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Abstract. We consider a nonlocal equation driven by the fractional p-Laplacian (−∆)sp with
s ∈ ]0, 1[ and p > 2 (degenerate case), with a bounded reaction f and Dirichlet type conditions in
a smooth domain Ω. By means of barriers, a nonlocal superposition principle, and the comparison
principle, we prove that any weak solution u of such equation exhibits a weighted Hölder regularity
up to the boundary, that is, u/dsΩ ∈ Cα(Ω) for some α ∈ ]0, 1[, dΩ being the distance from the
boundary.

1. Introduction and main result

This paper is devoted to the study of some fine boundary regularity properties of the weak solution
to the following problem:

(1.1)

{
(−∆)sp u = f in Ω

u = 0 in Ωc.

Here, and throughout the paper, Ω ⊂ RN (N > 1) is a bounded domain with a C1,1 boundary
∂Ω, Ωc = RN \ Ω, s ∈ ]0, 1[, p ∈ ]1,∞[ are real numbers, and f ∈ L∞(Ω). The leading operator is
the s-fractional p-Laplacian, defined as the gradient of the energy

J(u) =
1

p

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

in the space
W s,p

0 (Ω) =
{
u ∈ Lp(RN ) : J(u) <∞, u = 0 in Ωc

}
.

When restricted to conveniently smooth u’s, such operator can be rephrased pointwisely as

(−∆)sp u(x) = 2 lim
ε→0+

∫
Bcε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy,

i.e., as a singular integral operator of fractional order s and summability power p, which for p = 2
reduces to the Dirichlet fractional Laplacian (−∆)s (up to a multiplicative constant). For a deep
discussion on various notions (weak, viscous and strong) of solutions to (1.1), see [19]. A useful
comparison principle for (−∆)sp has been proved in [24], a Hopf’s lemma in [5] and some strong
comparison principles in [18], while its spectral properties are studied in [9, 17,24].

The interior regularity theory for problem (1.1) is well developed. The linear case p = 2 is quite
classical and Schauder estimates are available in the form f ∈ Cα ⇒ u ∈ C2s+α whenever 2s+ α
is not an integer (see [28]). In the general case p 6= 2 the situation is more involved. The first
results are [6,7], dealing with local regularity and Harnack inequalities when f = 0 in (1.1). In
the inhomogeneous case [3, 14,15,21,23] contain local Hölder regularity estimates under various
integrability assumptions on f , however the dependance of the Hölder exponent is not specified
and not optimal. The papers [1,30] deal with the degenerate case p > 2 and show higher fractional
differentiability of u when fractional differentiability of the forcing term is assumed. In [26] higher
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fractional differentiability is obtained for any p > 1 under summability assumptions on f . Finally,
still in the case p > 2, the optimal Hölder exponent for the solution of (1.1) is obtained in [2],

giving e.g. u ∈ Cp
′s

loc (Ω) when f ∈ L∞(Ω) and p′s < 1.

The boundary regularity for problem (1.1) is more delicate. As a comparison, consider its local
counterpart

(1.2)

{
−∆pu = f in Ω

u = 0 on ∂Ω,

(formally obtained by letting s→ 1− in (1.1)). It is well known that, for example, u ∈ C1,α
loc (Ω)

whenever f is bounded, and nothing more can be expected, regardless of the smoothness of f . This
regularity can easily be extended up to the boundary, as follows. One straightens the boundary
near x0 ∈ ∂Ω and consider the odd reflection of the resulting u: as it turns out, it solves a similar
equation in a larger domain containing x0 in its interior, therefore satisfying the previous local
regularity estimates. The odd reflection trick then shows that in general the interior and boundary
regularity for (1.2) coincide. Boundary regularity for a wider class of nonlinear local operators is
proved in [22].

This is no longer true for the fractional problem (1.1). For instance, the function u(x) = (1−|x|2)s+
solves (1.1) for Ω = B1, p = 2 and f = const. in Ω. Its interior regularity is C∞ (as the Schauder
theory a priori forces for C∞ right-hand sides), but its boundary regularity is only Cs. Thus,
we see that there is no obvious way to reproduce the odd reflection trick to deduce boundary
regularity for (1.1), since actually boundary and interior regularity are quantitatively different.

The first result dealing with the boundary regularity for problem (1.1) is contained in [28] for
p = 2, where it is proved that u ∈ Cs(RN ) whenever the non-homogeneous term is bounded. In
the nonlinear case, [14, 15] contain a global Hölder continuity result, with an unspecified Hölder
exponent (see also [20] for a refinement and generalisation when f = 0). Coupling the barrier
argument contained in [14] with the optimal interior regularity of [2] provides the optimal regularity
u ∈ Cs(RN ) when p > 2. Notice that the construction of the barrier in [14] only requires that ∂Ω
is Lipschitz continuous and satisfies the exterior ball condition, matching the probably minimal
regularity of the boundary assumed in [28] in the linear case. The same is expected to be true
in the case p ∈ ]1, 2[, but the optimal (or, at least Cs) interior regularity in this framework is
missing.

Still, even in the linear case, there is much more to be said. Despite the optimal regularity
u ∈ Cs(Ω) rules out in general the existence of the classical normal derivative, in the seminal
paper [28] a regularity result for the s-normal derivative

∂u

∂νs
(x0) := lim

t→0+

u(x0 + tνx0)

ts
,

where νx0 denotes the inner normal to ∂Ω at x0 ∈ ∂Ω. More precisely, they proved that, if when
p = 2 and ∂Ω is C1,1, then any solution u of (1.1) satisfies∥∥∥∥ udsΩ

∥∥∥∥
Cα(Ω)

≤ C‖f‖L∞(Ω), dΩ(x) := dist(x, ∂Ω)

for some α = α(N, s,Ω) ∈ ]0, 1[, C = C(N, s,Ω) > 0.

The latter can also be seen as a weighted Hölder regularity result and it provided several
applications to overdetermined problems [8], nonlinear analysis [12,13], free boundary problems [4]
and integration by parts formula [29]. For further references and related results we refer to the
survey article [27].

Our main contribution is an analogous fine boundary regularity result for the weak solution to
(1.1) in the degenerate case p > 2.



FINE BOUNDARY REGULARITY FOR THE FRACTIONAL p-LAPLACIAN 3

Theorem 1.1. Let p > 2, Ω be a bounded domain with C1,1 boundary and dΩ(x) := dist(x, ∂Ω).
Then there exist α ∈ ]0, s] and C > 0, depending on N , p, s, and Ω, s.t. for all f ∈ L∞(Ω) the
weak solution u ∈W s,p

0 (Ω) to problem (1.1) satisfies u/dsΩ ∈ Cα(Ω) and∥∥∥ u
dsΩ

∥∥∥
Cα(Ω)

6 C‖f‖
1
p−1

L∞(Ω).

With the result above we hope to provide nonlocal regularity theory with an analog of Lieberman’s
C1,α(Ω) regularity theorem for the (local) p-Laplacian [22]. We privilege weak solutions (e.g., with
respect to viscosity solutions, see [23]) mainly because we consider problem (1.1) in a variational
perspective. A useful application of Theorem 1.1 is given in [16], yielding the equivalence of
Sobolev and weighted Hölder local minimizers for the energy functional of a nonlinear boundary
value problem driven by (−∆)sp (similar results are proved in [13] for the linear case p = 2, and
in [10] for the local p-Laplacian).
The singular case p ∈ ]1, 2[ of Theorem 1.1 remains open, but it can probably be dealt with through
suitable variations of the techniques presented here. Another interesting issue is related to the
case of unbounded reactions. In fact, the C1,α(Ω) result for problem (1.2) can be achieved even
when f ∈ Lq(Ω) for some q > N , so one can conjecture that Theorem 1.1 above also holds for
sufficiently summable right hand side. However, our approach extensively uses the boundedness
of the reaction and it is not apparent how to deal with unbounded f ’s.

Sketch of proof. Our aim is a weak Harnack inequality for the function u/dsΩ, and in particular
a pointwise control of u/dsΩ in terms of an integral quantity. Our strategy is to exploit the
nonlocality of the operator and define the following nonlocal excess:

Ex(u, k,R, x0) = −
∫
B̃R,x0

∣∣∣ u
dsΩ
− k
∣∣∣ dx,

with k ∈ R, R > 0, and B̃R,x0 being a small ball of radius comparable to R, placed at distance
greater than R in the inner normal direction from x0 ∈ ∂Ω (see figure 1 and properties (2.2) for a
precise definition). We call it nonlocal because it turns out that, given a bound on (−∆)sp u, the
pointwise behaviour of u/dsΩ inside BR(x0) ∩ Ω is controlled by the magnitude of the excess of u

in B̃R,x0 , which takes into account the behaviour of u/dsΩ outside of BR(x0) ∩ Ω.

In order to describe the scheme of the proof, consider the case of Ω being the half-space RN+ =

{xN > 0}, x0 = 0, R = 1, and D1 = B1 ∩ RN+ . We are going to prove two types of weak Harnack
inequalities. The first one is for supersolutions and reads

(1.3)

{
(−∆)sp u > 0 in D1

u > dsΩ in RN+
=⇒ inf

B1/4∩RN+

( u
dsΩ
− 1
)
> σEx(u).

Here eN = (0, . . . , 1), B1/4 is centered at 0 and σ is a positive constant depending only on N, p,

and s. Besides, the translated ball eN +B1/4 corresponds to B̃1 and we have set

Ex(u) = Ex(u, 1, 1, 0) = −
∫
eN+B1/4

( u
dsΩ
− 1
)
dx.

The second one regards subsolutions and is

(1.4)

{
(−∆)sp u 6 0 in D1

u 6 dsΩ in RN+
=⇒ inf

B1/4∩RN+

(
1− u

dsΩ

)
> σEx(u).

Note that in both cases we have a precise sign information on the difference u/dsΩ − 1 in the
translated ball. The similarity of the two statements is misleading, since, as will be seen later, the
second one is actually considerably more difficult to prove than the first one.
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The reason why these kind of nonlocal weak Harnack inequalities hold lies in the following nonlocal
superposition principle, which in a different form was proved in [14]. Given a regular function w
and a perturbation u, define

w̃u = w + (u− w)χB̃1

Then, under some mild control of w in terms of dsΩ on B̃1, we have

(1.5)

{
u > w in B̃1 =⇒ (−∆)sw̃ 6 (−∆)sw − cEx(u) in D1

u 6 w in B̃1 =⇒ (−∆)sw̃ > (−∆)sw + cEx(u) in D1

for some c = c(N, p, s) > 0.

Our strategy for proving, e.g., (1.3) can then be roughly described as follows:

(i) Build a one parameter family of basic barrier wλ (λ ∈ R) obeying the bounds

(1.6)


|(−∆)spwλ| 6 Cλ in B̃1

wλ > (1 + λ)dsΩ in D1/4

wλ 6 dsΩ in Dc
1

(ii) Choose λ ' Ex(u) so that the nonlocal superposition principle (1.5) ensures

(−∆)sp w̃λ 6 0 6 (−∆)sp u in D1.

and thanks to the global control wλ 6 u in Dc
1, deduce that w̃λ is an actual lower barrier

for u. Thus, by comparison, w = wλ 6 u in D1/4.
(iii) Conclude from the second condition in (1.6) that

u

dsΩ
− 1 >

w

dsΩ
− 1 > λ ' Ex(u) in D1/4.

Most of the paper will thus be devoted to the construction of the family of basic barriers satisfying
(1.6). As it turns out, the construction will depend on the size of Ex(u), and we will need three
different kinds of barriers. More precisely, for small values of Ex(u) (and thus of λ), we will build
the barrier wλ starting from dsΩ (which in the case of a half-space obeys (−∆)sp dsΩ = 0) and

performing a C1,1-small diffeomorphism of the domain supported in D1, to get the first condition
in (1.6). A similar construction yields the upper barrier to prove (1.4) in the case of small excess.

For large values of Ex(u), the lower barrier will be a multiple (of order ' λ) of the torsion function{
(−∆)sp v = 1 in D1/2

v = 0 in Dc
1/2,

which, thanks to a Hopf type lemma and the size of Ex(u) ' λ, fulfills the second bound in (1.6).

Unfortunately, when we are looking for the corresponding basic upper barrier wλ for large
Ex(u) ' λ, namely 

|(−∆)spwλ| 6 Cλ in B̃1

wλ 6 (1− λ)dsΩ in D1/4

wλ > dsΩ in Dc
1

(in order to prove the weak Harnack inequality for subsolutions (1.4)), the previous construction
fails. Indeed, when λ > 1, wλ/d

s
Ω must change sign near ∂Ω ∩ (D1 \ D1/4) and, even in the

case of a half-space, we lack explicit examples of functions with bounded (−∆)sp having such
behaviour. To get around this difficulty we employ an abstract construction chiefly based on the
Lewy-Stampacchia inequality, building an upper barrier which solves a double obstacle problem.
This ensures that, for large excess, the solution u is nonpositive in D1/2, and now the torsion
function argument applies providing the desired bounds.
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Finally, we localize (1.3) and (1.4), requiring the pointwise bounds to hold only in D2. This is
done by looking at the truncations of u below or above dsΩ and, due to the nonlocality of the
operator, it produces additional non-homogeneous terms (usually called tails in the literature)
which in the case p > 2 are quite delicate to care of (see Remark 2.8 in this respect). Having the
local version of the weak Harnack inequality finally gives the desired Hölder continuity through
well known techniques, originally developed in [28] for the linear case.

Notation. Throughout the paper, dependence on N , p, s will often be omitted. Positive constants
will be denoted by C1, C2, . . . When measurable functions are involved, the expression ’in Ω’ will
always mean ’a.e. in Ω’ (and similar). We will regularly set ap−1 = |a|p−2a for all a ∈ R. The
positive order cone of a function space X is denoted X+. For all function f , we denote by f+ its
positive part. Functions defined in a domain U ⊂ RN will be identified with their extensions to
RN vanishing in U c. The minimum (resp. maximum) of two functions f , g is denoted by f ∧ g
(resp. f ∨ g). Though our main theorem is only proved for p > 2, all the intermediate results will,
unless otherwise stated, hold for any p > 1.

