Garufi 9,10, L. Gialanella 9,22, E. Giorgio 15, S.R. Gozzini 23, R. Gracia 6, K. Graf 6, D. Grasso 36,
T. Grégoire 8, G. Grella 18, D. Guderian 50, C. Guidi 5,32, S. Hallmann 6, H. Hamdaoui 12,
H. van Haren 37, A. Heijboer 11, A. Hekalo 34, J.J. Hernández-Rey 23, J. Hofestädt 6,
F. Huang 38, G. Illuminati 23, C.W. James 39, P. Jansweijer 11, M. de Jong 11, P. de Jong 11,20,
M. Kadler 34, P. Kalaczyński 40, O. Kalekin 6, U.F. Katz 6, N.R. Khan Chowdhury 23,
F. van der Knaap 21, E.N. Koffeman 11,20, P. Kooijman 20,51, A. Kouchner 8,41, V. Kulikovskiy 5,
R. Lahmann 6, G. Larosa 15, R. Le Breton 8, F. Leone 15,26, E. Leonora 1, G. Levi 28,33,
M. Lincetto 14, M. Lindsey Clark 8, A. Lonardo 2, F. Longhitano 1, D. Lopez-Coto 42,
G. Maggi 14, J. Mańczak 23, K. Mannheim 34, A. Margiotta 28,33, A. Marinelli 43,36, C. Markou 4,
G. Martignac 17, L. Martin 17, J.A. Martínez-Mora 7, A. Martini 27, F. Marzaioli 9,22,
S. Mazzou 25, R. Mele 9,10, K.W. Melis 11, P. Migliozzi 9, E. Migneco 15, P. Mijakowski 40,
L.S. Miranda 44, C.M. Mollo 9, M. Morganti 36,52, M. Moser 6, A. Moussa 16, R. Muller 11,
M. Musumeci 15, L. Nauta 11, S. Navas 42, C.A. Nicolau 2, C. Nielsen 8, B. Ó Fearraigh 11,20,
M. Organokov 38, A. Orlando 15, V. Panagopoulos 4, G. Papalashvili 45, R. Papaleo 15,
C. Pastore 29, G.E. Păvălaş 19, C. Pellegrino 33,53, M. Perrin-Terrin 14, P. Piattelli 15,
C. Pieterse 23, K. Pikounis 4, O. Pisanti 9,10, C. Poirè 7, G. Polydefki 4, V. Popa 19, M. Post 20,
T. Pradier 38, G. Pühlhofer 46, S. Pulvirenti 15, L. Quinn 14, F. Raffaelli 36, N. Randazzo 1,
A. Rapicavoli 26, S. Razzaque 44, D. Real 23, S. Reck 6, J. Reubelt 6, G. Riccobene 15,
M. Richer 38, L. Rigalleau 17, A. Rovelli 15, I. Salvadori 14, D.F.E. Samtleben 11,47,
A. Sánchez Losa 29, M. Sanguineti 5,32, A. Santangelo 46, D. Santonocito 15, P. Sapienza 15,
J. Schnabel 6, V. Sciacca 15, J. Seneca 11, I. Sgura 29, R. Shanidze 45, A. Sharma 43, F. Simeone 2,
A. Sinopoulou 4, B. Spisso 18,9, M. Spurio 28,33, D. Stavropoulos 4, J. Steijger 11,
S.M. Stellacci 18,9, B. Strandberg 11, D. Stransky 6, M. Taiuti 5,32, Y. Tayalati 12, E. Tenllado 42,
T. Thakore 23, S. Tingay 39, E. Tzamariudaki 4, D. Tzanetatos 4, V. Van Elewyck 8,41,

✩ The review of this paper was arranged by Prof. Z. Was.
∗ Corresponding authors.

E-mail addresses: cbozza@unisa.it (C. Bozza), tommaso.chiarusi@bo.infn.it (T. Chiarusi).

https://doi.org/10.1016/j.cpc.2020.107433
0010-4655/© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2020.107433
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107433&domain=pdf
mailto:cbozza@unisa.it
mailto:tommaso.chiarusi@bo.infn.it
https://doi.org/10.1016/j.cpc.2020.107433


2 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

G. Vannoye 5, F. Versari 28,33, S. Viola 15, D. Vivolo 9,10, G. de Wasseige 8, J. Wilms 48,
R. Wojaczyński 40, E. de Wolf 11,20, D. Zaborov 14,54, A. Zegarelli 24,2, J.D. Zornoza 23,
J. Zúñiga 23

1 INFN, Sezione di Catania, Via Santa Sofia 64, Catania, 95123, Italy
2 INFN, Sezione di Roma, Piazzale Aldo Moro 2, Roma, 00185, Italy
3 Universitat Politè,cnica de Catalunya, Laboratori d’Aplicacions Bioacústiques, Centre Tecnològic de Vilanova i la Geltrú, Avda. Rambla Exposició, s/n,
Vilanova i la Geltrú, 08800, Spain
4 NCSR Demokritos, Institute of Nuclear and Particle Physics, Ag. Paraskevi Attikis, Athens, 15310, Greece
5 INFN, Sezione di Genova, Via Dodecaneso 33, Genova, 16146, Italy
6 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany
7 Universitat Politècnica de València, Instituto de Investigación para la Gestión Integrada de las Zonas Costeras, C/ Paranimf, 1, Gandia, 46730, Spain
8 APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris, France
9 INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia ed. G, Napoli, 80126, Italy
10 Università di Napoli ‘‘Federico II’’, Dip. Scienze Fisiche ‘‘E. Pancini’’, Complesso Universitario di Monte S. Angelo, Via Cintia ed.
G, Napoli, 80126, Italy
11 Nikhef, National Institute for Subatomic Physics, PO Box 41882, Amsterdam, 1009 DB, Netherlands
12 University Mohammed V in Rabat, Faculty of Sciences, 4 av. Ibn Battouta, B.P. 1014, R.P. 10000 Rabat, Morocco
13 KVI-CART University of Groningen, Groningen, Netherlands
14 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
15 INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, Catania, 95123, Italy
16 University Mohammed I, Faculty of Sciences, BV Mohammed VI, B.P. 717, R.P. 60000 Oujda, Morocco
17 Subatech, IMT Atlantique, IN2P3-CNRS, Université de Nantes, 4 rue Alfred Kastler - La Chantrerie, Nantes, BP 20722 44307, France
18 Università di Salerno e INFN Gruppo Collegato di Salerno, Dipartimento di Fisica, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
19 ISS, Atomistilor 409, Măgurele, RO-077125, Romania
20 University of Amsterdam, Institute of Physics/IHEF, PO Box 94216, Amsterdam, 1090 GE, Netherlands
21 TNO, Technical Sciences, PO Box 155, Delft, 2600 AD, Netherlands
22 Università degli Studi della Campania "Luigi Vanvitelli", Dipartimento di Matematica e Fisica, viale Lincoln 5, Caserta, 81100, Italy
23 IFIC - Instituto de Física Corpuscular (CSIC - Universitat de València), c/Catedrático José, Beltrán, 2, 46980 Paterna, Valencia, Spain
24 Università La Sapienza, Dipartimento di Fisica, Piazzale Aldo Moro 2, Roma, 00185, Italy
25 Cadi Ayyad University, Physics Department, Faculty of Science Semlalia, Av. My Abdellah, P.O.B. 2390, Marrakech, 40000, Morocco
26 Università di Catania, Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, Catania, 95123, Italy
27 INFN, LNF, Via Enrico Fermi, 40, Frascati, 00044, Italy
28 INFN, Sezione di Bologna, v.le C. Berti-Pichat, 6/2, Bologna, 40127, Italy
29 INFN, Sezione di Bari, Via Amendola 173, Bari, 70126, Italy
30 University of Bari, Via Amendola 173, Bari, 70126, Italy
31 University of Granada, Department of Computer Architecture and Technology/CITIC, 18071 Granada, Spain
32 Università di Genova, Via Dodecaneso 33, Genova, 16146, Italy
33 Università di Bologna, Dipartimento di Fisica e Astronomia, v.le C. Berti-Pichat, 6/2, Bologna, 40127, Italy
34 University Würzburg, Emil-Fischer-Straße 31, Würzburg, 97074, Germany
35 Western Sydney University, School of Computing, Engineering and Mathematics, Locked Bag 1797, Penrith, NSW 2751, Australia
36 INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy
37 NIOZ (Royal Netherlands Institute for Sea Research) and Utrecht University, PO Box 59, Den Burg, Texel, 1790 AB, Netherlands
38 Université de Strasbourg, CNRS, IPHC, 23 rue du Loess, Strasbourg, 67037, France
39 Curtin University, Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
40 National Centre for Nuclear Research, 02-093 Warsaw, Poland
41 Institut Universitaire de France, 1 rue Descartes, Paris, 75005, France
42 University of Granada, Dpto. de Física Teórica y del Cosmos & C.A.F.P.E., 18071 Granada, Spain
43 Università di Pisa, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy
44 University of Johannesburg, Department Physics, PO Box 524 Auckland Park, 2006, South Africa
45 Tbilisi State University, Department of Physics, 3, Chavchavadze Ave., Tbilisi, 0179, Georgia
46 Eberhard Karls Universität Tübingen, Institut für Astronomie und Astrophysik, Sand 1, Tübingen, 72076, Germany
47 Leiden University, Leiden Institute of Physics, PO Box 9504, Leiden, 2300 RA, Netherlands
48 Friedrich-Alexander-Universität Erlangen-Nürnberg, Remeis Sternwarte, Sternwartstraße 7, 96049 Bamberg, Germany
49 Gran Sasso Science Institute, GSSI, Viale Francesco Crispi 7, L’Aquila, 67100, Italy
50 University of Münster, Institut für Kernphysik, Wilhelm-Klemm-Str. 9, Münster, 48149, Germany
51 Utrecht University, Department of Physics and Astronomy, PO Box 80000, Utrecht, 3508 TA, Netherlands
52 Accademia Navale di Livorno, Viale Italia 72, Livorno, 57100, Italy
53 INFN, CNAF, v.le C. Berti-Pichat, 6/2, Bologna, 40127, Italy
54 NRC "Kurchatov Institute", A.I. Alikhanov Institute for Theoretical and Experimental Physics, Bolshaya Cheremushkinskaya ulitsa
25, Moscow, 117218, Russia

