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ABSTRACT Patients with type 2 diabetes mellitus (T2DM) are at high risk for macrovascular complications, which represent the major

cause of mortality. Despite effective treatment of established cardiovascular (CV) risk factors (dyslipidemia, hypertension,

procoagulant state), there remains a significant amount of unexplained CV risk. Insulin resistance is associated with a cluster of

cardiometabolic risk factors known collectively as the insulin resistance (metabolic) syndrome (IRS). Considerable evidence, reviewed

herein, suggests that insulin resistance and the IRS contribute to this unexplained CV risk in patients with T2DM. Accordingly, CV

outcome trials with pioglitazone have demonstrated that this insulin-sensitizing thiazolidinedione reduces CV events in high-risk

patients with T2DM. In this review the roles of insulin resistance and the IRS in the development of atherosclerotic CV disease and the

impact of the insulin-sensitizing agents and of other antihyperglycemic medications on CV outcomes are discussed. (Endocrine Reviews

40: 1447 – 1467, 2019)

M ultiple studies have demonstrated that in-
sulin resistance is a strong predictor of

atherosclerotic cardiovascular (CV) disease (ASCVD)
(–) and have been summarized in a recent meta-
analysis by Gast et al. (). Bressler et al. (), using the
euglycemic insulin clamp, were the first to conclu-
sively demonstrate that normal glucose-tolerant
(NGT) individuals with diffuse coronary artery
disease were markedly insulin resistant compared
with NGT individuals with clean coronary arteries,
whereas the Insulin Resistance Atherosclerosis Study
was the first epidemiologic study to document the
relationship between insulin resistance and CVD in a
large multiethnic cohort (), after adjustment for
confounding factors, including glucose tolerance,
fasting insulin, low-density lipoprotein (LDL) and
high-density lipoprotein (HDL) cholesterol, smoking,
hypertension, and body mass index. Similarly, in the
Botnia study (), insulin resistance was an in-
dependent predictor of increased risk of CVD in
nondiabetic subjects during a follow-up period of .

years. Similar observations have been made in the
Verona Diabetes Study (), the Bruneck study (), the
Malmö study (), and the Atherosclerosis Risk in
Communities (ARIC) study (). Of note, in the
ARIC study, insulin resistance also was associated
with an increased incidence of atrial fibrillation. In
the San Antonio Heart Study, insulin resistance,
quantified with homeostatic model assessment of
insulin resistance (HOMA-IR), was significantly and
independently associated with an increased risk of
CV outcomes in a large population of Mexican
American and non-Hispanic whites without TDM
at baseline (); the magnitude of the association of
stroke and coronary artery disease with HOMA-IR
was similar. The strong association between insulin
resistance and adverse CV outcomes in nondiabetic
individuals and individuals with TDM has been
summarized in several meta-analyses (–). In the
meta-analsyis by Gast et al. (), coronary heart
disease risk in nondiabetic individuals increased by
% for an increase in HOMA-IR of  SD.
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Etiologic Links Between Insulin Resistance
and ASCVD

Three mechanisms account for the strong association
between insulin resistance and ASCVD: (i) the basic
molecular etiology of the insulin resistance (–),
(ii) the compensatory hyperinsulinemia that occurs in
response to the insulin resistance (, –), and (iii)
the association between insulin resistance and a cluster
of cardiometabolic abnormalities, each of which is an
independent risk factor for ASCVD (–, , ).
This cardiometabolic cluster has been called the
“metabolic syndrome” (), but in the subsequent
discussion it is referred to as the “insulin resistance
syndrome” (IRS), because the underlying insulin re-
sistance is the etiologic factor responsible for the
development of each of the individual cardiometabolic
disturbances.

Molecular etiology of insulin resistance
In order for insulin to work, it must first bind to the
insulin receptor on the cell membrane surface (–),
resulting in tyrosine phosphorylation of IRS-/IRS-,
activation of phosphatidylinositol -kinase (PIK)
(), and ultimately augmentation of glucose transport
(). Because insulin signaling plays a pivotal role in
activating nitric oxide, which is a potent vasodilator
and antiatherogenic agent (, ), impaired insulin
signaling not only inhibits glucose metabolism, but it
also promotes hypertension and atherogenesis.

In insulin-resistant states, including obesity, im-
paired glucose tolerance, and early TDM, the b-cell
reads the severity of insulin resistance and augments
its secretion of insulin in an attempt to offset the defect
in insulin action (, , , ). Insulin, especially at
high levels, is a potent growth factor (, , , –)
that exerts its growth-promoting effects via the
MAPK pathway (, , , ), which catalyzes the

phosphorylation of transcription factors that (i)
stimulate vascular smooth muscle cell growth, pro-
liferation, and differentiation (), (ii) activate in-
flammatory pathways, including IkB/nuclear factor kB
(NF-kB), and c-Jun N-terminal kinase (, ), and
(iii) cause insulin resistance (, ). Despite the
presence of severe resistance in the IRS-/PIK/Akt
pathway, the MAPK pathway, which is activated by
Sch, retains normal sensitivity to insulin and is
hyperstimulated by the elevated plasma insulin con-
centrations that are present in individuals with the IRS,
in nondiabetic subjects with obesity, in individuals
who are prediabetic, and in subjects with TDM early
in the natural history of the disease (, , ) (Fig. ).
Of note, the same insulin signaling defects that are
present in skeletal muscle of individuals with TDM
and individuals with obesity (, , , ) (Fig. )
have been demonstrated in arterial vascular smooth
muscle cells (–, ). Not surprisingly, endothelial
dysfunction, which reflects nitric oxide deficiency, is a
characteristic feature of insulin-resistant states, in-
cluding diabetes, prediabetes, and obesity (–), and
is a central mechanism linking insulin resistance and
ASCVD at the cellular level. Insulin resistance also
stimulates endothelin- production, further pro-
moting increased vasoconstrictor tone and athero-
genesis ().