2. Preliminaries

As we said in Section 1, Ω ⊂ RN will always be a bounded domain with a C1,1 boundary ∂Ω. For
all x ∈ RN and R > 0 we set

BR(x) =
{
y ∈ RN : |x− y| < R

}
, DR(x) = BR(x) ∩ Ω

(we omit the x-dependence if x = 0, i.e., we set BR(0) = BR, DR(0) = DR). We define a distance
function by setting for all x ∈ RN

dΩ(x) = inf
y∈Ωc

|x− y|.

Clearly dΩ : RN → R+ is 1-Lipschitz continuous. By the C1,1-regularity of ∂Ω, Ω has the interior
sphere property, namely there exists R > 0 s.t. for all x ∈ ∂Ω we can find y ∈ Ω s.t. B2R(y) ⊆ Ω is
tangent to ∂Ω at x (in some results this weaker property alone will suffice). We denote by ρ > 0
the supremum of such R’s, i.e.

(2.1) ρ = ρ(Ω) = sup
{
R : ∀x ∈ ∂Ω ∃B2R ⊆ Ω s.t. x ∈ ∂B2R

}
> 0

and define the neighborhood of ∂Ω by setting

Ωρ =
{
x ∈ Ω : dΩ(x) < ρ

}
.

By the choice of ρ, the metric projection ΠΩ : Ωρ → ∂Ω is well defined and is C1,1 if ∂Ω is C1,1.

Moreover (see figure 1), for all x ∈ ∂Ω and R ∈ ]0, ρ[ there exists a ball B̃x,R of radius R/4 s.t.

(2.2) B̃x,R ⊂ D2R(x) \D3R/2(x), inf
y∈B̃x,R

dΩ(y) >
3R

2
.

We recall now the definitions of the main function spaces that we shall use in this paper. For all
measurable u : RN → R we set

[u]ps,p =

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy,

and we define the fractional Sobolev space

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p <∞

}
,

which is a Banach space with respect to the norm ‖u‖s,p = [u]s,p + ‖u‖Lp(RN ), with C∞c (RN ) as a
dense subspace. We also set

W s,p
0 (Ω) =

{
u ∈W s,p(RN ) : u = 0 in Ωc

}
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x

Ω
B̃x,R

DR

2R

R

Figure 1. The ball B̃x,R, with center in the normal direction.

(equivalent to the definition given in Section 1), the latter being a uniformly convex, separable

Banach space with the norm [u]s,p. The dual space of W s,p
0 (Ω) is denoted by W−s,p

′
(Ω). We will

also use the following function space:

W̃ s,p(Ω) =
{
u ∈ Lploc(R

N ) : ∃ Ω′ c Ω s.t. u ∈W s,p(Ω′) and

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

Such space plays an important rôle in the study of our problem, since by [14, Lemma 2.3] for all

u ∈ W̃ s,p(Ω) we have (−∆)sp u ∈W−s,p
′
(Ω). We also set, for any open subset U ⊂ Ω,

W̃ s,p
0 (U) =

{
u ∈ W̃ s,p(U) : u(x) = 0 in Ωc

}
(note that u does not necessarily vanish in all of U c). We define a notion of nonlocal tail (slightly
different from that introduced in [6]) by setting for all measurable u : RN → R, R > 0, and q > 1

(2.3) tailq(u,R) =
[ ∫

Ω∩BcR

|u(x)|q

|x|N+s
dx
] 1
q
.

All equations and inequalities involving (−∆)sp are meant in the weak sense, unless explicitly

stated: e.g., for any u ∈W s,p
0 (Ω) and f ∈ L∞(Ω), we say that (−∆)sp u = f in Ω, if∫∫

RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy =

∫
Ω
f(x)ϕ(x) dx for all ϕ ∈W s,p

0 (Ω).

Similarly, we say that (−∆)sp u 6 f in Ω if for all ϕ ∈W s,p
0 (Ω)+∫∫

RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy 6

∫
Ω
f(x)ϕ(x) dx.

We will also use the space of α-Hölder continuous functions

Cα(Ω) =
{
u ∈ C(Ω) : [u]Cα(Ω) <∞

}
,

where

[u]Cα(Ω) = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

,

which is a Banach space endowed with the norm

‖u‖Cα(Ω) = ‖u‖L∞(Ω) + [u]Cα(Ω).

In the rest of the section we will list some useful technical results on solutions to (1.1) type
problems on several domains: for simplicity, we always denote the domain by Ω, but in the
forthcoming sections these results will also be applied to different domains.
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We begin with the following weak comparison principle (see [24, Lemma 9], [14, Proposition 2.10]):

Proposition 2.1. (Comparison principle) Let u, v ∈ W̃ s,p(Ω) satisfy{
(−∆)sp u 6 (−∆)sp v in Ω

u 6 v in Ωc.

Then u 6 v in RN .

Our first result is a simple estimate on the solution to the torsion equation in a ball: for all R > 0,
we denote by uR ∈W s,p

0 (BR) the (unique) solution to

(2.4)

{
(−∆)sp uR = 1 in BR

uR = 0 in Bc
R.

Lemma 2.2. There exists C1 = C1(N, p, s) > 1 s.t. for all R > 0, x ∈ RN

R
s
p−1

C1
dsBR(x) 6 uR(x) 6 C1R

s
p−1 dsBR(x).

Proof. First assume R = 1. By the strong maximum principle (see [25, Lemma 2.3]), we have
u1 > 0 in B1, while by [14, Theorem 4.4] there exists C1 > 0 s.t.

(2.5) u1 6 C1dsB1
in RN .

By [14, Theorem 3.6] we can find r ∈ ]0, 1[, M > 0 s.t. |(−∆)sp dsB1
| 6 M in B1 \ Br. Set

m = infBr u1 > 0 and for all x ∈ RN

w(x) = min
{
m,M

− 1
p−1
}

dsB1
(x).

Then we have {
(−∆)spw 6 (−∆)sp u1 in B1 \Br

w 6 u1 in (B1 \Br)
c.

Proposition 2.1 yields w 6 u1 in RN . So, for C1 even bigger if necessary in (2.5), we improve to

(2.6)
dsB1

C1
6 u1 6 C1dsB1

in RN .

Now take an arbitrary R > 0 and set for all x ∈ RN

v(x) =
uR(Rx)

Rp′s
.

Then v ∈W s,p
0 (B1) and by the homogeneity and scaling properties of (−∆)sp (see [14, Proposition

2.9 (i) (ii)]) we have {
(−∆)sp v = 1 in B1

v = 0 in Bc
1.

By uniqueness v = u1. Since dBR(Rx) = RdB1(x), by (2.6) we have for all x ∈ RN

dsBR(Rx)

C1Rs
6
uR(Rx)

Rp′s
6
C1dsBR(Rx)

Rs
,

hence the conclusion. �

The previous estimate allows us to use uR as a barrier to prove a Hopf type lemma for the torsion
equation in a general domain:

(2.7)

{
(−∆)sp u = 1 in Ω

u = 0 in Ωc.
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Lemma 2.3. (Hopf’s lemma) Let u ∈ W s,p
0 (Ω) solve (2.7) and Ω satisfy the interior sphere

property (2.1). Then

u(x) >
1

C1
ρ

s
p−1 dsΩ(x) for all x ∈ RN ,

where C1 = C1(N, p, s) > 1 is given in the previous Lemma.

Proof. First, fix x ∈ Ωρ. Then we can find a ball B ⊆ Ω of radius 2ρ, tangent to ∂Ω at ΠΩ(x)
and s.t. dΩ(x) = dB(x). Let v ∈W s,p

0 (B) solve{
(−∆)sp v = 1 in B

v = 0 in Bc.

So we have {
(−∆)sp v 6 (−∆)sp u in B

v 6 u in Bc.

By Proposition 2.1 we have v 6 u in RN . By Lemma 2.2 and dΩ(x) = dB(x), we infer

(2.8) u(x) > v(x) >
(2ρ)

s
p−1

C1
dsΩ(x).

Now assume x ∈ Ω \ Ωρ, and set R = dΩ(x) > ρ. The ball B′ = BR(x) is contained in Ω and
dB′(x) = R = dΩ(x). Considering the torsion function v′ of B′ and applying Proposition 2.1, we
deduce through Lemma 2.2

(2.9) u(x) > v′(x) >
R

s
p−1

C1
dsB′(x) =

R
s
p−1

C1
Rs >

ρ
s
p−1

C1
dsΩ(x).

From (2.8) and (2.9) we conclude. �

Another property of problem (2.7) is that its solution is a subsolution all over RN :

Lemma 2.4. Let Ω ⊆ RN be bounded and u ∈W s,p
0 (Ω) solve (2.7). Then (−∆)sp u 6 1 in RN .

Proof. Set for all v ∈W s,p(RN ) ∩ L1(RN )

J1(v) =
[v]ps,p
p
−
∫
RN

v(x) dx,

(achieving its minimum on W s,p
0 (Ω) at u) and consider the constrained minimization problem

(2.10) inf
v6u

J1(v).

For any v it holds J1(v+) 6 J1(v). Moreover, v 6 u implies v+ ∈W s,p
0 (Ω), hence

J1(u) > inf
v6u

J1(v) = inf
v6u

J1(v+) > inf
W s,p

0 (Ω)
J1 = J1(u).

Thus u solves (2.10) as well. The variational inequality associated to (2.10) reads

〈J ′1(u), v − u〉 > 0 for all v ∈W s,p(RN ) ∩ L1(RN ), v 6 u

and setting v = u− ϕ, we get

〈J ′1(u), ϕ〉 6 0 for all ϕ ∈ C∞c (RN ), ϕ > 0,

i.e., (−∆)sp u 6 1 in all of RN , concluding the proof. �
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We introduce a partial ordering on the dual space W−s,p
′
(Ω) by defining the positive cone

W−s,p
′
(Ω)+ =

{
L ∈W−s,p′(Ω) : 〈L,ϕ〉 > 0 for all ϕ ∈W s,p

0 (Ω)+

}
.

By the Riesz theorem and the density of C∞c (Ω) in W s,p
0 (Ω), any L ∈W−s,p′(Ω)+ can be faithfully

represented as a (positive) Radon measure on Ω (see the discussion in [11, p. 265]). Then, the
order dual of w is defined as

W−s,p
′

6 (Ω) =
{
L1 − L2 : L1, L2 ∈W−s,p

′
(Ω)+

}
.

Such space inherits a lattice structure defined by duality through the lattice structure of W s,p
0 (Ω),

as shown in [11, p. 260]. We now give a slight generalization of the Lewy-Stampacchia type
inequality [11, Theorem 2.4] which is needed to treat double obstacle problems with obstacle not
lying in W s,p

0 (Ω). The proof is well known and we describe it for sake of completeness, specializing
to the case of the operator (−∆)sp .

Lemma 2.5. (Lewy-Stampacchia) Let Ω ⊆ RN be bounded, ϕ,ψ ∈W s,p
loc (RN ) be s.t.

(i) (−∆)sp ϕ, (−∆)sp ψ ∈W
−s,p′
6 (Ω)

(ii) [ϕ,ψ] :=
{
v ∈W s,p

0 (Ω) : ϕ 6 v 6 ψ
}
6= ∅

Then there exists a unique solution u ∈W s,p
0 (Ω) to the problem

min
v∈[ϕ,ψ]

[v]ps,p
p

,

and it satisfies

0 ∧ (−∆)sp ψ 6 (−∆)sp u 6 0 ∨ (−∆)sp ϕ in Ω.

Proof. The existence and uniqueness statements for the minimization problem follow from the
strict convexity and coercivity of v 7→ [v]ps,p. The function u ∈ [ϕ,ψ] is a minimizer iff it satisfies
for all v ∈ [ϕ,ψ]

(2.11) 〈(−∆)sp u, v − u〉 > 0.

We prove now that

(2.12) (−∆)sp u 6 0 ∨ (−∆)sp ϕ in Ω.

Recall from [11, Remark 3.3 and p. 261] that v 7→ [v]ps,p/p is sub-modular and strictly convex,
hence its differential (−∆)sp is a strictly T -monotone map, i.e.

(2.13) 〈(−∆)sp u− (−∆)sp v, (u− v)+〉 > 0 unless v 6 u.

By condition (i), the strictly convex, coercive functional

J2 : W s,p
0 (Ω)→ R, J2(v) =

[v]ps,p
p
− 〈(−∆)sp ϕ ∨ 0, v〉,

is well defined, and we thus let w be the unique solution of the following problem

min
v∈ (∞,u]

J2(v), ]−∞, u] :=
{
v ∈W s,p

0 (Ω) : v 6 u
}
,

which therefore solves for all v ∈ ]−∞, u]

(2.14) 〈J ′2(w), v − w〉 > 0.

We claim that u > w, and then necessarily u = w. Condition (ii) forces ϕ 6 0 in Ωc, therefore
w ∨ ϕ ∈W s,p

0 (Ω). Choosing v = w ∨ ϕ = w + (ϕ− w)+ gives

0 6 〈J ′2(w), (ϕ−w)+〉 = 〈(−∆)spw− (0∨ (−∆)sp ϕ), (ϕ−w)+〉 6 〈(−∆)spw− (−∆)sp ϕ, (ϕ−w)+〉.
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By (2.13), this implies ϕ 6 w and, by w 6 u, a fortiori w ∈ [ϕ,ψ]. Choosing v = w ∨ u =
w + (u− w)+ as a test function in (2.14) gives

0 6 〈J ′2(w), (u− w)+〉 = 〈(−∆)spw − (0 ∨ (−∆)sp ϕ), (u− w)+〉 6 〈(−∆)spw, (u− w)+〉,

while letting v = w ∧ u = u− (u− w)+ in (2.11), provides

0 6 〈(−∆)sp u,−(u− w)+〉.

Summing up we obtain

0 6 〈(−∆)spw − (−∆)sp u, (u− w)+〉,

thus (2.13) entails u 6 w and therefore w = u. This enforces (2.14) for u, then for all z ∈W s,p
0 (Ω)+,

setting v = u− z ∈ ]−∞, u] we get

〈(−∆)sp u, z〉 6 〈(−∆)sp ϕ ∨ 0, z〉,

proving (2.12). The first inequality of the thesis is achieved through a similar argument. �

A major tool in our proofs is the following nonlocal superposition principle:

Proposition 2.6. (Superposition principle) Let Ω be bounded, u ∈ W̃ s,p(Ω), v ∈ L1
loc(RN ),

V = supp(u− v) satisfy

(i) Ω b RN \ V ;

(ii)

∫
V

|v(x)|p−1

(1 + |x|)N+ps
dx <∞.