a r t i c l e i n f o

Article history:
Received 21 October 2019
Received in revised form 20 May 2020
Accepted 31 May 2020
Available online 10 June 2020

Keywords:
KM3NeT
Data acquisition control
Neutrino detector
Astroparticle detector

a b s t r a c t

The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water
Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already
taking data while incremental construction progresses. Data Acquisition Control software is operating
off-shore detectors as well as testing and qualification stations for their components. The software,
named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisi-
tion running. Interplay with the central database of the Collaboration is obtained in a way that allows
for data taking even if Internet links fail. In order to simplify the management of computing resources
in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT
Control Unit software features a custom dynamic resource provisioning and failover technology, which
is especially important for ensuring continuity in case of rare transient events in multi-messenger



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 3

07.05.Hd
29.85.Ca

astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and
has been successfully tested on several operating systems.

© 2020 Published by Elsevier B.V.

1. Introduction

The KM3NeT neutrino detectors are complex objects [1] de-
signed for neutrino astrophysics [2] and the study of atmospheric
neutrino oscillations [3]. They are being built at the bottom of the
Mediterranean Sea in a phased installation scheme. The infras-
tructure will consist of three-dimensional arrays of photosensors
also called building blocks. Each building block will comprise
115 vertical instrumented detection lines (Detection Unit, DU)
equipped with 18 optical sensors (Digital Optical Module, DOM).
Each DOM [4] contains 31 photo-multiplier tubes (PMTs) that de-
tect the Cherenkov light induced by relativistic particles emerging
from neutrino interactions. The French site will host one such
building block (Oscillation Research with Cosmics in the Abyss
— ORCA) and the Italian site will host two building blocks (As-
troparticle Research with Cosmics in the Abyss — ARCA). In each
DOM, the data recorded by the PMTs are digitized and transferred
to the shore station by the Central Logic Board (CLB). The settings
and performance of PMTs need to be controlled and monitored.
The first DUs have been successfully deployed and operated in
the sea [5] after the positive outcomes of prototype DOM [6]
and DU [7] campaigns. The DOMs host also other instruments
devoted to monitoring and dynamic position reconstruction, as
the detector shape in water currents is constantly changing. In
particular, an acoustic positioning system is in place taking data
from hydrophones that listen to known emitters. At the base
of each DU there is a module that contains some instruments
and a CLB. The Trigger and Data Acquisition System (TriDAS) [8]
relies on a distributed and scalable architecture. The computing
processes that implement the TriDAS have a number of running
instances that may grow as needed, exceeding a few hundreds
on tens of servers in a single installation. Each detector can run
different tasks, with varying data taking strategies. The Control
Unit (CU), a suite of computer processes exposing distributed
services, has the task of directing all such hardware and software
components to work together. The Control Unit is also in charge
of collecting and storing logs of operations that are suitable both
for machine processing and human access.

In addition to the above stated needs, the qualification and
certification procedures for single PMTs, DOMs or whole DUs
require running one or more data acquisition tasks in controlled
environments and with multiple testing protocols [9] to ensure
that all devices operate within specifications. The software run-
ning in detector operation is also used for production and testing
of components. Test bench stations [10] actually work in a way
that is very similar to shore stations of detectors for physics data
taking.

KM3NeT searches for rare events – interactions both of pri-
mary cosmic neutrinos and of secondary neutrinos from cosmic
rays – that may occur at any time. Maximizing the detector
livetime is a key requirement to collect high statistics. Hence
the reliability of the Control Unit and the possibility to operate
continuously despite hardware or software failures have a direct
impact on the statistical significance of data taking results.

The detectors are designed to operate at least for 10 years in
the sea. The software makes use of widely adopted standards (see
ahead in the text) at its foundation, with a large development and
user base that should ensure support for a long time scale. All of
the custom code is completely under the control of the KM3NeT

Collaboration, whose software quality plan includes long-term
software preservation.

After an overview in Section 2 of the distributed architec-
ture, the present paper describes the various services it consists
of. Authentication and identification of users and services are
the functional backbone of the architecture and are described
in Section 3. Run control and overall supervision are described
in Section 4. Details about the representation of detectors and
operational parameters in the database are given in Section 5.
Interaction with the database is described in Section 6. Control
of detector devices and instruments is described in Section 7.
In Section 8 it is shown how the software components of the
data processing chain are controlled. Details of the networking
protocols and services are given in Section 9. Dynamic resource
provisioning and fault tolerance are described in Section 10. Con-
clusions are given in Section 11. For convenience, all acronyms
are listed in Appendix A. For the reader’s convenience, a short
summary of the concepts and structure of the data taking in
KM3NeT is given in Appendix B. A dedicated paper with extensive
discussion is in preparation, although an updated summary was
recently released in [8].

2. Software components

The Control Unit consists of five different services that can run
independently of each other:

1. Local Authentication Provider (LAP);
2. Master Control Program (MCP);
3. Database Interface (DBI);
4. Detector Manager (DM);
5. TriDAS Manager (TM).

The services can run on the same machine or on different
servers, in the case of installations with failover functions. All
programs are written in C#, as specified in the standards ECMA-
334:2003–2006, ISO/IEC 23270:2003–2006 and following. The
language was chosen because it has a large user base and good
support; it is actively developed and evolving; it generally pro-
duces efficient code; many libraries are available, although the
number of different external dependencies is kept small to avoid
future obsolescence. The executables are encoded in a machine-
independent language that is JIT-compiled by the Mono1 com-
piler and can then run on different operating systems such as
flavors of GNU/Linux2, Microsoft Windows3 and OS X. In the
KM3NeT context, the Control Unit is hosted by servers run-
ning CentOS 7. Development and maintenance of the code are
managed through GitLab for source code repository, continuous
integration and automatic testing. Deployment uses a toolset
based on Ansible4. Containerization has been technically tested
but is not needed so far because of the inherent portability of
Mono/.NET binaries.