In summary, the basic molecular insulin signaling
defect that is responsible for impaired glucose meta-
bolism in insulin-resistant individuals is intimately
related to the development of coronary atherogenesis,
and the atherogenic process is exacerbated by the
hyperinsulinemia that occurs as the b-cell attempts to
compensate for the defect in insulin action (Fig. ).

Hyperinsulinemia and atherosclerosis
In vitro and in vivo studies have demonstrated
that insulin, especially at high concentrations, can

ESSENTIAL POINTS

· Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM)

· Insulin resistance is associated with a cluster of cardiometabolic risk factors that contribute to the increased risk of
cardiovascular disease in patients with T2DM

· The molecular etiology of the insulin resistance directly contributes to the development of atherosclerotic cardiovascular
disease by inhibiting nitric oxide production (endothelial dysfunction) and stimulating the MAPK pathway

· Insulin resistance in T2DM accounts for the unexplained cardiovascular risk that cannot be attributed to the classic
cardiovascular risk factors

· Thiazolidinediones are the only true insulin-sensitizing antidiabetic drugs and at least one drug, pioglitazone, in this class
has been shown to reduce cardiovascular events and retard the atherosclerotic process in high-risk patients with T2DM

· The glucagon-like peptide receptor agonists and SGLT2 inhibitors have been shown to reduce cardiovascular events in
high-risk patients with T2DM, but their cardiovascular benefit appears to be mediated via mechanisms other than
amelioration of insulin resistance
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accelerate the atherosclerotic process by multiple
mechanisms, including (i) stimulation of de novo li-
pogenesis leading to increased very LDL synthesis/
secretion (–) secondary to activation of SREBP-
C and inhibition of acetyl–coenzyme A carboxylase
(, ), (ii) vascular smooth muscle cell growth and
proliferation (–, , , , ), (iii) activation of
genes involved in inflammation (, –), (iv) in-
creased collagen synthesis (, , ), and (v) en-
hanced LDL cholesterol transport into arterial smooth
muscle cells (, ). Consistent with these in vitro
actions of insulin, many in vivo studies have dem-
onstrated that chronic insulin administration in
chickens (), rabbits (), and dogs () accelerates
the atherogenic process. Furthermore, insulin infusion
for  to  days, while maintaining euglycemia, leads to
the development of hypertension (), whereas short-
term physiologic hyperinsulinemia in humans causes
marked sodium retention (). Lastly, insulin therapy
in humans uniformly is associated with weight gain
(, ), often in association with the emergence of
diabetic dyslipidemia and hypertension (). Obesity is
an insulin-resistant state (, ), is the primary factor
responsible for the current epidemic of diabetes, and
is a major risk factor for CVD (, ). Deposition of
fat in the arterial wall causes inflammation (, , ),
which directly promotes atherogenesis (–) and
causes endothelial dysfunction (), which is associ-
ated with accelerated atherosclerosis and insulin re-
sistance (, ). The ORIGIN study () commonly is
cited as proof that insulin does not promote athero-
sclerosis. However, the mean insulin replacement dose
in the ORIGIN study was ~ U/d, which is close to
the daily insulin secretory amount (~ to  U/d) in
NGT individuals (). In contrast, many patients with
TDM require . U/d to normalize the HbAc
(,.% to .%) (, –), and the resultant high
insulin levels are capable of activating the multiple
atherogenic and inflammatory pathways, as described
above. As an example, in the study of Henry et al. ()
the mean daily insulin dose required to reduce the
HbAc from .% to .% was  6  U/d and was
associated with a weight gain of . kg during a period
of  months.

It has been suggested that insulin resistance may
be a defense mechanism that protects the CV system
from nutrient overload, especially in high-risk subjects
with long-standing diabetes and severe insulin re-
sistance (). In such individuals the authors argue
that high-dose insulin therapy would increase myo-
cardial lipid content (), overloading the electron
transport chain, and would result in mitochondrial
dysfunction and increased generation of reactive ox-
ygen species (ROS) (, ). Furthermore, the in-
creased glucose flux would (i) cause glucolipotoxicity,
further contributing to the mitochondrial dysfunction,
and cause endoplasmic reticulum stress (, ), (ii)
increase flux into the polyol and hexosamine pathways