Set for all x ∈ RN

w(x) =

{
u(x) if x ∈ V c

v(x) if x ∈ V .

Then w ∈ W̃ s,p(Ω) and satisfies in Ω

(−∆)spw(x) = (−∆)sp u(x) + 2

∫
V

(u(x)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy.

Proof. We can rephrase w = u+ (v− u)χV , which implies w ∈ W̃ s,p(Ω). By [14, Lemmas 2.3, 2.8]

we have (−∆)spw ∈W−s,p
′
(Ω), moreover for all ϕ ∈W s,p

0 (Ω)

〈(−∆)spw,ϕ〉 = 〈(−∆)sp u, ϕ〉+

∫
Ω
h(x)ϕ(x) dx,

where for all Lebesgue point x ∈ V of u we have set

h(x) = 2

∫
V

(u(x)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy.

This concludes the proof. �

We conclude this section with a key estimate for a function which is locally bounded by a suitable
multiple of dsΩ (here we first require that p > 2). The passage from a global bound to a local bound
can be delicate for a nonlocal operator such as (−∆)sp . While technical, the next proposition
shows the main reason why the degeneracy of the operator forces, in the following sections, a
peculiar decomposition of the right hand side (see Remark 2.8 below).

Proposition 2.7. Let Ω be bounded, p > 2 and u ∈ W̃ s,p
0 (DR) satisfy (−∆)sp u ∈W

−s,p′
6 (DR):
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(i) if there exists m ∈ R s.t. u > mdsΩ in D2R, then for all ε > 0 there exist Cε =
Cε(N, p, s, ε) > 0 and another constant C2 = C2(N, p, s) > 0 s.t. in DR

(−∆)sp
(
u ∨mdsΩ) > (−∆)sp u−

ε

Rs

∥∥∥ u
dsΩ
−m

∥∥∥p−1

L∞(DR)
− Cεtailp−1

((
m− u

dsΩ

)
+
, 2R

)p−1

− C2|m|p−2tail1

((
m− u

dsΩ

)
+
, 2R

)
;

(ii) if there exists M ∈ R s.t. u 6 MdsΩ in D2R, then for all ε > 0 there exist C ′ε =
C ′ε(N, p, s, ε) > 0 and another constant C ′2 = C ′2(N, p, s) > 0 s.t. in DR

(−∆)sp
(
u ∧MdsΩ) 6 (−∆)sp u+

ε

Rs

∥∥∥M − u

dsΩ

∥∥∥p−1

L∞(DR)
+ C ′εtailp−1

(( u
dsΩ
−M

)
+
, 2R

)p−1

+ C ′2|M |p−2tail1

(( u
dsΩ
−M

)
+
, 2R

)
.

Proof. We prove (i). We may assume u/dsΩ −m ∈ L∞(DR), otherwise there is nothing to prove.
We will use the following elementary inequality: since p > 2, there exists Cp > 0 s.t.

(2.15) (a− b)p−1 − (c− b)p−1 6 Cp(|a|p−2 + |b|p−2)|a− c|+ Cp|a− c|p−1 for all a, b, c ∈ R.

Indeed, by Lagrange’s theorem and convexity, we have

(a− b)p−1 − (c− b)p−1 6 Cp(|a|p−2 + |b|p−2 + |c|p−2)|a− c|
6 Cp

(
|a|p−2 + |b|p−2 + C ′p(|c− a|p−2 + |a|p−2)

)
|a− c|,

which implies (2.15). Set w = u ∨mdsΩ. Since {u < mdsΩ} ⊆ Dc
2R is bounded away from DR, we

can apply Proposition 2.6 and get for all x ∈ DR

(−∆)spw(x) = (−∆)sp u(x) + 2

∫
{u<mdsΩ}

(u(x)−mdsΩ(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy

= (−∆)sp u(x)− 2

∫
{u<mdsΩ}

(mdsΩ(y)− u(x))p−1 − (u(y)− u(x))p−1

|x− y|N+ps
dy.

(2.16)

We use (2.15) to estimate the numerator of the integrand, recalling also that dΩ(x) 6 R, u(x) >
mdsΩ(x), R < dΩ(y) 6 |y|, and u(y) < mdsΩ(y):

(mdsΩ(y)− u(x))p−1 − (u(y)− u(x))p−1

6 Cp
(
|mdsΩ(y)|p−2 + |u(x)|p−2

)
|mdsΩ(y)− u(y)|+ Cp|mdsΩ(y)− u(y)|p−1

6 Cp
(
|m|p−2d

(p−2)s
Ω (y) + |m|p−2R(p−2)s + (u(x)−mdsΩ(x))p−2

)
(mdsΩ(y)− u(y))

+ Cp(mdsΩ(y)− u(y))p−1

6 C|m|p−2|y|(p−2)s(mdsΩ(y)− u(y)) + ε(u(x)−mdsΩ(x))p−1 + Cε(mdsΩ(y)− u(y))p−1,

where in the end we have also used Young’s inequality with exponents q = (p− 1)(p− 2)−1 and
q′ = p− 1. Here C > 0 depends only on N , p, s, while Cε > 0 also depends on ε > 0. Now, by
means of the inequality above and the relations |x− y| > |y|/2 > R, we can estimate the integral



12 A. IANNIZZOTTO, S. J. N. MOSCONI, M. SQUASSINA

in (2.16), getting∫
{u<mdsΩ}

(mdsΩ(y)− u(x))p−1 − (u(y)− u(x))p−1

|x− y|N+ps
dy

6 ε
∫
{u<mdsΩ}

(u(x)−mdsΩ(x))p−1

|x− y|N+ps
dy + Cε

∫
{u<mdsΩ}

(mdsΩ(y)− u(y))p−1

|x− y|N+ps
dy

+ C|m|p−2

∫
{u<mdsΩ}

|y|(p−2)s(mdsΩ(y)− u(y))

|x− y|N+ps
dy

6 ε
∥∥∥m− u

dsΩ

∥∥∥p−1

L∞(DR)

∫
Dc2R

R(p−2)s

|y|N+ps
dy + Cε

∫
Dc2R

(
m− u(y)

dsΩ(y)

)p−1

+

dy

|y|N+s

+ C|m|p−2

∫
Dc2R

(
m− u(y)

dsΩ(y)

)
+

dy

|y|N+s

6
ε

Rs

∥∥∥ u
dsΩ
−m

∥∥∥p−1

L∞(DR)
+ Cεtailp−1

((
m− u

dsΩ

)
+
, 2R

)p−1
+ C2tail1

((
m− u

dsΩ

)
+
, 2R

)
,

where we may take, if necessary, ε > 0 even smaller and Cε > 0 even bigger, plus some C2(N, p, s).
Plugging the last inequality into (2.16) (and replacing ε with ε/2), we achieve (i).

The argument for (ii) is immediate, by replacing u with −u and m with −M . �

Remark 2.8. Before going further, a short discussion is in order. Proposition 2.7 provides
bounds of the fractional p-Laplacians of truncated functions, which involve two tail terms with
different exponents, namely tailp−1 and tail1. One of the main issues in the forthcoming sections
will be to estimate inductively such tail terms, taking into account that they behave differently
when R→ 0+, with tail1 being asymptotically larger than tailp−1. In adjusting those estimates,
the quantities |m|p−2, |M |p−2 multiplying the term tail1 in (i), (ii) respectively, will play a
fundamental rôle. That is why we will emphasize the m-dependence of the right hand side for
supersolutions (respectively, its M -dependence for subsolutions). Precisely, we shall prove a lower
bound for a function u satisfying{

(−∆)sp u > −K −mp−2H in DR

u > mdsΩ in RN ,

and an upper bound for a function u satisfying{
(−∆)sp u 6 K +Mp−2H in DR

u 6MdsΩ in RN ,

respectively, with convenient K,H,m,M > 0. As we will see, the upper and lower bounds require
substantially different approaches.

3. The lower bound

This section is devoted to the study of supersolutions of (1.1) type problems on special domains,
locally bounded from below by a multiple of dsΩ. For such supersolutions we aim at proving a
lower bound for the quotient u/dsΩ near the boundary (see Proposition 3.7 below).

First, we assume that the supersolution u is globally bounded from below by mdsΩ and rephrase
the lower bound on (−∆)sp u as −K −mp−2H. Precisely, we assume p > 2, 0 ∈ ∂Ω (for simplicity

of notation), R ∈ ]0, ρ/4[, and consider u ∈ W̃ s,p(DR) satisfying for some K,H,m > 0

(3.1)

{
(−∆)sp u > −K −mp−2H in DR

u > mdsΩ in RN .
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Ω

AR
R

3R/4

Figure 2. The regularized set AR in gray.

A major rôle in determining the behavior of u/dsΩ in a semi-disc DR(x0) is played by the following
nonlocal excess

(3.2) Ex(u, k,R, x0) = −
∫
B̃x0,R

∣∣∣∣ u(x)

dsΩ(x)
− k
∣∣∣∣ dx,

where B̃x0,R is defined as in (2.2). As we will frequently assume x0 = 0, the dependence on the
latter will be omitted. We begin by proving a lower bound for the case of large values of the
excess, which highlights the nonlocal feature of the equation.

Lemma 3.1. Let u ∈ W̃ s,p(DR) solve (3.1), p > 2 and Ω satisfy (2.1). Then there exist
θ1 = θ1(N, p, s) > 1, C3 = C3(N, p, s) > 1, σ1 = σ1(N, p, s) ∈ ]0, 1] s.t. for all R ∈ ]0, ρ/4[

Ex(u,m,R) > mθ1 =⇒ inf
DR/2

( u
dsΩ
−m

)
> σ1Ex(u,m,R)− C3(KRs)

1
p−1 − C3HR

s.

Proof. Set

AR =
⋃{

Br(y) : y ∈ RN , r >
R

8
, Br(y) ⊂ DR

}
.

By the regularity of ∂Ω stated in (2.1) and R < ρ/4, AR ⊂ RN is a bounded domain satisfying
the interior sphere condition with radius ρAR > R/16 (see figure 2). Moreover we claim that

(3.3) dΩ 6 CdAR in DR/2.

First note that D3R/4 ⊆ AR implies dD3R/4
6 dAR in RN . Furthermore, for all x ∈ DR/2 we have

dΩ(x) 6 |x−ΠΩ(ΠD3R/4
(x))| 6 |x−ΠD3R/4

(x)|+ |ΠD3R/4
(x)−ΠΩ(ΠD3R/4

(x))|.

To proceed, we distinguish two cases:

(a) if ΠD3R/4
(x) ∈ ∂Ω, then ΠΩ(ΠD3R/4

(x)) = ΠD3R/4
(x) and so

dΩ(x) 6 dD3R/4
(x) 6 dAR(x);

(b) if ΠD3R/4
(x) /∈ ∂Ω, then we have |ΠD3R/4

(x)|, |ΠΩ(ΠD3R/4
(x))| 6 R and dD3R/4

(x) > R/4,
which in turn implies

dΩ(x) 6 dD3R/4
(x) + |ΠD3R/4

(x)|+ |ΠΩ(ΠD3R/4
(x))| 6 9dD3R/4

(x) 6 9dAR(x).

Both cases lead to (3.3). We will also use the following elementary inequality from [14, Eq. (2.7)]:
since p > 2, for all a ∈ R, b > 0 we have

(3.4) (a+ b)p−1 − ap−1 > 22−pbp−1.
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Let v ∈W s,p
0 (AR) be the solution of the torsion problem{

(−∆)sp v = 1 in AR

v = 0 in AcR.

By Lemma 2.4 we have (−∆)sp v 6 1 in RN . Besides, by Lemma 2.3 and (3.3) we have

(3.5) v >
R

s
p−1

C
dsΩ in DR/2.

Pick λ > 0 (to be determined later) and set

w(x) =


λ

R
s
p−1

v(x) if x ∈ B̃c
R

u(x) if x ∈ B̃R,

where B̃R is defined as in (2.2). We note that dist (B̃R, DR) > 0, so we can apply Proposition 2.6.
Also using homogeneity of (−∆)sp , (3.4), and the relations dΩ(y) < 3R/2, |x− y| > 3R/4, we get
for all x ∈ DR

(−∆)spw(x) = (−∆)sp

( λ

R
s
p−1

v(x)
)

+ 2

∫
B̃R

(w(x)− u(y))p−1 − wp−1(x)

|x− y|N+ps
dy

6
λp−1

Rs
− 1

C

∫
B̃R

u(y)p−1

|x− y|N+ps
dy

6
λp−1

Rs
− 1

C

∫
B̃R

(u(y)−mdsΩ(y))p−1

|x− y|N+ps
dy.

Observe that by the property (2.2) of B̃R∫
B̃R

(u(y)−mdsΩ(y))p−1

|x− y|N+ps
dy >

∫
B̃R

( u(y)

dsΩ(y)
−m

)p−1 d
s(p−1)
Ω (y)

|x− y|N+ps
dy

>
(3/2R)s(p−1)

(R/2)N+ps

∫
B̃R

( u(y)

dsΩ(y)
−m

)p−1
dy,

and thus by Hölder inequality and the fact that u > mdsΩ in B̃R,

(−∆)spw(x) 6
λp−1

Rs
− 1

CRs
−
∫
B̃R

( u(y)

dsΩ(y)
−m

)p−1
dy 6

λp−1

Rs
− Ex(u,m,R)p−1

CRs
.

Choosing

(3.6) λ =
Ex(u,m,R)

(2C2)
1
p−1

,

we have

(3.7) (−∆)spw 6 −
Ex(u,m,R)p−1

2CRs
in DR.

Now we choose the constants, setting

θ1 =
1

σ1
= 2C(2C2)

1
p−1 , C3 = σ1 max

{
(4C)

1
p−1 , 4Cθ2−p

1

}
.

Clearly θ1, C3 > 1 > σ1 > 0 only depend on N , p, s. Assuming

(3.8) Ex(u,m,R) > mθ1,

we claim that

inf
DR/2

( u
dsΩ
−m

)
> σ1Ex(u,m,R)− C3(KRs)

1
p−1 − C3HR

s.
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Two cases may occur:

(a) If σ1Ex(u,m,R) 6 C3(KRs)
1
p−1 + C3HR

s, then the claim is immediate being the left hand
side non-negative.