All services have been developed to have a small footprint
in terms of CPU and memory usage. They may run in more

1 https://www.mono-project.com.
2 The distributions tested include Fedora 24, SLC6, CentOS 7, Debian 8

‘‘Jessie’’, Debian 9 ‘‘Stretch’’, LMDE 2, Linux Mint 19 and Ubuntu 16.04 LTS, but
there are no evident reasons for incompatibility on others.
3 Windows 7/2008 or higher, all desktop and server versions.
4 https://www.ansible.com.

https://www.mono-project.com
https://www.ansible.com


4 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 1. The Control Unit components and their relationships. White and black
arrows represent flows of control and monitoring information. Red arrows show
the flow of authentication/authorization information. The flow of PMT and
acoustic data from the detector to the TriDAS and hence to the final storage
is not shown.

than one process on different machines for failover purposes (see
Section 10) or to meet high demands in terms of workload. The
latter case is foreseen for DM controlling large detectors, e.g. the
full ARCA installation with a total such as 230 DUs.

Each service has a unique access point through HTTP.5 The
Graphical User Interface (GUI), when present, is offered as a
Web-like service. This allows using a Web browser to perform
most tasks and avoids adding software dependencies on graphi-
cal/interactive libraries. The GUI can be accessed by HTTP on VPN
(Virtual Private Network) from remote controllers that pass both
VPN authentication and CU authentication (see Section 3). For
highly critical management purposes and basic configuration, a
local console accessible only by administrators through terminal
is provided. The risk of misconfiguration is assessed to be higher
if coming from inexperienced users than from remote attackers,
because the only ways to harm the detector and the ability to take
data are power functions and system setup. Any other mistake
would be quickly solved by switching to the correct set of oper-
ational parameters. Fig. 1 shows the logical connections among
the services and with the detector and TriDAS components. In
addition to control and logging, the Control Unit is also the bridge
between the users, the central KM3NeT database [11], and the
off-shore detector and the online trigger system.

3. Authentication and identification — LAP

Access to detector control and management is given to users
on the basis of an authentication system, which is managed by the
Local Authentication Provider. The LAP uses accounts and session
tokens to manage identification and authentication. All accounts
are kept in an encrypted local file together with the security
credentials and privileges. When a login request is accepted for an
account, the corresponding privileges are copied to a new session
token that is then kept active until it expires or is deleted because
of an explicit logout. The LAP uses the logical scheme of account
management shown in Table 1.

5 Secure communication on SSL/TLS could also be supported, but in a local
private network of the KM3NeT ICT infrastructure this is overkill.

Table 1
Account types.

User account Local account The unique identifier, name and
password are created locally in the
detector/test bench control station
and are meaningless outside of it

Global account The unique identifier, name and
password are managed on the central
database of KM3NeT and are
periodically synchronized with a local
encrypted cache

Service account Defines a common name for a CU
service

Operating privileges are given to user and service accounts to
enable specific functions such as controlling the whole station
in terms of jobs (high level) or tuning single parameters (low
level). It is worth noticing that the function of a service depends
on its privileges rather than on its name. This allows flexibility
in the design: in the future, a single process may incorporate
more than one function and this would just need a change in
the registration on the LAP rather than statically hard-coding an
association between a name and a function.

A user can be granted privileges one by one or in well-defined
groups named roles. Because detectors take data 365 days a year,
24 h a day, the KM3NeT Collaboration follows a shift plan to share
the load of detector control. Each shift lasts seven days and a
shift team includes a Shifter and a Shift Leader, with the tasks of
monitoring the detector operation and checking data quality. The
Run Coordinator stays in charge for a longer timespan (usually
four-eight weeks), connecting the activity of each shift team to
the next and overseeing the optimization of the detector perfor-
mance. The role system is especially useful for shift management:
when a user is registered on the central database for a shift,
he/she gets automatically and for the corresponding time window
all the privileges that are defined in the Shifter/Shift Leader/Run
Coordinator role. They are all revoked when the shift ends. A
user that is registered as a DAQ Expert (Data AcQuisition expert,
usually among the lead developers of hardware or software com-
ponents) or Detector Operation Manager (responsible for detector
management, usually for several years) on the central database
automatically gets all the related privileges on all installations.
For example, shifters are supposed to operate the detectors using
predefined configurations, whereas experts are allowed to tune
single parameters for diagnostic and testing purposes.

While the concept of a user login is quite intuitive, a service
login deserves some explanation. The mere fact that a program is
installed and running on a server is not enough for it to be known
to the LAP (and hence to other CU services). When the program
logs in on the LAP it gets its own security token and becomes
known to all other CU services. This explicit login requirement
ensures that the hardware resource usage can be optimized and
services can be moved from one machine to another according
to the needs. This also makes the initial configuration easier,
because there is no need to handcraft a static configuration file.
The LAP itself maintains a local database of hardware resources as
an XML file. Administrators can build the configuration indirectly
by issuing incremental commands to the LAPs to register new
instances of services.

4. Run control — MCP

The Master Control Program is in charge of maintaining the
run status of the detector and TriDAS. The complete information
of the run status consists of the following pieces:



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 5

1. Current detector: a detector changes when DUs are added
or removed or for a failover reconfiguration (see
Section 10).

2. Current runsetup: the coherent set of input parameter val-
ues controlling the detector, such as PMT supply voltage,
and quantities to be read out for logging. See Sections 7
and 8 for more details.

3. Current run number: a run is a timespan during which a
detector is operated with the same runsetup; for practical
reasons a long run may be split in two or more with the
same runsetup to have smaller output datafiles.

4. Current target: the overall target of the CU can be one of
the following (notice that a target change does not imply a
run switch):

• Off: all PMTs are turned off, data taking is off, no
triggering or post-processing.

• On: all PMTs are on, data taking is off, no triggering
or post-processing.

• Run: all PMTs are on, data taking is active, triggering
and post-processing run.

5. Current time/position calibration: the set of adjusted po-
sitions and time offsets for individual PMTs that is being
used for online triggering.

6. Current job: a job is a run schedule with a priority grade.
A run may start with or without a predefined schedule be-
cause the MCP may be commanded to immediately switch
the run number. A job is an entry in a schedule specifying
that at some time a new run will start with a runsetup
that is defined in advance and that will last for a certain
timespan, unless preempted by higher priority jobs. One
job may correspond to one or more runs. Some examples
on job management are shown in Fig. 2: the baseline job is
usually defined to use a runsetup with tuned PMT voltages
and the detector in ‘‘On’’ state; jobs J1–J8 might be routine
data taking jobs with priority 1 and the detector in Run
state; job J9 might be a calibration run and job J10 might
be running a special data taking. Routine jobs J6 and J7 will
produce no runs because they will be overridden by J10. J3
will produce two runs because the MCP will start with it,
switch to J9 after J3 has started and then fall back to J3
again when J9 ends.

Jobs may be modified before they begin and they can be
truncated when they have started. The run status, run switch
history and job addition/deletion/modification history are kept
in a dedicated local file, which acts as a transaction log. Such
information is periodically pulled by the DBI to be recorded
in the central database.6 Only after the information has been
successfully written in the database, the file is purged. In addition,
all run switches are recorded to a human-readable log file, but
the syntax is such that, in case of loss or corruption of the run
status file, it is possible to reconstruct the latter from the former.
A file-based local storage is a better option than a local database
instance for several reasons:

• it is faster than a full-fledged database;
• it requires almost no expertise to manage;
• it requires no licensing costs;
• it avoids introducing additional dependencies on external

software components that may become obsolete or unsup-
ported.

6 Remotely hosted in the computing center CC-IN2P3 in Lyon — https:
//cc.in2p3.fr.

In standard operation, a detector may be required to run for
months with the same operating parameters. For this purpose, it
is possible to use the ‘‘auto-schedule’’ feature that automatically
fills a priority line with jobs of equal duration and a specified
runsetup and target. This frees shifters from error-prone repetitive
tasks.

Whenever the run state changes, the MCP notifies all the ser-
vices that are registered in the LAP with the Status_Notification_
Privilege) privilege, which usually means at least DM and TM.
This is a ‘‘push’’ type notification, aimed at fast communication.
Fault tolerance is ensured by the ‘‘pull’’ communication mode: the
DM and TM periodically update their knowledge of the run state
by retrieving such information from the MCP. A finite time will
elapse between the run switch by the MCP and the reaction in
the DM and TM. All of this is logged and it is possible to precisely
identify the run switch latency time in each case.