(, ), and (iii) activate the inflammasome ().
Although this may be a relevant consideration in long-
standing patients with TDM following the initiation
of high-dose insulin therapy, it is difficult to image
such a scenario in the prediabetic stage and early in the
natural history of TDM, when insulin resistance is
severe and already maximally established (, ).
Furthermore, the atherosclerotic process targets the
vascular (arterial) smooth muscle cells, and the nu-
trient overload hypothesis may be more relevant to
myocardial dysfunction and heart failure (see the

Figure 1. (a) Insulin signal transduction system in individuals with normal glucose tolerance (see
text for a detailed discussion). NOS, nitric oxide synthase. (b) In individuals with T2DM, insulin
signaling is impaired at the level of IRS-1, leading to decreased glucose transport/phosphorylation/
metabolism and impaired nitric oxide synthase activation/endothelial dysfunction. At the same
time, insulin signaling through the MAPK pathway remains normally sensitive to insulin. The
compensatory hyperinsulinemia (due to insulin resistance in the IRS-1/PI3K pathway) results in
excessive stimulation of the MAPK pathway, which is involved in inflammation, vascular smooth
muscle cell proliferation, and atherogenesis (see text for a more detailed discussion). SHC, Src
homology collagen. [DeFronzo RA: From the triumvirate to the ominous octet: a new paradigm for
the treatment of type 2 diabetes mellitus. Diabetes 58:773–795, 2009. American Diabetes
Association, Diabetes, 2009. Copyright and all rights reserved. Material from this publication has
been used with the permission of the American Diabetes Association.]
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subsequent discussion) than to the development of
atherosclerosis.

Multiple studies have demonstrated that insulin
resistance is a characteristic feature of nonalcoholic
fatty liver disease (NAFLD), even in lean subjects with
the disease, and that the insulin resistance involves
muscle, liver, and adipose tissue (–). Further-
more, patients with nonalcoholic steatohepatitis (NASH)
are at increased risk for CVD (, ). In addition to
insulin resistance, individuals with NASH are charac-
terized by multiple other cariovascular risk factors, in-
cluding dyslipidemia and inflammation ().

IRS: a cardiometabolic cluster of CV risk factors
Insulin resistance is associated with a cluster of CV/
metabolic abnormalities, which collectively have been
referred to as the IRS (, , ) (Table ). Each
individual component of the IRS is an independent
risk factor for ASCVD and, as discussed previously,
the molecular etiologies of the insulin resistance and
compensatory hyperinsulinemia promote vascular
smooth muscle growth and proliferation, inflamma-
tion, and atherogenesis (–, ).

CV risk factors and the IRS
Hypertension, a major risk factor for ASCVD, is a
characteristic feature of the IRS, and multiple studies
have demonstrated that insulin resistance is a char-
acteristic feature of hypertension (–). Reduced
plasma HDL cholesterol, elevated plasma triglycerides,
and small dense LDL cholesterol particles each are
independent risk factors for ASCVD (, , ,
) and are causally related to the underlying insulin
resistance (, , –). Collectively, these three
lipid disturbances represent the characteristic diabetic
dyslipidemia (–). Nitric oxide is a potent
vasodilator and antiatherogenic agent () and is
deficient in insulin-resistant subjects (–),
contributing to the accelerated atherosclerosis (,
–). Furthermore, insulin-resistant states, such
as TDM, are associated with a number of clotting
factor abnormalities, including increased PAI-, ele-
vated fibrinogen levels, and increased platelet sticki-
ness, which are important CV risk factors and are
related to the underlying insulin resistance in non-
diabetic subjects as well as in subjects with diabetes
(, ).

Obesity, especially visceral obesity, is a classic
insulin-resistant state (, , ), is strongly related
to the development of ASCVD (, , ), and is the
major factor driving the epidemic of TDM (, ).
The development of insulin resistance in individuals
with obesity is intimately related to the concept of
lipotoxicity (Table ), which refers to the deleterious
effect of excess tissue and plasma lipid accumulation
that occurs when energy intake exceeds energy con-
sumption and from de novo lipogenesis (–). El-
evated plasma free fatty acid (FFA) levels are an

integral component of the IRS and lead to (i)
increased tissue lipid deposition, including in vascu-
lar tissues (–), (ii) activation of inflamma-
tory pathways (), and (iii) induction of insulin
resistance (–). Excess fat accumulation in ad-
ipocytes incites inflammation, enhances the secretion
of insulin resistance–provoking and proinflammatory/
prothrombotic cytokines (TNFa, PAI-, resistin) that
promote atherogenesis, and inhibits the secretion of
the insulin-sensitizing molecule adiponectin ().
Altered fat topography, especially excess visceral fat
accumulation, is strongly associated with ASCVD and
insulin resistance (, –), although in humans
the underlying mechanisms responsible for this as-
sociation have yet to be defined. In rodents, removal
of visceral fat prevents insulin resistance (, )
and, interestingly, prolongs longevity (). Intra-
abdominal adipocytes manifest both accelerated li-
pogenesis and enhanced lipolysis, as well as increased
secretion of inflammatory cytokines (, ). Most
recently, NAFLD, which is present in ~% to % of
patients with TDM, has been shown to be a major
independent CV risk factor (, ). Whether
NAFLD leads to the development of insulin resistance
or results from insulin resistance is a subject of debate
(, ). Intramyocardial fat deposition and increased
pericardial and epicardial fat also have been shown to
be associated with insulin resistance (–), and
progressively increasing pericoronary fat volumes
strongly correlate with the number of IRS components
(). Furthermore, the insulin-sensitizing agent
rosiglitazone markedly enhances myocardial insulin
sensitivity in insulin-resistant patients with TDM
(). Diastolic dysfunction also is strongly correlated
with insulin resistance (, , ) and is improved
by the insulin-sensitizing agent pioglitazone ().