(b) If σ1Ex(u,m,R) > C3(KRs)
1
p−1 + C3HR

s, then from the definitions above and (3.8) we have

Ex(u,m,R)p−1 >


(C3

σ1

)p−1
KRs > 4CKRs

(mθ1)p−2Ex(u,m,R) > (mθ1)p−2C3

σ1
HRs > 4Cmp−2HRs,

and by summing up

Ex(u,m,R)p−1 > 2CRs(K +mp−2H).

Now by (3.1), (3.7), and recalling that w = χB̃Ru in Dc
R, we have{

(−∆)spw 6 −K −mp−2H 6 (−∆)sp u in DR

w 6 u in Dc
R.

By Proposition 2.1 we have w 6 u in RN . In particular, for all x ∈ DR/2, recalling (3.5) and
the definition of λ in (3.6), we have

u(x) >
λ

R
s
p−1

v(x) >
Ex(u,m,R)

C(2C2)
1
p−1

dsΩ(x).

Thus, by (3.8) again

inf
DR/2

( u
dsΩ
−m

)
> Ex(u,m,R)

( 1

C(2C2)
1
p−1

− 1

θ1

)
= σ1Ex(u,m,R).

In both cases the proof is concluded. �

Remark 3.2. In Lemma 3.1 we bound u/dsΩ from below by means of the sum of three terms,
one of which depends on u while the others do not, and the latter are in fact dropped unless the
sum is negative. This strategy will be used several times in the following results.

The next result is a change of variables lemma for (−∆)sp , strictly related to the discussion on the
boundedness of the fractional p-Laplacians of distance functions developed in [14, Section 3]. Here
GLN denotes the group of all invertible matrices in RN×N , and |A| denotes any matrix norm. For
all A ∈ GLN , x ∈ Ω, and ε > 0 we set

(3.9) gε(A, x) =

∫
Bcε(x)

(dsΩ(x)− dsΩ(y))p−1

|A(x− y)|N+ps
dy.

We need some more notation for this result: for all U, V ⊂ RN we denote the Hausdorff distance
between U and V by

distH(U, V ) = max
{

sup
x∈U

dist(x, V ), sup
y∈V

dist(y, U)
}
,

and the symmetric difference by

U∆V = (U \ V ) ∪ (V \ U).

Finally, for all U ⊂ RN we denote by HN−1(U) the (N − 1)-dimensional Hausdorff measure of U .

Lemma 3.3. If ∂Ω is C1,1, there exist δ = δ(N) > 0, C4 = C4(N, p, s,Ω) > 0 and g0 s.t.

(i) gε → g0 in L∞loc(Bδ(I)× Ωρ/2), as ε→ 0+;
(ii) ‖g0‖L∞(Bδ(I)×Ωρ/2) 6 C4.
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Proof. Since GLN is an open subset of RN×N , we can find δ > 0 (only depending on N) s.t.
B2δ(I) ⊂ GLN . Choose A ∈ Bδ(I), C = C(N) > 0 s.t. |A|, |A−1| 6 C. By translation invariance
and boundedness of Ωρ/2, we may assume 0 ∈ ∂Ω and prove that gε → g0 locally uniformly in

Bδ(I)×Dρ/2 as ε→ 0+, for some g0 with ‖g0‖L∞(Bδ(I)×Dρ/2) 6 C (allowing C > 0 to grow bigger

and eventually depend on N , p, s, and Ω). As the estimates will be uniform with respect to
A ∈ Bδ(I), we will omit the dependence on A for simplicity.

Observe that restricting the domain of integration in (3.9) to D3ρ/4 ∩Bc
ε(x) has the sole effect of

adding an equi-bounded term to both gε and g0, so that we can actually prove the statement for

g̃ε(x) =

∫
D3ρ/4∩Bcε(x)

(dsΩ(x)− dsΩ(y))p−1

|A(x− y)|N+ps
dy.

Since ∂Ω is of class C1,1, there exists a diffeomorphism Φ ∈ C1,1(RN ,RN ) s.t. Φ(0) = 0, dΩ(x) =
(x′N )+ for all x ∈ Dρ/2, x′ = Φ(x), and Φ(D3ρ/4) ⊆ D′ρ′ where ρ′ = ρ′(Ω) > 0 and

D′ρ′ =
{
x′ ∈ RN : |x′| < ρ′, x′N > 0

}
.

Moreover we may assume (taking C > 0 bigger if necessary) that for all x ∈ Dρ, x
′ ∈ D′ρ′

(3.10)
1

C
6 |DΦ(x)|, |DΦ−1(x′)| 6 C.

Now fix x ∈ Dρ/2 and set

x′ = Φ(x), Mx = DΦ−1(x′) = (DΦ(x))−1.

Fix as well ε ∈ ]0, ρ/4[. We act on g̃ε(x) with the change of variables y′ = Φ(y) and we get

g̃ε(x) =

∫
Φ(D3ρ/4∩Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|A(Φ−1(x′)− Φ−1(y′))|N+ps
|detDΦ−1(y′)| dy′

=

∫
Φ(D3ρ/4∩Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′,

where we have set

K(x′, y′) =
|AMx(x′ − y′)|N+ps|detDΦ−1(y′)|
|A(Φ−1(x′)− Φ−1(y′))|N+ps

.

Again we can add a bounded term to g̃ε and instead consider

(3.11) hε(x) =

∫
Φ(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′.

By (3.10) we have for all x′ ∈ D′ρ′ , y′ ∈ Φ(Bc
ε(x))

1

C
6 K(x′, y′) 6 C.

We introduce a linearized operator Lx : RN → RN by setting for all y ∈ RN

Lx(y) = Φ(x) +DΦ(x)(y − x),

which by Taylor expansion and Φ ∈ C1,1(RN ) satisfies for all y ∈ RN

|Lx(y)− Φ(y)| 6 C|x− y|2.
In turn, this implies the geometric inequality

dε := distH
(
Φ(Bε(x)), Lx(Bε(x))

)
6 Cε2.

Set

∆ε(x) = Φ(Bc
ε(x))∆Lx(Bc

ε(x)),
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then by the inequality above and Φ(Bε(x))∆Lx(Bε(x)) ⊆ Bdε(∂Lx(Bε(x))) we have

(3.12) |∆ε(x)| 6 CHN−1(∂Lx(Bc
ε(x)))ε2 6 CεN+1.

We split (3.11) as:

hε(x) =
[ ∫

Φ(Bcε(c))\Lx(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

−
∫
Lx(Bcε(x))\Φ(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

]
+

∫
Lx(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
K(x′, y′) dy′

= h1
ε(x) + h2

ε(x),

and we estimate separately h1
ε(x) and h2

ε(x). By s-Hölder continuity of the function y′ → (y′N )s+,
estimates on |Mx|, (3.12), and direct integration we have

|h1
ε(x)| 6 C

∫
∆ε(x)

|(x′N )s+ − (y′N )s+|p−1

|AMx(x′ − y′)|N+ps
dy′

6 C|A−1|N+ps

∫
∆ε(x)

dy′

|x′ − y′|N+s
6
C|∆ε(x)|
εN+s

6 Cε1−s,

which by s ∈ ]0, 1[ implies

(3.13) h1
ε → 0 in L∞(Dρ/2) as ε→ 0+.

Now we turn to h2
ε(x), which we split further:

h2
ε(x) =

∫
Lx(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
|detMx| dy′

+

∫
Lx(Bcε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′)− |detMx|) dy′

= h3
ε(x) + h4

ε(x).

We first deal with h3
ε(x), using the change of variables z′ = Mx(x′ − y′) and setting x′′ = Mxx

′,
λ = |M−Tx eN |, and v′ = λ−1M−Tx eN :

h3
ε(x) =

∫
Bcε

(
((M−1

x x′′) · eN )s+ − (M−1
x (x′′ − z′) · eN )s+

)p−1

|Az′|N+ps
dz′

= λ(p−1)s

∫
Bcε

(
(x′ · v′)s+ − ((x′ − z′) · v′)s+

)p−1

|Az′|N+ps
dz′.

By rotational invariance and [14, Lemma 3.2], we have

(3.14) h3
ε → 0 in L∞loc(Dρ/2) as ε→ 0+

(this is where the convergence turns locally uniform instead of uniform). To estimate h4
ε(x), we

can again add a bounded term and consider instead

h5
ε(x) :=

∫
Lx(B1(x))\Lx(Bε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′)− |detMx|) dy′.

By [14, Eq. (3.7)] we have∣∣K(x′, y′)− |detMx|
∣∣ 6 C|x′ − y′| for all x′ ∈ D′ρ′ , y′ ∈ Lx(Bc

ε(x))
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and using Hölder continuity, we have

|(x′N )s+ − (y′N )s+|p−1

|AMx(x′ − y′)|N+ps
|K(x′, y′)− |detMx|| 6 C

|x′ − y′|(p−1)s+1

|AMx(x′ − y′)|N+ps
6

C

|x′ − y′|N+s−1
,

and the latter function lies in L1(Lx(B1(x))). Now, letting

h5(x) :=

∫
Lx(B1(x))\Lx(Bε(x))

((x′N )s+ − (y′N )s+)p−1

|AMx(x′ − y′)|N+ps
(K(x′, y′)− |detMx|) dy′.

we have, via direct integration and Lx(B1(x)) ⊆ BC(x′),

|h5(x)| 6 C
∫
Lx(B1(x))\Lx(Bε(x))

dy′

|x′ − y′|N+s−1
,

and similarly, by Lx(Bε(x)) ⊆ BCε(x′) (see (3.10)),

|h5
ε(x)− h5(x)| 6 C

∫
Lx(Bε(x))

dy′

|x′ − y′|N+s−1
6 Cε1−s.

Again by s ∈ ]0, 1[, we deduce that h5
ε → h5 in L∞loc(Dρ/2) as ε → 0+. Taking into account the

several splittings and (3.13), (3.14), we obtain the claim. �

By virtue of the previous result, we are able to construct our first barrier:

Lemma 3.4. (Barrier/1) Let ∂Ω be C1,1, R ∈ ]0, ρ/4[, ϕ ∈ C∞c (B1) s.t. 0 6 ϕ 6 1 in B1, and
for all λ ∈ R, x ∈ RN set

wλ(x) =
(

1 + λϕ
(2x

R

))
dsΩ(x).

Then, there exist λ1 = λ1(N, p, s,Ω, ϕ) > 0, C5 = C5(N, p, s,Ω, ϕ) > 0 s.t. for all |λ| 6 λ1

|(−∆)spwλ| 6 C5

(
1 +
|λ|
Rs

)
in DR/2.

Proof. For λ = 0, the conclusion follows from [14, Theorem 3.6]. So, let λ ∈ R satisfy

0 < |λ| 6 1

2‖ϕ‖L∞(B1)
.

Set for all x ∈ RN

ψλ(x) =
1

λ

((
1 + λϕ

(2x

R

)) 1
s − 1

)
,

so ψλ ∈ C∞c (BR/2) and for all x ∈ RN

1 + λϕ
(2x

R

)
= (1 + λψλ(x))s.

Moreover, by the chain rule there exists C > 0 (depending on N , p, s, Ω, and ϕ) s.t. for all x ∈ RN

(3.15) |ψλ(x)|+R|Dψλ(x)|+R2|D2ψλ(x)| 6 CχBR/2(x).

Since ΠΩ ∈ C1,1(BR, ∂Ω), by taking |λ| > 0 even smaller if necessary, we may set for all x ∈ RN

Φλ(x) = x+ λψλ(x)(x−ΠΩ(x)),

thus defining a diffeomorphism Φλ ∈ C1,1(RN ,RN ) s.t. Φλ(Ω) = Ω, Φλ(x) = x for all x ∈ Bc
R/2,

and ΠΩ(Φλ(x)) = ΠΩ(x) for all x ∈ DR. Besides we define Ψλ = Φ−1
λ ∈ C

1,1(RN ,RN ). The key
point is that wλ is actually equivalent to a distance function, up to the diffeomorphism Φλ of the
domain. Indeed, with these notations, we have for all x ∈ DR

wλ(x) = (1 + λψλ(x))s|x−ΠΩ(x)|s = |Φλ(x)−ΠΩ(x)|s

= |Φλ(x)−ΠΩ(Φλ(x))|s = dsΩ(Φλ(x)),
(3.16)
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We begin collecting some estimates on the first and second order derivatives of Φλ, Ψλ that will
be used later. For all x, x′ ∈ RN we claim

(3.17) |DΦλ(x)− I| 6 C|λ|χBR/2(x), |DΨλ(x′)− I| 6 C|λ|χBR/2(x′).

Indeed, recall that Φλ = Ψλ = I in Bc
R/2. Instead, for all x ∈ BR/2, i, k ∈ {1, . . . N} we have

∂iΦ
k
λ(x)− δik = λ

[
∂iψλ(x)(x−ΠΩ(x))k + ψλ(x)(δik − ∂iΠk

Ω(x))
]

(where ξk denotes the k-th component of ξ ∈ RN , δik is the Kronecker symbol and ∂i is the partial
derivative with respect to xi). By (3.15), this implies the first inequality in (3.17). By further
reducing |λ| > 0 if necessary, the latter yields |(DΦλ(x))−1| 6 C, hence, setting x′ = Φλ(x),

|DΨλ(x′)− I| = |(DΦλ(x))−1(I −DΦλ(x))| 6 C|λ|χBR/2(x) = C|λ|χBR/2(x′),

(since Φλ(BR/2) = BR/2), which concludes the proof of (3.17).

Regarding the second-order derivatives, for a.e. x, x′ ∈ RN we claim

(3.18) |D2Φλ(x)| 6 C|λ|
R

χBR/2(x), |D2Ψλ(x′)| 6 C|λ|
R

χBR/2(x′).