A run switch is also triggered by a system reconfiguration after
a fault (more detail in Section 10). It is worth pointing out that the
MCP alone is responsible for providing a unique pair of detector
and run number for each run. Different detectors in different
KM3NeT sites can use the same run number without clashes.

The MCP offers a Web-based GUI (Fig. 3) to perform all routine
tasks, with the exception of service configuration and disas-
ter recovery. The GUI enforces user privilege compliance: job
scheduling is not allowed to users that are neither on shift nor
DAQ Expert privilege owners. An additional security check layer
involving LAP queries is able to filter out possible HTTP forged
queries that may try to circumvent or bypass the GUI. In this
context, HTTPS would be possible but overkill because security
is focused on ensuring compliance, by users and automated pro-
cesses, to data taking procedures. All communications already
occur on a private network and users connect through a VPN.

5. Detector description and runsetups

5.1. Detectors

KM3NeT detectors are described and defined in the central
database. A detector always has a location and a start timestamp,
which is the first time it is connected and can provide signals.
The end timestamp is set on its final disconnection. The same
physical detector, located in the same place and reconnected,
would have a different detector identifier. From the point of
view of the CU, a detector is a list of previously integrated DUs
and TriDAS processes, namely Data Queues (DQs) to rearrange
data packets from single DOMs into events, Optical/Acoustic Data
Filters (ODFs/ADFs) to run triggering algorithms and Data Writers
(DWs) to write data to disk. In a basic implementation, TriDAS
processes are defined in the central database, the process map is
static and there can be no failover plan. In a more evolved view
that supports dynamic provisioning and failover, the set of TriDAS
processes might change during the lifetime of a detector and even
several times per day in case of failures or addition of computing
power. Nevertheless, from the point of view of MCP, DM and TM,
there is only one definition of a detector that is provided at a
certain time, and it always includes TriDAS processes.

5.2. Runsetups

PMTs need their operating high voltage (HV) to be fine-tuned
in order to provide uniform performance. The optimal value
might also change over time. Likewise, functions may need to
be enabled or disabled on certain DOMs, especially for testing
and calibration purposes. Runsetups define the input to each DOM
and the output for feedback, monitoring and data logging, and
all of them depend on the purpose each runsetup was defined

https://cc.in2p3.fr
https://cc.in2p3.fr


6 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 2. Example of job chart. See explanations in the text.

Fig. 3. Screenshot of the MCP graphical user interface (framed in blue), with several jobs scheduled at different priorities. Selected details, framed in red, are enlarged
to improve readability.

for (e.g. minimum data filtering, timing tuning, HV tuning, etc.).
Many runsetups differ only for some sets of parameters. Param-
eters with correlated meanings and purposes (e.g. PMT HVs,
threshold and activation state) coalesce into configuration groups.
Each runsetup is an ordered list of configuration groups, which are
picked at various levels as referring to a whole category of items,
subcategory or individual items.

6. Interaction with the database — DBI

The service named Database Interface (DBI) is devoted to han-
dling the interaction with the central database. Its main operating
principle is to work as a file buffer to replace SQL/DML interaction
of programs with the database as sketched in Fig. 4. The main
reasons to implement a DBI are:

• To avoid redundancy, database access credentials are stored
in a single place at CU installation time and encrypted for
safety.

• Decoupling CU code and database code/schema. SQL queries
and/or DML statements need not be written in any code
outside of the DBI itself. All the complications of handling

and converting database data types are handled by the DBI
and the client code is written in terms of CU data structures.
This allows for refactoring on either side, i.e. the necessary
evolution over time of both the CU and database will not
affect each other.

• Coping with remote connection instability. The connection
with the central database uses a Wide Area Network, which
is intrinsically unreliable. The DBI stores all the datasets
that are needed for CU operation in a local cache, speeding
up access and improving reliability. On the other hand, the
DBI buffers write operations and replays them if they fail
because the database is not accessible.

Information sets that have been downloaded from the
database are hosted in the download cache in XML format. As
shown in Fig. 4, they include:

• The current detector definition. It is downloaded only when
the detector definition changes, by authorized users.

• All runsetups written for the current detector (a one-to-
many relationship). The DBI regularly polls the database for
appearance of new runsetups, but on-demand access is tried



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 7

Fig. 4. Logic and network protocols involved in data download from the database. (a) Detector data flow. (b) Runsetup data flow. (c) Calibration data flow.

for runsetups required by the MCP/DM/TM that are not yet
in the cache.

• The current sets of calibration data. These data are continu-
ously polled for updated versions and immediately pushed
to the MCP and other services.

Runsetups are usually created by humans, so the time of their
creation is well separated from the time they are used. Calibra-
tion datasets are instead supposed to be updated regularly and
automatically to have optimal detector operation. As soon as a
new set is available and has been successfully downloaded, the
DBI notifies the MCP which decides when to switch the run and
broadcasts the signal to other services. In this sense, the DBI is an
active part in data taking.

The upload cache stores data queued to be written in the
database, usually flushed upon successful transfer. In this case,
binary files are expected in the native format generated by writer
programs. The DBI handles the needed conversions. At present,
the following types of data are hosted in the upload cache:

• DM datalogs that contain detector monitoring data and no-
tification of management events, such as the real time of
run start for each CLB, which is different from the time the
MCP issues the command to change the run number; see
Section 7 for more details.

• TM datalogs containing logs of TriDAS activity, documenting
actual starting–stop times of each run process-by-process,
possible crashes, etc.; see Section 8 for more details.

• Times-Of-Arrival (TOAs) of acoustic wave pulses found by
the ADF(s).

Run book-keeping information is ‘‘pulled’’ by the DBI querying
the MCP and written to the database without going through a
local cache. This reflects the fact that datalog and TOA tables in
the database have foreign keys to the table of runs: an error in
datalogs or TOAs remains confined to that dataset, but an error in
run book-keeping would have a cascade effect of errors on other
tables. The DBI will send a ‘‘purge’’ command to the MCP for runs
and jobs that have been successfully written. Datalogs and TOAs
for the runs and jobs that have been already communicated to the

database and staged in the upload cache are cleared for writing
to the database, whereas all other data therein are kept standing
by. Fig. 5 shows the different information flows.

When a datalog or TOA set write fails, it is not retried until
another write of datalog or TOA set succeeds. This copes with
the case of Wide Area Network failure: for a certain timespan
all writes fail, but each dataset is tried only once. As soon as the
database can be reached again, all queued writes are executed. If
a dataset cannot be written multiple times (usually the threshold
is set to 5), it is flagged as ‘‘failed’’ and must be reviewed by a
DAQ expert.

7. Detector management — DM

Detector subsystems work according to the state machine
depicted in Fig. 6. The three states ‘‘Idle’’ (corresponding to the
‘‘Off’’ target), ‘‘Ready’’ (corresponding to the ‘‘On’’ target) and
‘‘Running’’ (corresponding to the ‘‘Run’’ target) are stable, in the
sense that they are supposed to be kept throughout the duration
of a run job lasting several hours. The ‘‘Standby’’ and ‘‘Paused’’
states are transitional. The DM drives the state machine of each
CLB issuing events that are transported over the network. The
task of the Detector Manager is threefold:

1. setting the input parameters of DOMs as specified in the
current runsetup;

2. driving the state machines of the CLBs according to the
current target;

3. reading out and logging the output parameters of DOMs
producing the datalog files ready to be written to the
database by the DBI (see Section 6).

The DM is indeed the most critical component of the CU from
the point of view of scalability to the size of a 115-DU block and
beyond. It receives messages from all CLBs and sends messages
to all CLBs, so it is expected to have CPU and memory footprints
that are linearly dependent on the overall number of DOMs.

The DM is expected to receive all notifications from the MCP
when the run state changes. As mentioned above, even if the



8 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 5. Logic and network protocols involved in data upload to the database. (a) Datalog data flow. (b) TOA data flow. (c) Run and job book-keeping information
flow.