Low-grade inflammation is a well-established
feature of the IRS, obesity, and TDM (–).
Adipose tissue, and to lesser extent muscle tissue,
is infiltrated by proinflammatory M macrophages
(). The IkB/NF-kB and TLR- pathways (, ,
), as well as the MAPK and c-Jun N-terminal
kinase pathways (–), are stimulated, and all of
these inflammatory abnormalities are associated with
insulin resistance and accelerated atherosclerosis
(). Prospective studies have demonstrated that in
individuals with the IRS, increasing levels of high-
sensitivity C-reactive protein add independent prog-
nostic information about future CV risk, confirming
the relationship between inflammation, insulin re-
sistance, and CV events ().

The results of the Relationship Between Insulin
Sensitivity and Cardiovascular Disease (RISC) study
are especially informative (). Using the gold stan-
dard euglycemic insulin clamp (), these investi-
gators demonstrated that insulin resistance was closely
associated with the load of CV risk factors (). The
-year follow-up of the RISC study demonstrated that
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the presence and severity of insulin resistance pre-
dicted deterioration of glucose tolerance (), risk of
elevated systolic blood pressure in women (), and
development of albuminuria (), a known risk factor
for CVD (, ). Cross-sectional data from the
RISC study confirmed the relationship between insulin
resistance and other CV risk parameters, including
fatty liver and carotid intima–media thickness (IMT),
known predictors of CVD in populations with and
without diabetes (, ). Low-grade inflammation
also has been reported to be a component of the
cardiometabolic risk profile (). Insulin resistance,
obesity, central fat accumulation, and a hyperinsulinemic
response during an oral glucose tolerance test all
were independent contributors to the clustering of
cardiometabolic risk factors in the RISC study ().

Quantitative assessment of insulin resistance in
the IRS
Studies by Reaven (, ), Stienstra et al. (), and
DeFronzo and colleagues (, , , , , , ,
) have provided abundant proof that insulin re-
sistance is a characteristic feature of each individual
component of the IRS (Table ). Using the euglycemic
insulin clamp to quantitate insulin sensitivity, non-
diabetic individuals with obesity and lean individuals
with TDM have been shown to be markedly insulin
resistant, and the defect in insulin action primarily
affects the nonoxidative (glycogen synthetic) pathway
of glucose disposal (, , , , –) (Fig. ).
Furthermore, both nondiabetic individuals with
obesity and lean individuals with TDM manifest a
moderate to severe defect in the insulin signaling
pathway (Fig. ) (, , , , , ). Prediabetic
individuals with impaired glucose tolerance also
manifest insulin resistance involving the glycogen
synthetic pathway and share the same insulin signaling
defect as subjects with obesity and with TDM (,
, ). Similarly, hypertension (–) and di-
abetic dyslipidemia (increased plasma triglyceride and
FFA concentrations, decreased HDL cholesterol,
small dense LDL particles) (, –, ) are
insulin-resistant states characterized by impaired
insulin-mediated glucose disposal involving the non-
oxidative pathway of glucose disposal and reduced
insulin signaling. Hypercholesterolemia per se is not
an insulin-resistant state but, when present, acts syner-
gistically with other components of the IRS to accelerate
atherogenesis (–). As discussed previously, mul-
tiple studies (–, , ) have demonstrated that
normal glucose-tolerant individuals with coronary
artery disease are as resistant to insulin as are in-
dividuals with TDM and nondiabetic individuals
with obesity (Fig. ). Similar to skeletal muscle, the
myocardium of individuals with TDM with and
without coronary artery disease and nondiabetic in-
dividuals with coronary artery disease (, , )
has been shown to be resistant to insulin-stimulated

glucose disposal. The demonstration that nondiabetic
individuals with the IRS are at the same high risk for
experiencing a CV event as individuals with diabetes ()
emphasizes the importance of recognizing insulin re-
sistance as a major CV equivalent that deserves specific
therapy with insulin-sensitizing agents (see the sub-
sequent discussion).

Insulin resistance and ASCVD: unexplained CV risk
Despite the identification of multiple pathophysiologic
disturbances (Table ), a large percentage of the risk
for ASCVD in patients with TDM remains undefined
(, ). This is exemplified by the study of
D’Agostino et al. (), who analyzed six large pro-
spective CV epidemiologic studies (Fig. ). Using the
Framingham Cardiovascular Risk Engine (), they
reported that the classic risk factors for ASCVD only
could explain % of observed CV events, leaving %
unexplained. Similarly, in the ARIC study (), which
examined the relationship between carotid IMT and
recognized CV factors (hypertension, dyslipidemia,
obesity, impaired glucose tolerance), only ~% of the
increase in carotid IMT could be accounted for (Fig.
). What is responsible for the unaccounted ~% of
the risk for CVD (, ) and carotid IMT ()? We
postulate that insulin resistance (Fig. ) and the basic
molecular etiology of the insulin resistance (Fig. )
account for most of this unaccounted CV risk.