Indeed, for a.e. x ∈ BR/2, i, j, k ∈ {1, . . . N} we have

∂ijΦ
k
λ(x) = λ

[
∂ijψλ(x)(x−ΠΩ(x))k + ∂iψλ(x)(δjk − ∂jΠk

Ω(x))

+ ∂jψλ(x)(δik − ∂iΠk
Ω(x)) + ψλ(x)∂ijΠ

k
Ω(x)

]
,

which by (3.15) implies the first estimate in (3.18). Regarding the second one, observe that
D2Ψλ = 0 in Bc

R/2, while for Φλ(x) = x′ ∈ BR/2, the chain rule gives, almost everywhere,

∂ijΨ
k
λ(x′) = −∂βγΦα

λ(x)∂iΨ
β
λ(x′)∂jΨ

γ
λ(x′)∂αΨk

λ(x′),

with the sum over repeated indexes convention. Due to the estimate for D2Φλ and (from (3.17))
‖DΨλ‖∞ 6 C when |λ| is sufficiently small, we infer the second inequality in (3.18).
Now set for all ε > 0, x ∈ RN

gε,λ(x) =

∫
{|Φλ(x)−Φλ(y)|>ε}

(dsΩ(Φλ(x))− dsΩ(Φλ(y)))p−1

|x− y|N+ps
dy.

We claim that there exist λ1, C > 0, depending only N , p, s, Ω, and ϕ, s.t. for every 0 < |λ| < λ1

there exists g0,λ ∈ L∞(DR/2) s.t.

(3.19) ‖g0,λ‖L∞(DR/2) 6 C
(

1 +
|λ|
Rs

)
, gε,λ → g0,λ in L∞loc(DR/2), as ε→ 0+.

The path to (3.19) begins with the change of variables x′ = Φλ(x), y′ = Φλ(y) (note that by the
previous discussion x′ ∈ DR/2 whenever x ∈ DR/2) and defining

K(x′, y′) :=
|DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′)−Ψλ(y′)|N+ps
|detDΨλ(y′)|,
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so that for all x ∈ DR/2 we can rephrase

gε,λ(x) =

∫
Bcε(x′)

(dsΩ(x′)− dsΩ(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
K(x′, y′) dy′

=

∫
Bcε(x′)

(dsΩ(x′)− dsΩ(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
|detDΨλ(x′)| dy′

+

∫
Bcε(x′)

(dsΩ(x′)− dsΩ(y′))p−1

|DΨλ(x′)(x′ − y′)|N+ps
(K(x′, y′)− |detDΨλ(x′)|) dy′

= g1
ε,λ(x) + g2

ε,λ(x).

By (3.17) and Lemma 3.3, taking if necessary |λ| > 0 even smaller, the claim (3.19) is true for
g1
ε,λ, with corresponding g1

0,λ obeying ‖g1
0,λ‖L∞(DR/2) 6 C. Regarding g2

ε,λ, we split as follows:

K(x′, y′)− |detDΨλ(x′)| = |DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′)−Ψλ(y′)|N+ps

(
|detDΨλ(y′)| − |detDΨλ(x′)|

)
+
( |DΨλ(x′)(x′ − y′)|N+ps

|Ψλ(x′)−Ψλ(y′)|N+ps
− 1
)
|detDΨλ(x′)|

= K1(x′, y′) +K2(x′, y′).

We first estimate K1(x′, y′), by applying the triangle inequality, Jacobi’s formula for the derivative
of a determinant, and estimates (3.17), (3.18):

|K1(x′, y′)| 6 ‖DΦλ‖N+ps
L∞(RN )

‖DΨλ‖N+ps
L∞(RN )

∣∣detDΨλ(y′)− detDΨλ(x′)
∣∣

6 C
∣∣∣ ∫ 1

0

d

dt
detDΨλ(x′ + t(y′ − x′)) dt

∣∣∣
6 C

∫ 1

0
‖DΨλ‖N−1

L∞(RN )
|D2Ψλ(x′ + t(y′ − x′))||x′ − y′| dt

6
C|λ|
R
|x′ − y′|

∫ 1

0
χBR/2(x′ + t(y′ − x′)) dt

6
C|λ|
R
|x′ − y′|min

{
1,

R

|x′ − y′|

}
6 C|λ|min

{ |x′ − y′|
R

, 1
}
,

where the calculations above are justified for a.e. y′ ∈ RN since, by a well known property, Sobolev
functions (detDΨλ in our case) are absolutely continuous on almost every line. Similarly, to
estimate K2(x′, y′) we argue as in [14, Lemma 3.4], applying (3.17), (3.18), and Taylor’s expansion
with integral remainder:

|K2(x′, y′)| 6 C
( |DΨλ(x′)(x′ − y′)|2

|Ψλ(x′)−Ψλ(y′)|2
− 1
)

6 C

∣∣Ψλ(x′)−Ψλ(y′) +DΨλ(x′)(x′ − y′)
∣∣ ∣∣Ψλ(x′)−Ψλ(y′)−DΨλ(x′)(x′ − y′)

∣∣
|Ψλ(x′)−Ψλ(y′)|2

6
C‖DΦλ‖2L∞(RN )

|x′ − y′|2
(
2‖DΨλ‖L∞(RN )|x′ − y′|

)∣∣∣ ∫ 1

0
(1− t) d

2

dt2
Ψλ(x′ + t(y′ − x′)) dt

∣∣∣
6

C

|x′ − y′|

∫ 1

0

|λ||x′ − y′|2

R
χBR/2(x′ + t(y′ − x′)) dt

6
C|λ||x′ − y′|

R
min

{
1,

R

|x′ − y′|

}
6 C|λ|min

{ |x′ − y′|
R

, 1
}
.
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Summing up the last relations, we have for all x′ ∈ DR/2 and a.e. y′ ∈ RN∣∣K(x′, y′)− |detDΨλ(x′)|
∣∣ 6 C|λ|min

{ |x′ − y′|
R

, 1
}
.

Set

h(x′, y′) =
|dsΩ(x′)− dsΩ(y′)|p−1

|DΨλ(x′)(x′ − y′)|N+ps

∣∣K(x′, y′)− |detDΨλ(x′)|
∣∣,

so that

g2
ε,λ(x) =

∫
Bcε(x′)

h(x′, y′) dy′.

Using the previous estimate and the s-Hölder continuity of dsΩ, we get for all x′ ∈ DR/2

‖h(x′, ·)‖L1(RN ) 6 C|λ|
∫
RN

|dsΩ(x′)− dsΩ(y′)|p−1

|DΨλ(x′)(x′ − y′)|N+ps
min

{ |x′ − y′|
R

, 1
}
dy′

6 C|λ|‖DΦλ‖N+ps
L∞(RN )

∫
RN

1

|x′ − y′|N+s
min

{ |x′ − y′|
R

, 1
}
dy′

6 C|λ|
[ ∫
{|z′|<R}

dz′

|z′|N+s−1
+

∫
{|z′|>R}

dz′

|z′|N+s

]
6
C|λ|
Rs

.

By an entirely similar argument to the one used to deal with h5 in the previous Lemma, we
obtain the claim (3.19) for g2

ε,λ as well, with corresponding g2
0,λ obeying ‖g2

0,λ‖L∞(DR/2) 6 C|λ|/Rs.
Finally, recalling (3.16) and applying [14, Corollary 2.7], we conclude that, whenever |λ| 6 λ1,

(−∆)spwλ(x) = lim
ε→0+

gε,λ(x),

and therefore

|(−∆)spwλ| 6 ‖g0,λ‖L∞(DR/2) 6 C5

(
1 +
|λ|
Rs

)
in DR/2,

for convenient λ1, C5 > 0 depending on N , p, s, Ω, and ϕ. �

Remark 3.5. In the case when Ω is a half space, we get the cleaner estimate

|(−∆)spwλ| 6
C

Rs
|λ| in DR/2,

for all sufficiently small |λ| depending on ϕ.

The next result yields a lower bound on the supersolution of (3.1) similar to that given in Lemma
3.1, but for small excess (defined in (3.2)):

Lemma 3.6. Let ∂Ω be C1,1, u ∈ W̃ s,p(DR) solve (3.1) and p > 2. Then, for all θ > 1 there
exist Cθ = Cθ(N, p, s,Ω, θ) > 1, σθ = σθ(N, p, s,Ω, θ) ∈ ]0, 1] s.t. for all R ∈ ]0, ρ/4[

Ex(u,m,R) 6 mθ =⇒ inf
DR/2

( u
dsΩ
−m

)
> σθEx(u,m,R)−Cθ(mp−1 +K)

1
p−1R

s
p−1 −CθHRs.

Proof. Let ϕ ∈ C∞c (B1) be s.t. 0 6 ϕ 6 1, ϕ = 1 in B1/2, and set for all λ > 0, x ∈ RN

wλ(x) = m
(

1 + λϕ
( x
R

))
dsΩ(x).

Then wλ ∈W s,p(DR) and satisfies

(3.20) inf
B̃R

wλ > m
(3R

2

)s
, sup

DR

wλ 6 m(1 + λ)Rs,

where B̃R is defined as in (2.2). By homogeneity and Lemma 3.4 (with R in the place of R/2) we
can find λ1 > 0 and C5 > 1 s.t. for all λ ∈ ]0, λ1]

(3.21) (−∆)spwλ 6 C5m
p−1
(

1 +
λ

Rs

)
in DR.
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With no loss of generality we may assume

0 < λ1 6 min
{

1,
(3/2)s − 1

2

}
.

Now set for all x ∈ RN

vλ(x) =

{
wλ(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R.

Clearly, since B̃R is bounded and at a positive distance from DR, we can apply Proposition 2.6

and deduce that vλ ∈ W̃ s,p(DR) and for all x ∈ DR

(3.22) (−∆)sp vλ(x) = (−∆)spwλ(x) + 2

∫
B̃R

(wλ(x)− u(y))p−1 − (wλ(x)− wλ(y))p−1

|x− y|N+ps
dy.

We need to estimate the integral in (3.22). We note that, for all x ∈ DR and y ∈ B̃R, by (3.1) we
have u(y) > mdsΩ(y) > wλ(y). Using (3.20), we have as well

u(y)− wλ(x) > wλ(y)− wλ(x) >
mRs

2

((3

2

)s
− 1
)
.

By Lagrange’s theorem we deduce

(u(y)− wλ(x))p−1 − (wλ(y)− wλ(x))p−1 >
mp−2R(p−2)s

C
(u(y)−mdsΩ(y)).

Plugging (3.21) and these estimates into (3.22) and recalling the properties (2.2) of B̃R, we get

(−∆)sp vλ(x) 6 C5m
p−1
(

1 +
λ

Rs

)
− 2

mp−2R(p−2)s

C

∫
B̃R

u(y)−mdsΩ(y)

|x− y|N+ps
dy

6 C5m
p−1
(

1 +
λ

Rs

)
− 2mp−2

CRs
−
∫
B̃R

( u(y)

dsΩ(y)
−m

)
dy

6 Cmp−1 +
mp−2

Rs

(
Cλm− Ex(u,m,R)

C

)
,

for all x ∈ DR. We then want to find suitable σθ, Cθ, λ s.t. either the thesis is trivial, or

Cmp−1 +
mp−2

Rs

(
Cλm− Ex(u,m,R)

C

)
6 −K −mp−2H,

allowing by comparison to infer u > wλ in DR. As it turns out, this reduces to an elementary set
of inequalities, which can be solved for λ being the right quantity to get the conclusion.

We thus fix θ > 1, set

σθ =
λ1

2θC2
, Cθ = σθ max

{
4C, (4C2θp−2)

1
p−1
}
, λ =

σθEx(u,m,R)

m
,

and assume

(3.23) Ex(u,m,R) 6 mθ.

By the choice of constants and (3.23) we have

λ 6
λ1

2C2
< λ1, Cλm 6

Ex(u,m,R)

2C
,

so by the estimate above

(3.24) (−∆)sp vλ 6 Cm
p−1 − mp−2Ex(u,m,R)

2CRs
in DR.

Being the left-hand side of the thesis non-negative by assumption, we can suppose

σθEx(u,m,R) > Cθ(m
p−1 +K)

1
p−1R

s
p−1 + CθHR

s.
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In particular, by the choice of Cθ and (3.23) (recall that C > 1 > σθ)

Ex(u,m,R)p−1 >
Cp−1
θ (mp−1 +K)Rs

σp−1
θ

> 4C2θp−2(mp−1 +K)Rs

>
4CEx(u,m,R)p−2

mp−2
(Cmp−1 +K)Rs.

The last two inequalities lead to

mp−2Ex(u,m,R) >

4C(Cmp−1 +K)Rs

Cθ
σθ
mp−2HRs > 4Cmp−2HRs,

and by summing up to

mp−2Ex(u,m,R) > 2C(Cmp−1 +K +mp−2H)Rs.

Thus, by (3.24) and (3.1) we have{
(−∆)sp vλ 6 −K −mp−2H 6 (−∆)sp u in DR

vλ 6 u in Dc
R,

which by Proposition 2.1 implies vλ 6 u in RN . In particular, recalling the definitions of wλ and
λ, for all x ∈ DR/2 we have

u(x)

dsΩ(x)
−m > wλ(x)

dsΩ(x)
−m = mλ > σθEx(u,m,R),

which gives the conclusion. �

Finally, we localize the global bound from below in (3.1) and prove the main result of this section,
i.e., the lower bound on supersolutions of (1.1) type problems locally bounded from below by a

multiple of dsΩ. Precisely, we deal, for some K̃,m > 0, with the problem

(3.25)

{
(−∆)sp u > −K̃ in DR

u > mdsΩ in D2R.

Proposition 3.7. (Lower bound) Let ∂Ω be C1,1, u ∈ W̃ s,p
0 (DR) solve (3.25) and p > 2. Then, for

all ε > 0 there exist C̃ε = C̃ε(N, p, s,Ω, ε) > 0 and two more constants σ2 = σ2(N, p, s,Ω) ∈ ]0, 1],
C6 = C6(N, p, s,Ω) > 1 s.t. for all R ∈ ]0, ρ/4[

inf
DR/2

( u
dsΩ
−m

)
> σ2Ex(u,m,R)− ε

∥∥∥ u
dsΩ
−m

∥∥∥
L∞(DR)

− C6tail1

((
m− u

dsΩ

)
+
, 2R

)
Rs

− C̃ε
[
m+ K̃

1
p−1 + tailp−1

((
m− u

dsΩ

)
+
, 2R

)]
R

s
p−1 .