Fig. 6. The state machine for the data acquisition as implemented in both the
CU and the CLBs: the states are boxed, while the events are paired to the dashed
arrows that indicate the related state transitions.

‘‘push’’ mode misses a beat or a communication error occurs, the
DM regularly polls the MCP to know the run state. In fact, this
allows the DM to work even if the system is being reconfigured
while data acquisition goes on. Any run state change will be
logged so that it can be written to the database.

Every time the detector or the runsetup changes, the DM goes
through all DOMs to reconfigure them. This means working out
the full list of input parameters and their values and output
parameters. The list is customized to the level of a single PMT.
The DM communicates with the CLBs by means of the Simple
Retransmission Protocol (SRP — see Section 9.4), a UDP (User
Datagram Protocol)-based protocol. It includes functions to set up
and establish the link between the DM server and the CLBs. This is
useful both when the DM first starts up, when DUs are rebooted
or when a CLB needs to be restarted. One of the purposes of
the DM is monitoring the activity of the CLBs and regaining
control of those that may stop communicating, thus minimizing
the need for human interventions. SRP allows point-to-point mes-
sages from DM to the CLBs and back, broadcast messages and
subscription-based data transmission, so that the DM asks once
for the set of parameters to be monitored and receives regular
updates (1 Hz or 0.1 Hz) without the need for further polling.
Each CLB exposes the following subsystems:

• System (SYS)
• Network (NET)
• Optics (OPT, only for CLBs hosted in DOMs)
• Acoustics (ACS)
• Instrumentation (INS)
• Base (BSE, only for DU base modules)

Each subsystem is controlled independently of the others.
However, except during the short timespans of transitions, all
subsystems should be in the same state. The DM takes actions
when it receives a new CLB status report: it is compared to the
currently expected state and, only if they are not in agreement,
a new event is generated so the state machine moves to another
state. Parameter setting is only allowed in the Configure event
that connects the Standby state to the Ready state. Hence, any
change in parameters implies driving the CLB state machine to
the Standby state, setting the parameters and then putting the
state machine in the state that is consistent with the current
target. In doing so, also the run number is compared to the cor-
responding monitoring variable shown by the CLB. If they differ,
the DM directs the CLB to go through all the states needed, until
the CLB run number matches the current run number defined by
the MCP.

For testing and troubleshooting, the DM also provides a man-
ual mode that is reserved to users that hold the Detector Control
privilege (usually Run Coordinators and DAQ experts). The manual
mode can be activated on single CLBs and allows operators to
tweak every single parameter and to control the state machine
issuing events manually via a GUI. When the ‘‘automatic’’ control
mode is restored, the CLB goes back to normal operation, but
newly set input parameters are not restored until the next run
switch. The ability to control parameters manually is useful to
fix possibly critical conditions while a new runsetup is being
prepared and a new run is ready to start.

For DU base modules, it is also possible to use the GUI to toggle
the DU power. This function is reserved to holders of Detector
Control privilege. Some parameters can be tuned only through the
DM console command line, as they may cause severe damage to
the detector, such as overcurrent.

As shown in Fig. 7, the DM has one Control Thread to handle
a serial queue of external commands (mostly from the MCP,
but also from shifters and console commands by administrators).
There is one CLB Controller per CLB, but this does not have



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 9

Fig. 7. Sketch of the threading structure of the DM. The HTTP thread pool is not shown. The Control Thread sends messages to all CLB Controllers, which have no
thread of their own. Processing threads (two in the sketch) power the CLB Controllers by sharing the workload. SRP threads (three in the sketch) read the messages
found in two UDP socket buffers and convert them into events for CLB Controllers. Large arrows show the communication flow towards CLB Controllers. Small arrows
show the sharing of CLB control workload among processing threads.

its own thread: the usage of computing resources by the DM
has to be carefully controlled. Although it is a naturally multi-
threaded application, the usage of thread pools is limited to
the HTTP interface. The allocation of memory and threads for
SRP communications and for CLB action processing is statically
configured. It can be changed by explicitly setting configuration
parameters in the DM console, but it cannot change during a
run. The UDP receive-buffer size can be statically configured.
In case of oversubscription, i.e. when too many SRP messages
arrive, a fraction of them is automatically dropped. Monitoring
messages are grouped by type and source; in case of excess
load on the processing thread, subsampling occurs by dropping
a suitable fraction of messages. Such loss of information results
in a decrease of the average sampling frequency of the detector
monitoring. The DM provides counters to diagnose the commu-
nication and computing load, so that DAQ experts can adjust the
allocation of resources. As a reference, sampling a DU at 1 Hz
uses about 10% of one typical CPU core (Intel Xeon Silver 4116 at
2.1 GHz). This implies that about 12 cores should be enough for
the monitoring of a whole block of 115 DUs. It has been shown
that a single socket with 64 KiB receive-buffer can monitor at
least three DUs. The number of sockets can be tuned according to
the needs, allowing to scale to a full detector of multiple blocks.

The same program for DM is used in the various KM3NeT
environments of detector control, such as shore stations, qualifi-
cation test benches and development installations. In some cases,
specific actions that are normal in other contexts may carry high
risks because of peculiarities in earlier hardware components
(e.g. first DUs deployed, old DOMs, etc.). The DM has a stan-
dard blacklist of such actions (mostly related to power control
functions) that need to be individually allowed. An additional
module, called ‘‘Authorization Block’’, which is compiled to run
on a well-identified machine in a single geographic place, enables
those actions that are potentially dangerous. The Authorization
Block makes sure that an administrator has explicitly unlocked
all permitted functions. A DM without an Authorization Block or
with a locked one would filter all actions in the blacklist.

Two outputs are continuously generated by the DM: one is a
human-readable log and the other is a binary formatted datalog.
The latter is produced at regular intervals (usually 10 min) or
when it reaches a certain size (32 MiB in memory). It contains

a chunk of monitoring data ready for database insertion. Usually
it is written in the upload cache of the DBI (see Section 6).
Subsampled snapshots are exposed in the Virtual Directory (see
Section 9.3) that is available via the HTTP, mostly for GUI pur-
poses. An example of a screenshot of the GUI with live monitoring
data is shown in Fig. 8. In addition, other programs may read
them if needed.

8. TriDAS management — TM

The TriDAS is a set of programs developed in compliance
with the requirements of the KM3NeT data taking and processing
framework. In most scenarios there is at least one Dispatcher,
one or more Optoacoustic Data Queues, one or more Optical Data
Filters, one or more Acoustic Data Filters and one or more Data
Writers. All the programs need to be driven in a coordinated way,
consistently with the current operational target. They all feature
a state machine that is identical to the one implemented in the
CLBs. As a general guideline, normally all TriDAS components
should be in the same state as a generic CLB. Like in the case of the
DM, each TriDAS element has its own TriDAS Element Controller.
In practice, control and communication are so different for CLBs
and TriDAS programs that there are very few similarities in the
inner structure of DM and TM. The inner structure of TM is shown
in Fig. 9.

If a CLB suddenly stops responding, data taking by the remain-
ing ones goes on unperturbed. In the case of a crash of a TriDAS
program, bringing it quickly up again is important to minimize
data loss, depending on how critical is its task. A crashing ADF
is almost harmless if it comes back again within a few hours.
An ODF that suddenly disappears leads to a proportional loss
(1/NODFs) in detector livetime for the duration of the restart
procedure. An Optoacoustic Data Queue that crashes leads to
total data loss until it is up and running again. Of course, the
Data Writer is also crucial because data need to be saved. It
is worth mentioning that, counting all instances of the various
processes, we have witnessed so far stable operation beyond
30 years, crashes occurring only immediately and repeatably on
wrong configurations.



10 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 8. Graphical user interface of the DM for one DU and one DOM (superimposed). The screenshot is framed in blue. Live monitoring data obtained via HTTP are
shown. To improve readability of the screenshot, selected details are enlarged and framed in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 9. Sketch of the threading structure of the TM. The TM Control Thread receives commands from HTTP and from the console. The Control Thread powers the
Element Controllers while the Control Host interface ensures the I/O and the Heartbeat provides a clock.