Although utilization of medications, such as
angiotensin-converting enzyme inhibitors, other an-
tihypertensive medications, statins, and platelet in-
hibitory agents, has reduced the incidence of atherosclerotic
CV complications, there remain as-of-yet unidentified
CV risk factors, in addition to the classical risk
factors, that contribute to the high CV risk among

Table 1. Syndrome of Insulin Resistance

• Obesity (especially visceral)

• Glucose intolerance (impaired glucose tolerance, impaired
fasting glucose, T2DM)

• Hypertension

• Dyslipidemia (high triacylglyerol, low HDL, small dense LDL
particles)

• Endothelial dysfunction

• Prothrombotic state

• NAFLD/NASH

• Lipotoxicity

• Inflammation

• ASCVD

• Hyperinsulinemia

• Insulin resistance
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optimally treated patients. Medical therapy typically
is directed against a single risk factor or multiple CV
risk factors and does not specifically target the un-
derlying pathophysiological defect, that is, insulin
resistance, that is responsible for the generation of the
cardiometabolic abnormality. This is evident from
a recent publication from the National Swedish
Registry () in which CV mortality declined sig-
nificantly in individuals with TDM from  to
, but remained markedly higher and reached a
plateau compared with NGT individuals. We hy-
pothesize that failure to correct the cellular/
molecular abnormality responsible for the insulin
resistance explains, at least in part, the failure to
reduce the CV risk to a level observed in the non-
diabetic population.

Insulin resistance and the IRS also have been
shown to be associated with subclinical ASCVD. In
a retrospective analysis of , occupational pa-
tients, insulin resistance was independently associ-
ated with the coronary calcium score, which is a
strong predictor of coronary artery disease, and this
association persisted after adjustment for other CV
risk factors and preexisting CVD (). Other
studies, including the Framingham Offspring Study,
also have demonstrated a strong association between
the coronary calcium score, insulin resistance, and in-
flammatory cytokines in nondiabetic individuals
(–). A similar association between insulin re-
sistance and coronary artery disease in nondiabetic in-
dividuals has been demonstrated with ultrasound ().

Insulin resistance and heart failure
The IRS also has been reported to be associated with
an increased incidence of heart failure in individuals
without diabetes and without a prior history of
myocardial infarction (). Similar results have been
reported from a large community-based sample of
elderly adults (). Different mechanisms may ex-
plain the association between insulin resistance and
heart failure. Insulin is a growth factor and has been
shown to impact cardiac structure (, ). Fur-
thermore, insulin activates the sympathetic nervous
system and enhances the ability of angiotensin II to
activate the MAPK pathway (, ). In the Car-
diovascular Health Study, a positive association be-
tween the fasting plasma insulin concentration vs
adverse echocardiographic features and risk of

subsequent heart failure was reported (). Similar
results were reported in the ARIC study in patients
with and without antecedent myocardial infarction
(). Insulin resistance, assessed by HOMA-IR, also
has been shown to be associated with peripheral ar-
terial disease ().

Insulin Resistance, T2DM, and CVD

TDM is a cardiometabolic disease that affects
both the microvasculature (retinopathy, nephropathy,
neuropathy) and macrovasculature (heart attack,
stroke) (, ). The microvascular complications are
related to two factors: (i) the magnitude of elevation in
blood glucose concentration, as reflected by the
HbAc, and (ii) the duration of elevation of the HbAc
(, ). In contrast, the macrovascular complica-
tions are only weakly related to the level of glucose
control () and represent the major cause of
mortality, with heart attack and stroke accounting for
~% of all deaths (, ). The failure of intensive
glycemic control in the ACCORD (), ADVANCE
(), and VADT () studies to significantly reduce
heart attack and stroke provides further support that
hyperglycemia is a weak risk factor for CVD, although
it could be argued that it would be difficult for any
glucose-lowering therapy to slow the progression of
and reverse advanced fibrotic, lipid-laden plaques.
Furthermore, insulin was the primary antidiabetic
agent used in these prior trials (–), and even small
increases in the fasting plasma insulin concentration
are associated with the induction of severe insulin
resistance (, , ) and weight gain (, ), which
are risk factors for ASCVD (, , ). Furthermore,
when used in high doses, insulin can accelerate the
atherogenic process (see the previous discussion). Of
particular importance, it currently is well established
that events portending accelerated atherosclerosis are
under way long before the formal diagnosis of di-
abetes is established, that is, in the prediabetic state as
well as in insulin-resistant NGT subjects (–,
–).

Insulin Resistance in CVD and
Therapeutic Interventions

Lifestyle intervention
Sedentary lifestyle () and obesity () are insulin-
resistant states associated with the IRS and increased
CV mortality (, –). Consequently, weight
loss and increased physical activity are recommended
both by the American Heart Association () and
American Diabetes Association () to reduce CV
events and prevent the development of TDM by
improving insulin sensitivity and preserving b-cell
function.