Proof. We may assume u/dsΩ − m ∈ L∞(DR), otherwise there is nothing to prove. We set
v = u ∨mdsΩ and fix ε > 0. By (3.25) and Proposition 2.7 (i) (with εp−1 replacing ε) there exists
Cε, C2 > 0 with C2 depending on N , p, s, and Cε also depending on ε, s.t. in DR

(−∆)sp v > −K̃ −
εp−1

Rs

∥∥∥ u
dsΩ
−m

∥∥∥p−1

L∞(DR)
− Cεtailp−1

((
m− u

dsΩ

)
+
, 2R

)p−1

− C2m
p−2tail1

((
m− u

dsΩ

)
+
, 2R

)
=: −K −mp−2H,

where we have set

K = K̃ +
εp−1

Rs

∥∥∥ u
dsΩ
−m

∥∥∥p−1

L∞(DR)
+ Cεtailp−1

((
m− u

dsΩ

)
+
, 2R

)p−1
,
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H = C2tail1

((
m− u

dsΩ

)
+
, 2R

)
.

Thus, v satisfies (3.1) with K,H,m > 0 defined as above. By Lemma 3.1 we can find constants
0 < σ1 6 1 6 θ1, C3 (depending on N , p, s) s.t.

Ex(v,m,R) > mθ1 =⇒ inf
DR/2

( v

dsΩ
−m

)
> σ1Ex(v,m,R)− C3(KRs)

1
p−1 − C3HR

s.

Next, choose θ = θ1 > 1 in Lemma 3.6. Then, there exist constants 0 < σθ1 6 1 6 Cθ1 s.t.

Ex(v,m,R) 6 mθ1 =⇒ inf
DR/2

( v

dsΩ
−m

)
> σθ1Ex(v,m,R)−Cθ1(mp−1 +K)

1
p−1R

s
p−1 −Cθ1HRs.

Set σ2 ∈ ]0, 1[, C > 1 defined as

σ2 = min
{
σ1, σθ1

}
, C = max

{
C3, Cθ1

}
,

hence depending only on N , p, s, and Ω. In both cases, since v = u in D2R ⊃ B̃R, we have

inf
DR/2

( u
dsΩ
−m

)
> σ2Ex(u,m,R)− C(mp−1 +K)

1
p−1R

s
p−1 − CHRs.

By (3.25) and the definitions of K, H, we have

inf
DR/2

( u
dsΩ
−m

)
> σ2Ex(u,m,R)− C(mp−1 +K)

1
p−1R

s
p−1 − CHRs

> σ2Ex(u,m,R)− Cε
∥∥∥ u

dsΩ
−m

∥∥∥
L∞(DR)

− Ctail1

((
m− u

dsΩ

)
+
, 2R

)
Rs

− C
[
m+ K̃

1
p−1 + Cεtailp−1

((
m− u

dsΩ

)
+
, 2R

)]
R

s
p−1 ,

which gives the claim (by renaming ε and the constants involved) �

4. The upper bound

This section is devoted to proving an upper bound for the quotient u/dsΩ, where u is a subsolution
of a (1.1) type problem on a special domain, locally bounded from above by a multiple of dsΩ.
The upper bound differs substantially from the lower one, as for large values of the corresponding
nonlocal excess, the function u will change sign along the boundary, which of course agrees with
u being bounded from above by a positive multiple of dsΩ. The difficulty comes then from the
degeneracy of (−∆)sp , as u will have vanishing normal s-derivative at some boundary point, and
any barrier for u forcing such transition will present the same phenomenon and thus require a
more delicate construction.

Throughout, we will assume 0 ∈ ∂Ω, R ∈ ]0, ρ/4[ with ρ defined in (2.1). As in Section 3, we first

consider a function u ∈ W̃ s,p(DR) satisfying

(4.1)

{
(−∆)sp u 6 K +Mp−2H in DR

u 6MdsΩ in RN ,

for some M,K,H > 0. We begin by constructing an explicit barrier:

Lemma 4.1. (Barrier/2) Let ∂Ω be C1,1, R ∈ ]0, ρ/4[ and x̄ ∈ DR/2. Then there exist v ∈
W s,p

0 (Ω) ∩ C(RN ) and C ′3 = C ′3(N, p, s,Ω) > 1 s.t.

(i) |(−∆)sp v| 6
C ′3
Rs

in D2R;

(ii) v(x̄) = 0;

(iii) v >
dsΩ
C ′3

in Dc
R;

(iv) |v| 6 C ′3Rs in D2R.
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Ω

ER

4R

3R/4

Figure 3. The regularized set ER in gray; in the dotted part we have dΩ 6 CdER .

Proof. We will construct the barrier as a solution of a double obstacle problem, and to this end
we divide the proof in several steps.
Step 1 (geometry). Set

ER =
⋃{

Br(y) : y ∈ Ω, r >
R

8
, Br(y) ⊂ D4R \D3R/4

}
.

By the regularity of ∂Ω stated in (2.1) and R < ρ/4, ER ⊂ Ω is a bounded domain with the
interior sphere property with radius ρER > R/16 (see figure 3). We claim that

(4.2) dΩ 6 CdER in D3R \DR.

Indeed, fix a point x ∈ D3R \DR. Since dER(x) > R/8 and

dDc
7R/8

(x) 6 3R+
R

4
6 26 dER(x),

we have dDc
7R/8

(x) 6 CdER(x). By the triangle inequality and R < ρ/4 we have

dΩ(x) = |x−ΠΩ(x)| 6 |x−ΠΩ(ΠDc
7R/8

(x))|

6 |x−ΠDc
7R/8

(x)|+ |ΠDc
7R/8

(x)−ΠΩ(ΠDc
7R/8

(x))|.

We distinguish two cases:

(a) if ΠDc
7R/8

(x) ∈ ∂Ω, then

dΩ(x) 6 dDc
7R/8

(x) 6 CdER(x);

(b) if ΠDc
7R/8

(x) /∈ ∂Ω, then |ΠDc
7R/8

(x)| = 7R/8, which in turn implies |ΠΩ(ΠDc
7R/8

(x))| 6 R and
so

dΩ(x) 6 dDc
7R/8

(x) +R+
7R

8
6 CdER(x) +

15R

8
6 CdER(x).

In both cases we get (4.2).

Step 2 (lower obstacle). Let ϕ̃ ∈W s,p
0 (ER) be the solution of the torsion problem{
(−∆)sp ϕ̃ = 1 in ER

ϕ̃ = 0 in EcR.

By Lemma 2.4 we have (−∆)sp ϕ̃ 6 1 in RN , while Lemma 2.3 and the estimate on ρER imply

ϕ̃ >
R

s
p−2

C
dsER in RN ,
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with some C > 0 depending on N , p, s. As in Section 2, we denote by u4R ∈ W s,p
0 (B4R) the

solution to the torsion equation (2.4) in B4R. So, since ER ⊂ B4R, we have{
(−∆)sp ϕ̃ 6 (−∆)sp u4R in B4R

ϕ̃ 6 u4R in Bc
4R.

By Proposition 2.1 and Lemma 2.2 we have

ϕ̃ 6 u4R 6 CR
s
p−1 dsB4R

6 CRp
′s in RN .

We set ϕ = R
− s
p−1 ϕ̃ ∈W s,p

0 (ER), so by [14, Lemma 2.9 (i)] and the inequalities above we have

(4.3) (−∆)sp ϕ =
(−∆)sp ϕ̃

Rs
6

1

Rs
in RN ,

as well as

(4.4) ϕ 6 CR
(
p′− 1

p−1

)
s

= CRs in RN .

Now, by (4.2) and Lemma 2.3 we have

(4.5) ϕ >
dsER
C
>

dsΩ
C

in D3R \DR.

Step 3 (upper obstacle). Pick λ > 0 (to be determined later) and set for all x ∈ RN

ψ(x) =
λ

R
s
p−1

(
max
RN

uR/8 − uR/8(x− x̄)
)
,

where uR/8 ∈W
s,p
0 (BR/8) solves (2.4) in BR/8. Clearly ψ ∈ W̃ s,p(Ω), ψ > 0 and ψ(x̄) = 0 (since

uR/8 is radially decreasing in BR/8). We claim that for all λ(N, p, s,Ω) > 0 big enough

(4.6) ψ > ϕ in RN .

Indeed, fix x ∈ RN . Two cases may occur:

(a) if x ∈ D3R/4, then ϕ(x) = 0, while ψ(x) > 0;
(b) if x ∈ Dc

3R/4, then |x− x̄| > R/8, hence uR/8(x− x̄) = 0, while by Lemma 2.4

max
RN

uR/8 >
R

s
p−1

C
max
RN

dsBR/8 >
Rp
′s

C
,

which in turn implies ψ(x) > λRs/C. By using (4.4), we have ϕ(x) 6 ψ(x) for large enough λ.

In both cases we have (4.6) for some λ(N, p, s,Ω) > 0 which will be fixed henceforth. By [14, Lemma
2.9 (i)] and Lemma 2.4 we have

(4.7) (−∆)sp ψ > −
C

Rs
in RN .

One last property of ψ is that

(4.8) ψ 6 CRs in RN ,

which follows from the upper bound in Lemma 2.4 and

ψ 6
C

R
s
p−1

max
RN

uR/8 6 C max
RN

dsBR/8 6 CR
s.

Step 4 (the barrier). Consider the constrained minimization problem

(4.9) min
{

[u]ps,p : u ∈W s,p
0 (Ω), ϕ 6 u 6 ψ in RN

}
.

By Lemma 2.5, problem (4.9) has a solution ṽ ∈W s,p
0 (Ω), which satisfies

0 ∧ (−∆)sp ψ 6 (−∆)sp ṽ 6 0 ∨ (−∆)sp ϕ in Ω.
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By (4.3), (4.7) we have

(4.10) |(−∆)sp ṽ| 6
C

Rs
in D2R.

Besides, since ϕ(x̄) = ψ(x̄) = 0 we deduce ṽ(x̄) = 0, while (4.8) implies

(4.11) 0 6 ṽ 6 CRs in RN .

Moreover, by (4.5) we have

(4.12) ṽ >
dsΩ
C̃

in D3R \DR,

for some C̃ = C̃(N, p, s,Ω) > 0. Still, ṽ is not the desired function as it only satisfies the lower
bound (4.12) in D3R \DR. So we need to extend (4.12) to the larger set Dc

R while keeping the
other properties. Set for all x ∈ RN

v(x) =

ṽ(x) if x ∈ D3R

ṽ(x) ∨
dsΩ(x)

C̃
if x ∈ Dc

3R.

Clearly v ∈W s,p
0 (Ω) satisfies (ii) and (iv), since, by (4.12), we are changing ṽ only outside of D3R.

Moreover, (iii) now holds by construction. So, it remains to check (i) for v. By Proposition 2.6
we have for all x ∈ D2R

(4.13) (−∆)sp v(x) = (−∆)sp ṽ(x) + 2

∫
Dc3R∩{ṽ<dsΩ/C̃}

(ṽ(x)− dsΩ(y)/C̃)p−1 − (ṽ(x)− ṽ(y))p−1

|x− y|N+ps
dy.

By the monotonicity of t 7→ tp−1 the integrand is negative and (4.10) yelds

(−∆)sp v 6
C ′3
Rs

in D2R.

On the other hand, for all x ∈ D2R, y ∈ Dc
3R we have by (4.11)∣∣∣ṽ(x)−

dsΩ(y)

C̃

∣∣∣ 6 C(Rs + |y|s) 6 C|y|s

and

|ṽ(x)− ṽ(y)| 6 CRs 6 C|y|s.
Since |x− y| > |y|/3 for all x ∈ D2R, y ∈ Dc

3R, plugging these inequalities into (4.13) gives

(−∆)sp v > −
C ′3
Rs
− C

∫
Dc3R

dy

|y|N+s
dy > −C

′
3

Rs
in D2R,

for a possibly larger C ′3 > 1 (depending on N , p, s, and Ω), which concludes the proof of (i). �

The next result shows that, if a subsolution of (4.1) is small enough in B̃R, then it is actually
negative in DR/2:

Lemma 4.2. Let ∂Ω be C1,1, R ∈ ]0, ρ/4[, p > 2 and u ∈ W̃ s,p(DR) satisfy (4.1). Then there
exists C ′4 = C ′4(N, p, s,Ω) > 1 s.t.

Ex(u,M,R) > C ′4
(
M + (KRs)

1
p−1 +HRs

)
=⇒ sup

DR/2

u 6 0.

Proof. Fix x̄ ∈ DR/2, and let v ∈W s,p
0 (Ω) be the barrier in the previous Lemma. Set

w(x) =

{
C ′3Mv(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,
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for all x ∈ RN , C ′3 > 1 being as in Lemma 4.1. Recall that dist (DR, B̃R) > 0. By Proposition
2.6, [14, Lemma 2.9 (i)], inequality (3.4), and Lemma 4.1 (i) (iii), for all x ∈ DR we have

(−∆)spw(x) = (−∆)sp (C ′3Mv(x)) + 2

∫
B̃r

(C ′3Mv(x)− u(y))p−1 − (C ′3Mv(x)− C ′3Mv(y))p−1

|x− y|N+ps
dy

> (C ′3M)p−1(−∆)sp v(x) +
1

C

∫
B̃R

(C ′3Mv(y)− u(y))p−1

|x− y|N+ps

> −CM
p−1

Rs
+

1

CRps
−
∫
B̃R

(MdsΩ(y)− u(y))p−1 dy.

By the properties (2.2) of B̃R, Hölder’s inequality (recall that p > 2), and u 6MdsΩ in B̃R

−
∫
B̃R

(MdsΩ(y)− u(y))p−1 dy >
Rs(p−1)

C
−
∫
B̃R

(
M − u(y)

dsΩ(y)

)p−1
dy >

Rs(p−1)

C
Ex(u,M,R)p−1,

so that

(4.14) (−∆)spw > −
CMp−1

Rs
+

Ex(u,M,R)p−1

CRs
in DR,

for some C > C ′3. Now set

C ′4 = (3C2)
1
p−1 > (3C)

1
p−1 ,

which only depends on N , p, s, and Ω. Assume

(4.15) Ex(u,M,R) > C ′4
(
M + (KRs)

1
p−1 +HRs

)
.