While the DM communicates with the CLBs directly one by
one, TriDAS processes use the Control Host protocol7 to com-
municate through the Dispatcher. As a result, the TM receives a
time-ordered stream of messages from the TriDAS processes. This
has some implications on the control process:

• The Dispatcher must be identified, contacted and a perma-
nent TCP (Transmission Control Protocol) connection with
the TM has to be established.

• The Dispatcher cannot be used to start processes (although
it can be used to stop them).

7 Originally developed by R. Gurin and A. Maslennikov (CASPUR, 1995).

• While the stream is time-ordered, it is not time-aware, in
the sense that it does not produce timeouts like a point-to-
point connection does. As a result, a command that is not
answered will not automatically produce a timeout error.

A local agent (named TriDASManager Agent, or TM Agent)
communicates with the TM to receive the requests to start or
stop programs and uses the LAP to check that the requests are
authorized. The TriDASManager Agent has a security system for
credentials that is integrated with the CU. The internal TriDAS
Element Controllers have a few more states in their state machine
to handle the cases of a program that is starting up, but not
responsive yet, or shutting down. A ‘‘Heartbeat’’ is introduced to



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 11

measure time at a central level that is then broadcast to TriDAS
Element Controllers.

The TM is a very lightweight application, with a CPU workload
that is normally about 3 or 4% of a single core (Intel Xeon Silver
4116 at 2.1 GHz) and only ramps up a bit during run start. It also
provides datalogs to document starting and stopping times and
working conditions for each process.

9. Networking

The CU uses several protocols for communication. This is the
result of matching diverse needs and complying with existing
standards or practices.

9.1. HTTP-based access

All CU services use HTTP as a basic communication protocol.
Each CU service uses a lightweight Web-server library that allows
exposing an HTTP access. Notice that this is the opposite of what
Web-hosting normally means, i.e. hosting the application inside
a Web-server. In this case, the application has its own port and
its own Web-server dedicated to it. As a matter of fact, a service
that runs as a daemon needs a way to communicate with machine
administrators, and this often goes through TCP. Using an HTTP
interface allows reducing the needs for ports, because both the
administrative traffic and user access can go through HTTP.

When applicable, the HTTP server hosts conventional HTML
pages for a GUI. They are exposed in the /gui URL directory.
Common image formats, CSS style sheets, JavaScript source files
and AJAX are all supported.

9.2. SAWI remote calls

On top of the HTTP layer, the Server Application Web Inter-
face (SAWI) provides a lightweight implementation of remote
procedure call. SAWI exposes four virtual directories:

• /listmethods gets the list of callable methods;
• /call calls a method passing parameters;
• /callret gets the result of a long-running method call;
• /listcalls shows the list of calls and their completion

status.

Subpages of these virtual directories are supposed to be called
by programs and have no human-oriented formatting. The pages
provided by default at the virtual directories instead show the
available options: in practice, a skilled user can mimic remote
procedure calls and use the Web browser as a debugger.

SAWI allows both blocking calls and asynchronous calls. The
result of an asynchronous call is stored as a job object that is re-
membered for a set time (usually 10 min) after it ends. The caller
is expected to poll the /callret virtual directory for completion,
specifying the process ID and the ID of the call to get the result.
The process ID is provided by the server: in principle, a client
has to account for a server process to be restarted, so the call
ID is not enough alone to uniquely identify a client–server call. If
a server process ID changes, the client knows that the result of
the method call is lost and there is no ambiguity. SAWI provides
support only for simple datatypes (Bool, Int, Long, Double, String).
However, it transports exceptions from the callee to the caller
and distinguishes exceptions of the remote call protocol from
functional exceptions.

From the point of view of the developer, usage of SAWI is
very simple: the callee just has to flag the methods that have
to be exposed with the WSrvPage attribute. The C# method is
reflected at runtime and exposed over the network with the
same parameter names. The caller has to include aWSrvPageClient

object that declares the name and the type of parameters. The
first member of all CU calls is a token string that is checked
with the LAP to ensure that the caller has the right to call the
procedure. Before the call, the server and port have to be set. The
WSrvPageClient object can be used multiple times. Fig. 10 shows
an example screenshot of the /listmethods steering page for a
TriDASManager.

9.3. Virtual directory

Each CU service exposes a /mon directory that is meant to
contain real-time monitoring data on the service application.
They are organized in a virtual directory tree that does not corre-
spond to any file on disk. Leaves in the tree are elementary data,
i.e. JSON objects containing the data value and the time it was set.
Fig. 11 shows an example of Virtual Directory path to real-time
monitoring on the DM.

The implementation of the Virtual Directory structure contains
several details that are relevant for optimized performance:

• each time a new leaf in the tree is created, the server gets
a direct reference to that leaf, which can then be updated
without browsing the full path, which would waste CPU
power;

• HTTP clients are allowed to create shortcuts that gather
a client-defined set of variables in a single shot: subse-
quent calls to the shortcut can retrieve unlimited groups of
variables by direct access to their leaves;

• writers access direct references to the data leaves in the
tree, so they do not need to traverse and lock the tree
to repeatedly update values, avoiding mutual locking with
readers.

Virtual Directory data can be accessed both for the purpose of
creating GUI pages or to run monitoring scripts or applications.
Using web clients as well as ubiquitous executables such as
wget8 or cURL9 it is possible to write specific monitors.

9.4. Simple retransmission protocol

The UDP protocol on which the communication between DM
and CLBs is based is the SRP. It tags messages and tracks message
acknowledgments to allow re-transmission if needed. The DM
uses a light version of the SRP library, written in C#, supporting
the subset of the functions that are needed for routine duty.
Some diagnostic and debugging features would not be useful in
an automatic control context.

9.5. Control host interface

The Control Host library, which is used as the inter-process
communication protocol among the data triggering and process-
ing applications, is ported in C#. The Control Host protocol is
used by the TM to connect to the Dispatcher and read/write
messages to components of the TriDAS. Each message has a tag
and is dispatched to all clients that subscribed for that tag. Since
each client can subscribe both for specific tags and for its own
unique identifier, both broadcast and one-to-one communication
are possible. The Dispatcher collects all incoming messages and
enqueues them into serial pipelines. Unlike SAWI, which is a
connectionless protocol, the Control Host protocol is built for
high-speed data transfer but requires a persistent TCP connection.
A network error or a disconnection would be interpreted as the
client program closing and reported as such to subscribers.

8 https://www.gnu.org/software/wget.
9 https://curl.haxx.se.

https://www.gnu.org/software/wget
https://curl.haxx.se


12 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 10. SAWI steering page for method calls from a DM. Clicking on each link would show a new page where the arguments to the call can be filled and it can be
started. Clients using SAWI would jump directly to subpages, e.g. /call/CurrentRunsetup?token=aabbbccc (‘‘aabbbccc’’ is meant to be the security token).

Fig. 11. The KM3NeT detectors change their shape under the action of water currents. The orientation and acceleration of the DOMs are constantly monitored. The
example shows the Virtual Directory path to /mon/clb/outparams/ahrs_a/15/9/2 obtaining the vertical acceleration value of the 9th DOM of the 15th DU.

10. Dynamic resource provisioning, failover and risk analysis

KM3NeT detectors are expected to operate for at least 10
years. During such timespan, TriDAS servers will be added and
upgraded. Some servers will fail and will be replaced with newer
ones. Adding, removing and replacing machines should be made
easy to help system administrators, who may also change. The
importance of maximizing the livetime of the detector has al-
ready been emphasized. It is worth noting that it is not only a
matter of high percentages of integrated active time, but that
even a few consecutive hours of downtime would prevent the ob-
servation of rare astrophysical transient events such as supernova
neutrino bursts. In this respect, whenever the detector and shore
station have enough resources to run, they should be running,
even if not at 100% performance level. This is even more relevant
if all powerful servers, which should host ODFs, are in service and
just a CU machine has failed. For example, if the machine that
hosts the TM fails, the acquisition does not even start, while all
the real computing power is there just waiting for a command.
A failure analysis has been performed to review the impacts
of different failures and assess the corresponding service losses.
Conservatively, the mean time between failures of hardware can
be estimated to be of the order of five years, but services may be
down because of software upgrades, which happens several times
in a year and is largely the most common cause of temporary
operation interruption, although for short time intervals, of the
order of 10 min. The analysis is not limited to the CU but also
includes the parts of the TriDAS that directly depend on the CU
and considers failures caused by one or two concurrent events.