Table 2. Lipotoxicity

• Elevated plasma nonesterified fatty acids

• Increased tissue fat content

• Altered fat topography

• Adiposopathy
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The Look AHEAD trial was a randomized con-
trolled study designed to compare an intensive lifestyle
intervention vs a diabetes support and education
program in patients who are overweight/obese with
TDM on the development of CVD. Although modest
benefits on CV risk factors (improved biomarkers of
glucose and lipid control, less sleep apnea, reduced
liver fat, increased fitness, and enhanced insulin
sensitivity) and improved quality of life were observed,
the trial was stopped because of lack of CV benefit
after a median follow-up of . years (, ).
During the first year of the Look AHEAD trial,
subjects lost ~.% of body weight, and waist cir-
cumference decreased by  cm. At the study’s end, the
percentage weight loss was ~.% and the reduction in
waist circumference was only  cm. This weight regain
and increase in waist circumference (i.e., visceral fat)
could have obscured any CV benefit.

The Diabetes Prevention Program employed an
intensive lifestyle intervention to delay/prevent TDM
in participants with impaired glucose tolerance, a
group at high risk for ASCVD (). Partipants lost
~ kg during the first year, the incidence of TDMwas
reduced by % after  years, and the CV risk profile
improved (). However, by  years, participants
had regained ~ kg and no reduction in CV events was
observed (). As reviewed in two meta-analyses, a
major problem with lifestyle interventions has been
the inability to sustain the weight loss on a long-term
basis (, ). The results of a meta-analysis sugest
that implementation of a Mediterranean diet can
improve adherence and is associated with favorable
effects on multiple components of the IRS ().
Consistent with this, a recent study from Spain pro-
vided evidence that the Mediterranean diet caused a
significant reduction in CV events ().

Insulin-sensitizing antidiabetic medications:
thiazolidinediones
The only true sensitizing antidiabetic agents are the
thiazolidinediones (TZDs) (, , , , , ,
–) and, of these, the only one that is readily
available worldwide is pioglitazone. Metformin is not a
true insulin-sensitizing agent (, ). Two large
prospective clinical trials (–) and two pro-
spective anatomical studies (, ) have demon-
strated that pioglitazone reduces CV events (–)
and promotes the regression of atherosclerotic lesions
(, ), respectively.

The Prospective Pioglitazone Clinical Trial in
Microvascular Events (PROactive) study () was the
first study to demonstrate the beneficial effect of any
antidiabetic agent to reduce CV events. In  pa-
tients with TDMwith a prior CV event and who were
treated with pioglitazone or placebo for a period of
. months, the “main secondary” major adverse CV
event (MACE; CV mortality, nonfatal myocardial
infarction, nonfatal stroke) endpoint was reduced by

% [hazard ratio (HR), .; P, .], although the
primary endpoint (-point MACE plus coronary and
leg revascularization) did not reach statistical signifi-
cance (HR, .; % CI, . to .; P 5 .)
because of an increase in leg revascularization.
However, it is well established that peripheral vascular
disease is refractory to all therapeutic interventions,
including glucose-lowering, lipid-lowering, and blood
pressure–lowering therapy (, ). Furthermore, by
preventing death, myocardial infarction, and stroke,
pioglitazone would make more people available for
leg revascularization (). Analysis of all double-
blind, placebo-controlled pioglitazone studies ()
revealed a decrease in CV events in individuals
without a prior history of CV events (HR, .; P 5
.). Consistent with these observations, pioglita-
zone reduced coronary atherosclerotic plaque volume
in the PERISCOPE trial () and decreased carotid
IMT in the CHICAGO trial (). In the IRIS study
(),  nondiabetic, insulin-resistant (HOMA-
IR ..) individuals with a recent (# months)
stroke or transient ischemic attack were treated with
pioglitazone or placebo for . years. Pioglitazone-
treated subjects experienced a % decrease (HR,
.; P 5 .) in recurrent stroke plus CV events,
and HOMA-IR declined by % (P , .).

Figure 2. Insulin-stimulated glucose disposal (40 mU/m2$min
euglycemic-hyperinsulemic clamp) in lean healthy controls
(CON), NGT participants with obesity (NGT), lean drug-naive
individuals with T2DM (T2DM), lean normal glucose-tolerant
participants with hypertension (HTN), NGT participants who
are hypertriacylglycerolemic (Hypertriacyl) participants, and
nondiabetic subjects with coronary artery disease (CAD). Open
(white) sections represent nonoxidative glucose disposal
(glycogen synthesis); filled (black) sections represent glucose
oxidation. **P , 0.01 vs CON; ***P , 0.001 vs CON. To change
glucose uptake into SI units, divide by 180. [Adapted with
permission from DeFronzo RA: Insulin resistance, lipotoxicity,
type 2 diabetes and atherosclerosis: the missing links. The
Claude Bernard Lecture 2009. Diabetologia 2010;53:1270–1287.
Illustration presentation copyright Endocrine Society 2019.]
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Unfortunately, the correlation between improved in-
sulin sensitivity and decrease in CV events was not
reported, but such an analysis would be of great
clinical and pathophysiologic importance. In a recently
published real-world study in Finland () involving
, subjects with TDM treated with pioglitazone
and a similar number of propensity-matched in-
dividuals, pioglitazone reduced CV risk by % and
non–CV risk by %. Finally, a meta-analysis of
randomized control trials reported that pioglitazone
significantly reduced the MACE endpoint in people
with insulin resistance, prediabetes, and TDM ().