A straightforward computation leads from (4.15) to the following inequalities

Ex(u,M,R)p−1 >


(C ′4M)p−1 > 3C2Mp−1

(C ′4)p−1KRs > 3CKRs

(C ′4M)p−2Ex(u,M,R) > 3CMp−2HRs,

and hence to

Ex(u,M,R)p−1 > C2Mp−1 + CKRs + CMp−2HRs.

So, by (4.14) we have

(−∆)spw > K +Mp−2H > (−∆)sp u in DR.

Besides, we have u 6 w in Dc
R: indeed, if x ∈ B̃R there is nothing to prove. If x ∈ Dc

R \ B̃R, by
(4.1) and Lemma 4.1 (iii) we have

u(x) 6MdsΩ(x) 6 C ′3Mv(x) = w(x).

Summarizing, we obtained {
(−∆)sp u 6 (−∆)spw in DR

u 6 w in Dc
R.

By Proposition 2.1 we have u 6 w in RN . In particular, by Lemma 4.1 (ii) we get u(x̄) 6 0. By
arbitrariness of x̄ ∈ DR/2, the proof is concluded. �

Now we can prove our upper bounds on subsolutions. First we prove an upper bound for large
values of Ex(u,M,R):

Lemma 4.3. Let ∂Ω be C1,1, p > 2 and u ∈ W̃ s,p(DR) satisfy (4.1). Then there exist θ′1 =
θ′1(N, p, s,Ω) > 1, σ′1 = σ′1(N, p, s,Ω) ∈ ]0, 1], and C ′5 = C ′5(N, p, s,Ω) > 1 s.t. for all R ∈ ]0, ρ/4[

Ex(u,M,R) >Mθ′1 =⇒ inf
DR/4

(
M − u

dsΩ

)
> σ′1Ex(u,M,R)− C ′5(KRs)

1
p−1 − C ′5HRs.
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Proof. We set

HR =
⋃{

Br(y) : y ∈ D3R/8, r >
R

16
, Br(y) ⊂ D3R/8

}
.

By (2.1), HR satisfies the interior sphere property with radius ρHR > R/32. Moreover,

(4.16) dΩ 6 CdHR in DR/4

for some C > 1 (this is proved exactly as (3.3), changing the radii). Let ϕ ∈W s,p
0 (HR) solve

(4.17)

{
(−∆)sp ϕ = 1 in HR

ϕ = 0 in Hc
R.

By Lemma 2.4 we have (−∆)sp ϕ 6 1 in RN . Besides we have

(4.18)
R

s
p−1

C
dsΩ 6 ϕ 6 CR

p′s in DR/4,

the first inequality coming from Lemma 2.3 and (4.16), while the second is proved as in Lemma
4.1 by comparing ϕ to uR/2. Now pick λ > 0 (to be determined later) and set for all x ∈ RN

v(x) =

−
λ

R
s
p−1

ϕ(x) if x ∈ DR/2

MdsΩ(x) if x ∈ Dc
R/2.

Clearly v ∈ W̃ s,p(HR) and dist (Dc
R/2, HR) > 0. So we can apply Proposition 2.6, which along

with [14, Lemma 2.9 (i)], (4.17) and some direct calculations yields for all x ∈ HR ⊂ DR/2

(−∆)sp v(x) = −λ
p−1

Rs
(−∆)sp ϕ(x) + 2

∫
Dc
R/2

(−λR−
s
p−1ϕ(x)−MdsΩ(y))p−1 − (−λR−

s
p−1ϕ(x))p−1

|x− y|N+ps
dy

> −λ
p−1

Rs
− C

∫
Dc
R/2

λp−1R−sϕp−1(x) +Mp−1d
(p−1)s
Ω (y)

|x− y|N+ps
dy.

Therefore, using C|y − x| > |y| for x ∈ HR and y ∈ Bc
R/2, (4.18) and dΩ(y) 6 |y|, we get

(−∆)sp v(x) > −λ
p−1

Rs
− C(λp−1 +Mp−1)

∫
Bc
R/2

R(p−1)s + |y|(p−1)s

|y|N+ps
dy

> −C λp−1 +Mp−1

Rs
,

(4.19)

for x ∈ HR. Further, set for all x ∈ RN

w(x) =

{
v(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,

where B̃R is defined in (2.2). By Proposition 2.6, w ∈ W̃ s,p(HR) and for all x ∈ HR

(−∆)spw(x) = (−∆)sp v(x) + 2

∫
B̃R

(v(x)− u(y))p−1 − (v(x)−MdsΩ(y))p−1

|x− y|N+ps
dy

> −C λp−1 +Mp−1

Rs
+

1

C

∫
B̃R

(MdsΩ(y)− u(y))p−1

|x− y|N+ps
dy

> −C λp−1 +Mp−1

Rs
+

1

CRs
−
∫
B̃R

(
M − u(y)

dsΩ(y)

)p−1
dy

> −C λp−1 +Mp−1

Rs
+

Ex(u,M,R)p−1

CRs
,

(4.20)
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where we have also used (4.19), (3.4) and Hölder’s inequality. So far, C > 1 has been chosen as
big as necessary to satisfy all inequalities, depending only on N , p, s, and Ω. Now we can fix the
constants in such a way that either the thesis is trivial or w is an upper barrier for u. Set

λ =
Ex(u,M,R)

(4C2)
1
p−1

, θ′1 = max
{

2C ′4, (4C2)
1
p−1
}
,

σ′1 =
1

C(4C2)
1
p−1

, C ′5 = σ′1 max
{

2C ′4, (4C)
1
p−1 ,

4C

(θ′1)p−2

}
,

where C ′4 > 0 is as in Lemma 4.2. Clearly C ′5 > 1, and all these constants (except λ) only depend
on N , p, s, and Ω. Now we prove the asserted implication. Assume

(4.21) Ex(u,M,R) >Mθ′1.

Then, with the previous choices, (4.20) implies in HR

(−∆)spw >
C

Rs

[
−Ex(u,M,R)p−1

4C2
−
(Ex(u,M,R)

θ′1

)p−1
+

Ex(u,M,R)p−1

C2

]
>

Ex(u,M,R)p−1

2CRs
.

(4.22)

We can also assume

(4.23) σ′1Ex(u,M,R) > C ′5(KRs)
1
p−1 + C ′5HR

s,

otherwise there is nothing to prove (recall that u satisfies (4.1)). Such relation and (4.21) imply

Ex(u,M,R)p−1 >


(C ′5
σ′1

)p−1
KRs > 4CKRs

(Mθ′1)p−2C
′
5

σ′1
HRs > 4CMp−2HRs,

and in turn
Ex(u,M,R)p−1

2CRs
> K +Mp−2H.

Plugging the last inequality into (4.22), we get

(4.24) (−∆)spw > K +Mp−2H > (−∆)sp u in HR.

Let us now consider the pointwise estimates for x ∈ Hc
R. Three cases may occur:

(a) if x ∈ B̃R, then w(x) = u(x);

(b) if x ∈ Dc
R/2 ∩ B̃

c
R, then w(x) = MdsΩ(x) > u(x) by assumption;

(c) if x ∈ DR/2 ∩Hc
R, by (4.23), (4.21) we also have

Ex(u,M,R) >


C ′5
σ′1

(KRs)
1
p−1 +

C ′5
σ′1
HRs > 2C ′4(KRs)

1
p−1 + 2C ′4HR

s

Mθ′1 > 2C ′4M,

which summarizes as

Ex(u,M,R) > C ′4
(
M + (KRs)

1
p−1 +HRs

)
,

and by Lemma 4.2 implies u 6 0 in DR/2, hence w(x) = 0 > u(x).

Therefore u 6 w in Hc
R, and recalling (4.24) we therefore have{

(−∆)sp u 6 (−∆)spw in HR

u 6 w in Hc
R.
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By Proposition 2.1 we deduce u 6 w in RN . In particular, for all x ∈ DR/4 we have (recalling the
definitions of ϕ, v, w, and of λ)

u(x) 6 −λϕ(x)

R
s
p−1

6 −σ′1Ex(u,M,R)dsΩ(x).

So we have

inf
DR/4

(
M − u

dsΩ

)
> − sup

DR/4

u

dsΩ
> σ′1Ex(u,M,R),

which readily yields the conclusion. �

Now we prove a similar upper bound for the case when Ex(u,M,R) is small:

Lemma 4.4. Let ∂Ω be C1,1, p > 2, u ∈ W̃ s,p(DR) solve (4.1) and R ∈ ]0, ρ/4[. Then, for all
θ > 1 there exist σ′θ = σ′θ(N, p, s,Ω, θ) ∈ ]0, 1], C ′θ = C ′θ(N, p, s,Ω, θ) > 1 s.t.

Ex(u,M,R) 6Mθ =⇒ inf
DR/2

(
M − u

dsΩ

)
> σ′θEx(u,M,R)− C ′θ(Mp−1 +K)

1
p−1R

s
p−1 − C ′θHRs.

Proof. The proof is similar to the one of Lemma 3.6 and we only sketch it. Fix ϕ ∈ C∞c (B1) s.t.
ϕ = 1 in B1/2 and 0 6 ϕ 6 1 in B1, let λ1 > 0 be as in Lemma 3.4, and for all λ ∈ ]0, λ1] set

wλ(x) = M
(

1− λϕ
( x
R

))
dsΩ(x), x ∈ RN .

Without loss of generality we may assume λ1 6 1. Then wλ ∈W s,p(DR) and it satisfies(−∆)spwλ > −C5M
p−1
(

1− λ

Rs

)
in DR

wλ = M(1− λ)dsΩ in DR/2

(C5 > 0 as in Lemma 3.4). Now set for all x ∈ RN

vλ(x) =

{
wλ(x) if x ∈ B̃c

R

u(x) if x ∈ B̃R,

where B̃R is defined as in (2.2). By Proposition 2.6, we have for all x ∈ DR

(−∆)sp vλ(x) = (−∆)spwλ(x) + 2

∫
B̃R

(wλ(x)− u(y))p−1 − (wλ(x)− wλ(y))p−1

|x− y|N+ps
dy,

and estimating the integral term as in the proof of Lemma 3.6, we obtain

(4.25) (−∆)sp vλ > −CMp−1 − Mp−2

Rs

(
CMλ− Ex(u,M,R)

C

)
,

for some C > 1 (depending on N , p, s, and Ω). Now we fix θ > 1 and set

σ′θ =
λ1

2θC2
, C ′θ = σ′θ max

{
4C, (4C2θp−2)

1
p−1
}
, λ =

σ′θEx(u,M,R)

M
.

Note that σ′θ 6 1. We also assume

(4.26) Ex(u,M,R) 6Mθ.

Then, by the choice of constants we have

λ < λ1, CMλ 6
Ex(u,M,R)

2C
.

These inequalities and (4.25) give

(−∆)sp vλ > −CMp−1 +
Mp−2

Rs
Ex(u,M,R)

2C
in DR.
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Assuming also

σ′θEx(u,M,R) > C ′θ(M
p−1 +K)

1
p−1R

s
p−1 + C ′θHR

s

(otherwise the thesis is trivial), the choice of the parameters and (4.26) imply

Mp−2Ex(u,M,R) > 2C(CMp−1 +K +Mp−2H)Rs,

exactly as in the proof of Lemma 3.6, and therefore

(−∆)sp vλ > K +Mp−2H in DR.

Moreover in Dc
R we have by construction either vλ = u in B̃R, or vλ = wλ = MdsΩ > u. Thus{

(−∆)sp u 6 (−∆)sp vλ in DR

u 6 vλ in Dc
R.

Proposition 2.1 ensures u 6 vλ in all of RN . In particular u 6 wλ = M(1− λ)dsΩ in DR/2. So,

inf
DR/2

(
M − u

dsΩ

)
> inf

DR/2

(
M − wλ

dsΩ

)
>Mλ = σ′θEx(u,M,R)

and the conclusion follows. �

Now we present the analog of Proposition 3.7, dealing with the problem

(4.27)

{
(−∆)sp u 6 K̃ in DR

u 6MdsΩ in D2R,

with K̃,M > 0.

Proposition 4.5. (Upper bound) Let ∂Ω be C1,1, p > 2, u ∈ W̃ s,p
0 (DR) solve (4.27) and

R ∈ ]0, ρ/4[. Then, for all ε > 0 there exist C̃ ′ε = C̃ ′ε(N, p, s,Ω, ε) > 0 and two more constants
σ′2 = σ′2(N, p, s,Ω) ∈]0, 1], C ′6 = C ′6(N, p, s,Ω) > 1 s.t.

inf
DR/4

(
M − u

dsΩ

)
> σ′2Ex(u,M,R)− ε

∥∥∥M − u

dsΩ

∥∥∥
L∞(DR)

− C ′6tail1

(( u
dsΩ
−M

)
+
, 2R

)
Rs

− C̃ ′ε
[
M + K̃

1
p−1 + tailp−1

(( u
dsΩ
−M

)
+
, 2R

)]
R

s
p−1 .

Proof. The proof is identical to the one of Proposition 3.7, so we only sketch it. Consider
v = u ∧MdsΩ and fix ε > 0. By Proposition 2.7 (ii){

(−∆)sp v 6 K +Mp−2H in DR

v 6MdsΩ in RN ,

where

K := K̃ +
εp−1

Rs

∥∥∥M − u

dsΩ

∥∥∥p−1

L∞(DR)
+ C ′εtailp−1

(( u
dsΩ
−M

)
+
, 2R

)p−1
,

H := C ′2tail1

(( u
dsΩ
−M

)
+
, 2R

)
.

Let 0 < σ′1 6 1 6 θ′1, C
′
5 given in Lemma 4.3 and choose θ = θ′1 in Lemma 4.4, with corresponding

0 < σ′θ′1
6 1 6 C ′θ′1

given therein. Define

σ′2 = min{σ′1, σ′θ′1}, C = max{C ′5, C ′θ′1}.

Considering separately the cases Ex(u,M,R) >Mθ1 and Ex(u,M,R) < Mθ1 we obtain that

inf
DR/4

(
M − v

dsΩ

)
> σ′2Ex(v,M,R)− C(Mp−1 +K)

1
p−1R

s
p−1 − CHRs.