As shown in Table 2, disentangling different functions and
putting them in different programs has already a positive impact
on data taking stability, because the first five rows have low or
medium severity. Indeed, it is common to upgrade the system

during an ongoing run, shutting down services and restarting
them one by one. Nevertheless, there are still other high severity
scenarios due to multiple failures at the same time. A redundancy
in all CU program instances can be introduced by having the same
CU service running in multiple machines. This can be obtained
with the ‘‘Dynamic Resource Provisioning and Failover’’ mode:

• The list of machines and services is not defined in the
database but it is maintained by the LAP, and continuously
logged to the database. This is a natural extension of the
basic LAP function of recording users and services.

• For each CU service there are at least two installations, but
only one is running while the others are kept in standing by.

• When running in Dynamic Resource Provisioning mode, ev-
ery CU machine runs a LAP that hosts a Health Checker
sub-service to perform basic tests. If a Health Checker de-
termines that tests are not passed, it causes the automatic
shutdown of the services that are locally hosted: one must
avoid that there are conflicting managers, for example two
DMs at the same time, one connected to the MCP and the
other disconnected.

• LAPs poll the Health Checker service to get the status of
the machine. A Health Checker answers the status polls that
are issued regularly (e.g. 0.1 Hz) in normal conditions. If a
machine crashes or fails, its Health Checker does not answer.
If the Health Checker answers that the tests are not passed,
the machine is not considered suitable to work as if it were
failed. The Health Checker itself may fail, but given the fact
that the code it runs is very simple, it can be assumed that
there is a good (hardware) reason for its failure rather than
a software problem.

• LAPs may reallocate CU services. When they decide to do
so, they direct the MCP to switch to another run and the



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 13

Table 2
Single-condition and double-condition failure schemes.
First condition Second condition Loss of service Impact on data loss

LAP down N/A GUI inaccessible LOW
MCP down N/A Current run does not end LOW
DBI down N/A Datalog + TOA upload pause LOW
DM down N/A Missing datalogs MEDIUM
TM down N/A None LOW
DM down Run switch Data loss (run number lag), missing datalogs HIGH
TM down Run switch Data loss (run number not set), missing datalogs HIGH
OADQ server down N/A Partial data loss HIGH
OADQ server down Only available server Total data loss HIGH
ODF server down N/A Partial or total data loss HIGH
ODF server down Only available server Total data loss HIGH
ADF server down Only available server Total data loss HIGH

Fig. 12. Two configurations of the CU software stack. Left: minimal installation as used in testing stations without fault tolerance. Right: single fault-tolerant
installation, as should be used in shore stations. Grayed areas show the services that are installed but kept standing by waiting to take over in case of failures.

(new) DM and (new) TM to reshape the detector definition
and start a new one.

• LAPs may reallocate TriDAS computing power. When they
decide to do so, they direct the MCP to switch to another
run and the DM and TM to reshape the detector definition
and start a new one.

• There is no central authority among LAPs. They synchronize
their status continuously and services that must exist in
single instances are automatically assigned to the available
machine with the lowest IP address. Agreement is therefore
not imposed by an authority that may itself run on a failed
machine, but relies on algorithmic consistency.

In this approach, also TriDAS resources are recorded and man-
aged in LAPs, which become a redundant set of local resource
managers. The detector definition that MCPs, DMs and TMs get is
the current one, i.e. one of all the configurations that are possible
with the available resources. In logical compliance to this, at run
start, the DM and TM record in datalogs the definition of detector
that they are using for that run. A detector change always triggers
a run change. Figs. 12 and 13 show the full CU stack in various
configurations.

The number of Data Queues and Optical Data Filters may
change with different processing configurations if computing ma-
chines fail. However, it is considered better to run with reduced
resources than not running at all. Conversely, in this scenario the
addition or replacement of a server is done by just registering
the machine change on one of the LAP. It will then propagate the
information to others and a detector change will soon allow the
newly acquired computing power to enter data taking. Switching
from one configuration to another should take place in less than
10 s, which is compatible with the duration of most astrophysical
transient phenomena.

11. Summary and conclusions

The Control Unit of the KM3NeT data acquisition is a system
built of several components that work together with the common
goals of maximizing the live-time and data quality of the operated
detectors, both in the deep sea as well as in component test-
ing/qualification stations. Modularity helps achieving the target
of reliability, because several parts of the Control Unit are able
to continue their activity despite the temporary unavailability of
others. The architecture used, based on the HTTP protocol for in-
terprocess communications, ensures maximum openness of data
and algorithms. Graphical user interfaces are provided through
common Web technologies. It is possible to access the inner
status of Control Unit programs by means of any Web browser.
Scalability is guaranteed by performance optimization and careful
design choices. Tests indicate that a single common server with
32 cores and 32 GB RAM can control a full detector made of two
building blocks, with a total of 230 Detection Units. Although the
Control Unit continuously reads and writes data to the remote
authoritative database of KM3NeT, possible Internet downtimes
are handled without interrupting the detector operations thanks
to a dedicated caching system. As the Control Unit is usually
accessed through private networks, safety practices are mostly
focussed on avoiding mistakes that might affect data quality or
detector functionality. In order to achieve that, the Control Unit
implements a complete system of privileges for specific operator
categories, integrated with the central database. To simplify the
administration of the DAQ system and enhance fault tolerance,
a Dynamic Resource Provisioning and Failover technology has
been developed. It enables the Control Unit to cope even with
hardware failures of the hosting servers: all the software services
of either the Control Unit and the Trigger and Data Acquisition
System can be automatically restarted on different machines,



14 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

Fig. 13. Double fault-tolerant installation: up to two machines may fail at the same time without stopping acquisition, triggering and storage.

exploiting all the available computing resources coherently to
the prefixed redundancy plan. The Control Unit is currently in
service in more than ten sites, including the two shore stations for
the ARCA and ORCA KM3NeT detectors in the Mediterranean Sea
and various integration and testing stations. The project benefits
of the increasing experience on the detector operations and on
the continuous feedback from the users. This strategy allows for
increasing the operational reliability of the Control Unit and pro-
vides with widespread knowledge for the lifetime of the KM3NeT
scientific program.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors acknowledge the financial support of the fund-
ing agencies: Agence Nationale de la Recherche, France (con-
tract ANR-15-CE31-0020), Centre National de la Recherche Sci-
entifique (CNRS), France, Commission Européenne (FEDER fund
and Marie Curie Program), Institut Universitaire de France (IUF),
France, IdEx program and UnivEarthS Labex program at Sorbonne
Paris Cité, France (ANR-10-LABX-0023 and ANR-11-IDEX-0005-
02), Paris Île-de-France Region, France; Shota Rustaveli National
Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia;
Deutsche Forschungsgemeinschaft (DFG), Germany; The General
Secretariat of Research and Technology (GSRT), Greece; Istituto
Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR), PRIN 2017 program (Grant
NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Sci-
entific Research and Professional Training, Morocco; Nederlandse
organisatie voor Wetenschappelijk Onderzoek (NWO), the Nether-
lands; The National Science Centre, Poland (2015/18/E/ST2/
00758); National Authority for Scientific Research (ANCS), Ro-
mania; Ministerio de Ciencia, Innovación, Investigación y Uni-
versidades (MCIU), Spain: Programa Estatal de Generación de
Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-
C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and Mul-
tiDark Consolider (MCIU), Spain, Junta de Andalucía, Spain (ref.
SOMM17/6104/UGR), Generalitat Valenciana, Spain: Grisolía (ref.
GRISOLIA/2018/119) and GenT, Spain (ref. CIDEGENT/2018/034)
programs, La Caixa Foundation, Spain (ref. LCF/BQ/IN17/
11620019), EU: MSC program (ref. 713673), Spain.