In summary, multiple studies demonstrate that the
insulin-sensitizing antidiabetic agent pioglitazone re-
duces atherosclerotic CV events in association with
enhanced insulin sensitivity. Improved glucose control
cannot explain the reduction in stroke and myocardial
infarction because the decrease in HbAc was quite

modest in the PROactive study (), and subjects in
the IRIS trial were not diabetic (). Pioglitazone can
prevent atherosclerotic CV complications by multiple
mechanisms: (i) reversal of the basic molecular dis-
turbances responsible for the insulin resistance and
accelerated atherosclerosis, including inhibition of the
MAPK pathway and stimulation of the IRS-/PIK
pathway, leading to enhanced insulin sensitivity and a
reduction in hyperinsulinemia (, , , ,
–); (ii) suppression of multiple inflammatory
pathways (IkB/NF-kB, TLR-, TNFa) and reduced
generation of ROS (, , , –) that
are associated with insulin resistance; (iii) correction
of diabetic dyslipidemia (decrease in plasma tri-
acylglycerol, increase in HDL cholesterol, conversion
of small dense LDL particles to larger more buoyant,
less dense LDL particles), which is associated with
amelioration of the insulin resistance (, ); (iv)
reduction in the plasma FFA concentration (, ,
–) and mobilization of FFA out of tissues
(–, , , , ), including arterial
smooth muscle cells; (v) improved endothelial dys-
function and enhanced nitric oxide generation, which
are directly related to the insulin-sensitizing effect
of the TZDs (–); (vi) increased production
of the insulin-sensitizing adipocytokine adiponectin
(, , –); (vii) stimulation of peroxisome
proliferator–activated receptor g (PPARg) (, ,
), the master regulator of mitochondrial bio-
genesis (); this leads to enhanced intracellular fat
oxidation and reduced skeletal and arterial smooth
muscle fat content, resulting in improved insulin
sensitivity, reduced inflammatory cytokines and ROS
generation, and inhibition of atherogenesis (,
); and (viii) reduced plasma FFAs and intra-
myocellular fatty acyl–coenzyme A derivatives, which
are intimately associated with the development of
insulin resistance and activation of intracellular
pathways involved in atherogenesis (, , ,
–, , ). Although not well appreciated,
analysis of atherosclerotic plaques reveals large
amounts of nonesterified fatty acids (–), which
stimulate inflammatory pathways involved in ath-
erogenesis (, , , , ).

Th use of TZDs has been limited in part by un-
certainty about the risk for development of heart
failure, especially in susceptible patients with diastolic
dysfunction (). In the PROactive study involving
 patients with TDMwith a previous CV event or
multiple CV risk factors, an increased incidence of
“heart failure” was observed, but these patients did not
experience any increase in CV events (, , ).
Heart failure in patients with TDM is an ominous
sign with a -year survival rate of .% ().
Therefore, it is likely that these individuals really had
peripheral edema, not heart failure, and that following
diuresis the benefical CV effects of pioglitazone were
observed. Although fat weight gain is common with

Figure 3. (a) Predictive value (%) of CVD (ASCVD) using the
Framingham risk engine in the Framingham Heart Study (FHS),
the ARIC study, the Honolulu Heart Program (HHP), the Puerto
Rico Heart Health Program (PR), the Strong Heart Study (SHS),
and the Cardiovascular Health Study (CHS). On mean, the
Framingham risk engine predicts only 69% of the risk of a future
CV event. (b) Excess carotid IMT in relationship to the
individual components of the insulin resistance (metabolic)
syndrome as listed. Amer, American; F, female; GLU, glucose;
HTN, hypertension; M, male; TG, triacylglycerol. Fields in dotted
lines represent the unexplained risk [(a), 31%; (b), 30%]. [(a)
Adapted with permission from D’Agostino RB, Sr., Grundy S,
Sullivan LM, Wilson P: Validation of the Framingham coronary
heart disease prediction scores: results of a multiple ethnic
groups investigation. JAMA 286:180–187, 2001. Illustration
presentation copyright Endocrine Society 2019. (b) Adapted
with permission from Golden SH, Folsom AR, Coresh J, Sharrett
AR, Szklo M, Brancati F: Risk factor groupings related to insulin
resistance and their synergistic effects on subclinical
atherosclerosis: the Atherosclerosis Risk in Communities Study.
Diabetes 51:3069–3076, 2002. Illustration presentation
copyright Endocrine Society 2019.]
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pioglitazone, the HbAc consistently declines, and the
greater is the weight gain, the greater are the im-
provements in insulin secretion and insulin sensitivity
(, , ). Of note, increased weight gain in the
PROactive study was associated with reduced CV
mortality (). Lastly, the -year follow-up of a Food
and Drug Administration (FDA)–mandated study
involving , patients failed to demonstrate any
association of pioglitazone with bladder cancer ().