Since u = v in D2R, after standard estimates we conclude. �
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5. Weighted Hölder regularity

This final section is devoted to the proof of Theorem 1.1, i.e., of weighted Hölder regularity for
the solutions of problem (1.1). We follow a standard approach, starting with an estimate of the
oscillation near the boundary of u/dsΩ, where u satisfy

(5.1)

{
|(−∆)sp u| 6 K in Ω

u = 0 in Ωc,

with some K > 0. Our estimate reads as follows:

Theorem 5.1. Let ∂Ω be C1,1, p > 2, x1 ∈ ∂Ω and u ∈ W s,p
0 (Ω) solve (5.1). Then there exist

α1 ∈ ]0, s], C7 > 1, R0 ∈ ]0, ρ/4[ all depending on N, p, s and Ω s.t. for all r ∈ ]0, R0[

osc
Dr(x1)

u

dsΩ
6 C7K

1
p−1 rα1 .

Proof. First we assume x1 = 0 and K = 1 in (5.1). We set v = u/dsΩ ∈ W̃
s,p
0 (Ω), R0 = min{1, ρ/4},

and for all n ∈ N we define Rn = R0/8
n, Dn = DRn , and B̃n = B̃Rn/2 (see (2.2)). We claim that

there exist α1 ∈ ]0, s], µ > 1, a nondecreasing sequence {mn}, and a nonincreasing sequence {Mn}
in R (all depending on N , p, s, and Ω) s.t. for all n ∈ N

(5.2) mn 6 inf
Dn

v 6 sup
Dn

v 6Mn, Mn −mn = µRα1
n .

Pick α1 ∈ ]0, s] (to be determined later). We argue by (strong) induction on n ∈ N. The first

step n = 0 follows from [14, Theorem 4.4], which (slightly rephrased) ensures existence of C̃Ω > 1
(depending on N , p, s, and Ω) s.t.

|v| 6 C̃Ω in Ω.

So we set M0 = C̃Ω, mn = −C̃Ω, µ = 2C̃Ω/R
α1
0 , and (5.2) holds. Now let n ∈ N and

m0 6 . . . 6 mn < Mn 6 . . . 6M0

be defined and satisfy (5.2). We set R = Rn/2, so Dn+1 = DR/4 and B̃n = B̃R, and aim at
applying our lower and upper bounds on v, by distinguishing three cases:

(a) If 0 6 mn < Mn, then u satisfies both (3.25) and (4.27) with K̃ = 1 and non-negative
multipliers of dsΩ, namely {

−1 6 (−∆)sp u 6 1 in DRn/2

mndsΩ 6 u 6MndsΩ in Dn.

Thus, Propositions 3.7 and 4.5 apply, yielding constants 0 < σ 6 1 < C6, Cε (we take here the
smaller of σ’s and the bigger of C6’s and of Cε’s, all depending on N , p, s, Ω with Cε also
depending on ε) s.t. the following bounds hold:

inf
Dn+1

(v −mn) > σ−
∫
B̃n

(v −mn) dx− Cε
[
mn + 1 + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

− C6

[
ε sup
DRn/2

(v −mn) + tail1((mn − v)+, Rn)Rsn

]
,

(5.3)

inf
Dn+1

(Mn − v) > σ−
∫
B̃n

(Mn − v) dx− Cε
[
Mn + 1 + tailp−1((v −Mn)+, Rn)

]
R

s
p−1
n

− C6

[
ε sup
DRn/2

(Mn − v) + tail1((v −Mn)+, Rn)Rsn

]
.

(5.4)

(b) If mn < 0 < Mn, then we can similarly apply Proposition 4.5 to u with upper bound MndsΩ and
to −u with upper bound −mndsΩ. After substitution, this provides (5.4) and (5.3) respectively.
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(c) If mn < Mn 6 0, then we apply Proposition 3.7 to −u with lower bound −MndsΩ and
Proposition 4.5 to −u with upper bound −mndsΩ, getting again (5.4) and (5.3) respectively.

All in all, by taking convenient constants and replacing ε with ε/C6, we have

σ(Mn −mn) = σ−
∫
B̃n

(Mn − v) dx+ σ−
∫
B̃n

(v −mn) dx

6 inf
Dn+1

(Mn − v) + inf
Dn+1

(v −mn) + ε sup
Dn

(Mn − v) + ε sup
Dn

(v −mn)

+ Cε
[
1 + |Mn|+ |mn|+ tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C6

[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rsn.

Notice that

inf
Dn+1

(Mn − v) + inf
Dn+1

(v −mn) = (Mn −mn)− osc
Dn+1

v

and by the inductive hypothesis (5.2),

sup
Dn

(Mn − v) + sup
Dn

(v −mn) 6 2(Mn −mn).

Now fix ε = σ/4 and, recalling that |mn|, |Mn| 6 C̃Ω, we get

σ(Mn −mn) 6
(

1 +
σ

2

)
(Mn −mn)− osc

Dn+1

v

+ C
[
1 + tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C
[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rsn,

for some C > 1 depending on N , p, s and Ω. Rearranging and using (5.2), we get

osc
Dn+1

v 6
(

1− σ

2

)
µRα1

n + C
[
1 + tailp−1((v −Mn)+, Rn) + tailp−1((mn − v)+, Rn)

]
R

s
p−1
n

+ C
[
tail1((v −Mn)+, Rn) + tail1((mn − v)+, Rn)

]
Rsn.

(5.5)

Now we need to estimate the tail terms. We note that for all x ∈ Di \Di+1, i ∈ {0, . . . n− 1}, by
(5.2) and monotonicity of the sequences {mn}, {Mn} we have

mn − v(x) 6 mn −mi 6 (mn −Mn) + (Mi −mi) 6 µ(Rα1
i −R

α1
n ).

Using |mn|, |Mn|, ‖v‖L∞(Ω) 6 C̃Ω, for all q > 1 we have∫
Ω∩Bcn

(mn − v(x))q+
|x|N+s

dx 6
∫

Ω∩Bc0

(mn − v(x))q+
|x|N+s

dx+

n−1∑
i=0

∫
Di\Di+1

(mn − v(x))q+
|x|N+s

dx

6 C + µq
n−1∑
i=0

∫
Di\Di+1

(Rα1
i −Rα1

n )q

|x|N+s
dx

6 C + Cµq
n−1∑
i=0

(Rα1
i −Rα1

n )q

Rsi
6 C + CµqSq(α1)Rqα1−s

n ,

where we have set

Sq(α1) =

∞∑
j=1

(8α1j − 1)q

8sj
.
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Recalling the definition (2.3) and setting q = p− 1, we get (by convexity)

tailp−1((mn − v)+, Rn)R
s
p−1
n 6 C

(
1 + µp−1Sp−1(α1)R(p−1)α1−s

n

) 1
p−1R

s
p−1
n

6 CR
s
p−1
n + CµS

1
p−1

p−1 (α1)Rα1
n ,

while for q = 1 we immediately get

tail1((mn − v)+, Rn)Rsn 6 CR
s
n + CµS1(α1)Rα1

n .

Similarly we prove the estimates

tailp−1((v −Mn)+, Rn)R
s
p−1
n 6 CR

s
p−1
n + CµS

1
p−1

p−1 (α1)Rα1
n ,

tail1((v −Mn)+, Rn)Rsn 6 CR
s
n + CµS1(α1)Rα1

n .

Plugging these estimates into (5.5), and recalling that R0 < 1, we get

osc
Dn+1

v 6
(

1− σ

2

)
µRα1

n + C
(
S1(α1) + S

1
p−1

p−1 (α1)
)
µRα1

n + C
(
R

s
p−1
n +Rsn

)
6
(

1− σ

2
+ CS1(α1) + CS

1
p−1

p−1 (α1)
)

8α1µRα1
n+1 + C

(
R

s
p−1
−α1

0 +Rs−α1
0

)
8α1Rα1

n+1.

(5.6)

We claim that for all q > 1

(5.7) lim
α1→0+

Sq(α1) = 0.

Indeed, for all α1 ∈ ]0, s/q[ we have

Sq(α1) 6
∞∑
j=1

1

8(s−α1q)j
<∞,

while clearly (8α1j − 1)q/8sj → 0 as α1 → 0+, for all j ∈ N, so Sq(α1)→ 0 as well. Applying (5.7)
with q = 1, p− 1 respectively, for all α1 > 0 small enough we have(

1− σ

2
+ CS1(α1) + CS

1
p−1

p−1 (α1)
)

8α1 < 1− σ

4
,

while we may choose µ > 1 big enough to have(
1− σ

4

)
µ+ C

(
R

s
p−1
−α1

0 +Rs−α1
0

)
8α1 6 µ,

so from (5.6) we have

osc
Dn+1

v 6 µRα1
n+1.

Thus, we can find mn+1,Mn+1 ∈ [mn,Mn] s.t.

mn+1 6 inf
Dn+1

v 6 sup
Dn+1

v 6Mn+1, Mn+1 −mn+1 = µRα1
n+1,

hence (5.2) holds at step n + 1, which concludes the induction step. For any r ∈ ]0, R0[ there
exists n ∈ N s.t. Rn+1 < r 6 Rn, so we have

osc
Dr

v 6 osc
Dn+1

v 6 µ8α1rα1 .

Setting C7 = µ8α1 , we have

osc
Dr

u

dsΩ
6 C7r

α1 .

Finally, for any x1 ∈ ∂Ω and an arbitrary K > 0 in (5.1), translation invariance and homogeneity
of (−∆)sp yield the conclusion. �

Our final steps require a technical lemma, which is contained in the proof of [28, Theorem 1.2]:
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Lemma 5.2. Let ∂Ω be C1,1. If v ∈ L∞(Ω) satisfies the following conditions:

(i) ‖v‖L∞(Ω) 6 C8;

(ii) for all x1 ∈ ∂Ω, r > 0 we have osc
Dr(x1)

v 6 C8r
β1;

(iii) for all x0 ∈ Ω with dΩ(x0) = R, v ∈ Cβ2(BR/2(x0)) with [v]Cβ2 (BR/2(x0)) 6 C8(1 +R−µ),

for some C8, µ > 0 and β1, β2 ∈ ]0, 1[, then there exist α ∈ ]0, 1[, C9 > 0 depending on the
parameters and Ω s.t. v ∈ Cα(Ω) and [v]Cα(Ω) 6 C9.

Now we can prove our main result.

Proof of Theorem 1.1. Let u ∈ W s,p
0 (Ω), f ∈ L∞(Ω) satisfy (1.1), and set K = ‖f‖L∞(Ω), so u

satisfies (5.1). By homogeneity we can assume K = 1. Let us collect some known facts about u.
From [14, Theorem 1.1] we know that there exist α2 ∈ ]0, s], C > 0 s.t. u ∈ Cα2(Ω) and

(5.8) ‖u‖Cα2 (Ω) 6 C

(in what follows, all constants depend on N , p, s, and Ω), in particular ‖u‖L∞(Ω) 6 C. Besides,
from [14, Corollary 5.5] we know that for all x0 ∈ Ω with R = dΩ(x0)

[u]Cα2 (BR/2(x0)) 6
C

Rα2

[
Rp
′s + ‖u‖L∞(Ω) +Rp

′s
(∫

BcR(x0)

|u(y)|p−1

|x0 − y|N+ps
dy
) 1
p−1
]

6
C

Rα2

[
Rp
′s + 1 +Rp

′s
(∫

BcR(x0)

1

|x0 − y|N+ps
dy
) 1
p−1
]
6

C

Rα2
,

(5.9)

since R 6 diam(Ω). Finally, from [28, p. 292] we know that, with the same choice of x0 and R as
above, the following estimate can be obtained by interpolation:

(5.10) [d−sΩ ]Cα2 (BR/2(x0)) 6
C

Rs+α2
.

Now we set v = u/dsΩ, and aim at applying Lemma 5.2 to this function. First, from [14, Theorem
4.4] we know that v ∈ L∞(Ω) with

(5.11) ‖v‖L∞(Ω) 6 C.

Further, chosen x0 ∈ Ω, R = dΩ(x0), we have for all x, y ∈ BR/2(x0)

|v(x)− v(y)|
|x− y|α2

6
|u(x)d−sΩ (x)− u(y)d−sΩ (x)|

|x− y|α2
+
|u(y)d−sΩ (x)− u(y)d−sΩ (y)|

|x− y|α2

6 [u]Cα2 (BR/2(x))‖d−sΩ ‖L∞(BR/2(x0)) + ‖u‖L∞(Ω)[d
−s
Ω ]Cα2 (BR/2(x0))

6
C

Rα2

( 2

R

)s
+

C

Rs+α2
6

C

Rs+α2
,

for some C > 0. Here we have used (5.8), (5.9), and (5.10). Finally, let x1 ∈ ∂Ω and r > 0, and
α1 ∈ ]0, s], C7 > 0, and R0 ∈ ]0, ρ/4] be as in Theorem 5.1. We distinguish two cases:

(a) If r ∈ ]0, R0[, then by Theorem 5.1 we have

osc
Dr(x1)

v 6 C7r
α1 .

(b) If r > R0, then by (5.11) we have

osc
Dr(x1)

v 6 2‖v‖L∞(Ω) 6
C

Rα1
0

rα1 .

In both cases, we can find C > 0 s.t.

osc
Dr(x1)

v 6 Crα1 for all r > 0.
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Then, hypotheses (i), (iii), (ii) of Lemma 5.2 hold with C8 = C, β1 = α1, β2 = α2, and µ = α2 +s.
Thus, we conclude that v ∈ Cα(Ω) and [v]Cα(Ω) 6 C, which by (5.11) implies ‖v‖Cα(Ω) 6 C, for

α ∈ ]0, s] and C > 0 only depending on N , p, s, and Ω. �
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[2] L. Brasco, E. Lindgren, A. Schikorra, Higher Hölder regularity for the fractional p-Laplacian in the
superquadratic case. Adv. Math. 338 (2018), 782–846.

[3] L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian. Adv. Calc. Var. 9 (2016), 323–355.
[4] L. Caffarelli, J.M. Roquejoffre, Y. Sire, Variational problems in free boundaries for the fractional

Laplacian. J. Eur. Math. Soc. 12 (2010), 1151–1179.
[5] L. M. Del Pezzo, A. Quaas, A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian.

J. Differential Equations 263 (2017), 765–778.
[6] A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré
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