Appendix A

Acronym Meaning

ADF Acoustic Data Filter
AJAX Asynchronous JavaScript and XML
CLB Central Logic Board
CSS Cascading Style Sheets
CU Control Unit
CPU Central Processing Unit
DAQ Data Acquisition
DBI Data Base Interface
DM Detector Manager
DML Data Management Language
DOM Digital Optical Module
DQ Data Queue
DU Detection Unit
DW Data Writer
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol — Secure
JIT Just in time
JSON JavaScript Object Notation
LAP Local Authentication Provider
MCP Master Control Program
ODF Optical Data Filter
PMT Photomultiplier Tube
SQL Structured Query Language
SRP Simple Retransmission Protocol
TCP Transmission Control Protocol
TOA Time of arrival
TM TriDAS Manager
TriDAS Trigger and Data Acquisition System
UDP User Datagram Protocol
URL Uniform Resource Locator
VPN Virtual Private Network
XML Extensible Markup Language

Appendix B

The data acquisition of the KM3NeT neutrino telescopes is de-
signed to be modular and scalable with the detector size. The ac-
quired data are not filtered by any hardware trigger implemented
in the underwater detector, but are all sent to shore, demanding
the data reduction to an online selection performed by a pool of



S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433 15

Fig. 14. Scheme of KM3NeT data acquisition. The network connections, data flows and computing facilities are sketched.

processes on a dedicated computing facility. This technique is also
referred to as streaming readout approach. DOMs and computing
resources on-shore are interconnected via a multi-LAN Ethernet-
based network. The bandwidth requisite ranges from 1 Gbps up
to 40 Gbps, according to the aggregation level of data. It starts
from individual DOM interconnections to shore, up to the large
throughput data-links between the shore station servers, when
it is needed to route big data snapshots of information from
the entire detector. The LAN that includes the DOMs and the
front-end switches in the shore station is a synchronous Ethernet
network. It uses a custom implementation of the White Rabbit
protocol [12] to synchronize the off-shore detector with respect
to a GPS reference on-shore. Each DOM handles different data
streams. A sketch of the DAQ concepts is shown in Fig. 14.

Physics data streams, both optical and acoustic, are uni-
directional streams from the DOMs to shore. They are called Fast
Acquisition Data (FAD), and are made of continuous trains of UDP
packets. The data collected by a DOM during any subsequent
interval of time (called time-slice), 100 ms long, is called a
frame. On shore, the first level of aggregation is done by the
DQ processes. Each DQ manages the optical and acoustic data
streams from an optimal number of DOMs (constrained by a
trade-off between CPU and network bounds) reconstructing the
various frames from the incoming datagrams. The next level
of aggregation of optical data is done by the ODF processes.
A single ODF receives, from all DQs, only the optical frames
corresponding to a same time-slice, creating a super-frame, and
then applies the trigger algorithms to it. Data corresponding to
different time-slices are routed to different ODFs. The number
of ODFs principally depends on the time needed for processing
the super-frames, which has a non-linear connection to the size
of the detector. Each ODF asynchronously processes the assigned
snapshot of information, finds the candidates of particle tracks
and sends the selected data to an unique DW process. The
transmission between the ODFs and the DW is mediated by the

Dispatcher process, based on the Control-Host protocol. The DW
writes the received data into files to disk, on a local storage. Such
recorded files are nightly transferred to the persistent storage
repository in the CNAF and CC-Lyon data centers. As well as for
the optical ones, the acoustic frames are routed from the DQs to
a pool of ADFs. Each ADF handles separately the acoustic stream
from each DOM. The number of ADFs linearly depends on the
number of DOMs. Each ADF converts the beacon waveforms sam-
pled by the served DOMs into time-of-arrival TOA information,
which is stored on disk and off-line transferred to the central
DB. The pool of DQs, ODFs, ADFs and DW constitutes the Trigger
and Data Acquisition System, TriDAS, whose correct functioning
is controlled via a monitoring system published through web
services. While DOM optical and acoustic streaming as well as
TriDAS processing are enabled on a run basis, for arbitrarily long
duration data taking sessions, other DOM data-streams, like the
slow control messaging and instruments monitoring are always
available. The CU lays in between the detector and the on-shore
resources, orchestrates the runs and provides useful data logs to
the central DB.

References

[1] S. Adrián-Martínez, et al., (KM3NeT Collaboration), J. Phys. G 43 (2016)
1–131, http://dx.doi.org/10.1088/0954-3899/43/8/084001.

[2] S. Aiello, et al., (KM3NeT Collaboration), Astropart. Phys. 111 (2019)
100–110, http://dx.doi.org/10.1016/j.astropartphys.2019.04.002.

[3] S. Adrián-Martínez, et al., (KM3NeT Collaboration), J. High Energy Phys. 5
(2017) 1–39, http://dx.doi.org/10.1007/JHEP05(2017)008.

[4] R. Bruijn, (for the KM3NeT Collaboration), EPJ Web Conf. 207 https://doi.
org/10.1051/epjconf/201920706002.

[5] M. Ageron, et al., (KM3NeT Collaboration), Eur. Phys. J. C 80 (2020) 99.
[6] S. Adrián-Martínez, et al., (KM3NeT Collaboration), Eur. Phys. J. C 74 (2014)

1–8, http://dx.doi.org/10.1140/epjc/s10052-014-3056-3.
[7] S. Adrián-Martínez, et al., (KM3NeT Collaboration), Eur. Phys. J. C 76 (2016)

54–65, http://dx.doi.org/10.1140/epjc/s10052-015-3868-9.
[8] R. Bruijn, (for the KM3NeT Collaboration), EPJ Web Conf. 207 https://doi.

org/10.1051/epjconf/201920706007.

http://dx.doi.org/10.1088/0954-3899/43/8/084001
http://dx.doi.org/10.1016/j.astropartphys.2019.04.002
http://dx.doi.org/10.1007/JHEP05(2017)008
https://doi.org/10.1051/epjconf/201920706002
https://doi.org/10.1051/epjconf/201920706002
https://doi.org/10.1051/epjconf/201920706002
http://refhub.elsevier.com/S0010-4655(20)30190-9/sb5
http://dx.doi.org/10.1140/epjc/s10052-014-3056-3
http://dx.doi.org/10.1140/epjc/s10052-015-3868-9
https://doi.org/10.1051/epjconf/201920706007
https://doi.org/10.1051/epjconf/201920706007
https://doi.org/10.1051/epjconf/201920706007


16 S. Aiello, F. Ameli, M. Andre et al. / Computer Physics Communications 256 (2020) 107433

[9] S. Aiello, et al., (KM3NeT Collaboration), J. Inst. 13 (2018) P05035, http:
//dx.doi.org/10.1088/1748-0221/13/05/P05035.

[10] C.M. Mollo, et al., J. Inst. 11 (2016) T08002, http://dx.doi.org/10.1088/1748-
0221/11/08/T08002.

[11] A. Albert, C. Bozza, EPJ Web Conf. 116 (2016) http://dx.doi.org/10.1051/
epjconf/201611607004.

[12] T. Chiarusi, E. Giorgio, EPJ Web Conf. 207 (2019) http://dx.doi.org/10.1051/
epjconf/201920706009.

http://dx.doi.org/10.1088/1748-0221/13/05/P05035
http://dx.doi.org/10.1088/1748-0221/13/05/P05035
http://dx.doi.org/10.1088/1748-0221/13/05/P05035
http://dx.doi.org/10.1088/1748-0221/11/08/T08002
http://dx.doi.org/10.1088/1748-0221/11/08/T08002
http://dx.doi.org/10.1088/1748-0221/11/08/T08002
http://dx.doi.org/10.1051/epjconf/201611607004
http://dx.doi.org/10.1051/epjconf/201611607004
http://dx.doi.org/10.1051/epjconf/201611607004
http://dx.doi.org/10.1051/epjconf/201920706009
http://dx.doi.org/10.1051/epjconf/201920706009
http://dx.doi.org/10.1051/epjconf/201920706009

	The Control Unit of the KM3NeT Data Acquisition System
	Introduction
	Software components
	Authentication and identification — LAP
	Run control — MCP
	Detector description and runsetups 
	Detectors
	Runsetups 

	Interaction with the database — DBI
	Detector management — DM
	TriDAS management — TM
	Networking
	HTTP-based access
	SAWI remote calls
	Virtual directory
	Simple retransmission protocol
	Control host interface

	Dynamic resource provisioning, failover and risk analysis
	Summary and conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A
	Appendix B
	References