CV outcome trials with rosiglitazone have been
more controversial. Similar to pioglitazone, rosiglita-
zone is a potent insulin sensitizer (, ), improves
b-cell function (, , ), effectively reduces and
maintains the reduction in HbAc [reviewed in Ref.
()] for up to  years (), and reduces circulating
levels of inflammatory cytokines (, ). In a meta-
analysis of  trials by Nissen and Wolski (),
rosiglitazone was associated with a significant increase
(HR, .; P5 .) in myocardial risk and borderline
significant increase in ASCVD-related death (HR,
.; P 5 .). A retrospective data analysis by
GlaxoSmithKline () confirmed that the incidence of
myocardial infarction in rosiglitazone-treated patients
with TDM was increased (HR, .; P5 .), and an
FDA analysis () of individual patient data provided
by GlaxoSmithKline demonstrated that rosiglitazone
was associated with a significant increase in all ischemic
events (HR, .; % CI, . to .). In the only
prospective trial (RECORD) with rosiglitazone () in
 patients with TDM (mean follow-up of . years),
the HR for the primary endpoint (hospitalization or
death from CV causes) was . (% CI, . to .).
In the recently published VADT (), rosiglitazone
was associated with a significant decrease in the risk of
the ASCVD composite outcome (any major CV event)
(HR, .; % CI, . to .). In the VICTORY study
(), which evaluated the atherosclerotic burden
via ultrasound in  patients with TDM, no
difference in atherosclerosis progression was ob-
served between rosiglitazone and placebo. In the
DREAM trial (), although not designed to
evaluate ASCVD events, a trend for increased
myocardial infarction was observed in the rosigli-
tazone group (HR, .; % CI, . to .). In a
meta-analysis of trials in which rosiglitazone was
added to insulin-treated patients with TDM, no
difference in CV events was observed compared
with insulin monotherapy ().

Overall, the results do not support a beneficial
effect of rosiglitazone on adverse CV events in patients
with TDM, and, because of CV safety concerns, the
European Medicine Agency removed rosiglitazone
from the market (), whereas the FDA placed severe
restrictions on its use (). What explains the ben-
eficial results of pioglitazone on ASCVD, whereas the
results with rosiglitazone can, at best, be viewed as
neutral? One obvious difference is the divergent effects
of the two drugs on plasma lipid levels (, , ).

Rosiglitazone increases total and LDL cholesterol
levels and has no significant effect on the plasma
triglyceride concentration. In contrast, pioglitazone is
neutral with respect to total and LDL cholesterol and
significantly reduces plasma triglyceride levels. Fur-
thermore, pioglitazone reduces the concentration of
small atherogenic LDL particles () and lipoprotein(a)
levels (). Although both TZDs increase HDL
cholesterol, the increase with pioglitazone is approx-
imately twice as great as that with rosiglitazone (,
). These different effects on the plasma lipid profile
most likely are explained by the overlapping but also
unique gene expression of the two TZDs and by the
ability of pioglitazone to partially activate PPARa
(, ). Another difference between the two TZDs
is the consistent improvement in endothelial function
observed with pioglitazone vs the more inconsistent
results noted with rosiglitazone (). In summary, it
could be argued that if it were not for rosiglitazone’s
adverse effects on lipid metabolism, the drug’s insulin-
sensitizing effect might have resulted in a decrease in
adverse CV events.

Metformin
Metformin is commonly referred to as an insulin-
sensitizing agent. However, studies utilizing the
euglycemic insulin clamp have failed to demonstrate
that metformin enhances insulin sensitivity in pe-
ripheral tissues, including muscle (, , –),
in the absence of weight loss (Fig. ). The average
weight loss after  to  months of metformin therapy
is ~. to . kg, which can account for the observed
improvement in insulin sensitivity reported in some
studies. Moreover, as reviewed by Natali and Fer-
rannini (), in contrast to the uniform improvement
in insulin action with TZDs, reports of enhanced
insulin sensitivity with metformin are more sporadic
and, when observed, changes in body weight were not
provided. As suggested from previous studies, the
biguanide’s major mechanism of action in TDM is
the suppression the elevated rate of hepatic gluco-
neogenesis (, ) (Fig. ). It is noteworthy that
following the intravenous administration of radiola-
beled metformin, using positron emission tomogra-
phy, the biguanide can be shown to accumulate in liver
and distal small bowel and not in muscle (). There
remains uncertainty about whether metformin re-
duces risk of CVD among patients with TDM, for
whom it is recommended as first-line drug. In the
UKPDS (), diabetic patients randomized to met-
formin experienced a % relative risk reduction in
fatal/nonfatal myocardial infarction (metformin, %
vs conventional therapy, %) and a % relative risk
reduction in all-cause mortality (metformin, .% vs
conventional therapy, .%). However, the patient
population consisted of only  patients with obesity
with TDM, and the number of CV events was very
small. By today’s standards, the results of the UKPDS
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would not be accepted as evidence of a CV benefit of
metformin. Moreover, a beneficial effect on CV events
has not been observed in other clinical studies with
metformin, that is, the ADOPT study (), which
included twice the number of patients as the UKPDS
(n 5 ). On the contrary, subjects receiving met-
formin in the ADOPT study experienced more CV
events than did subjects receiving glyburide, although
this difference was not statistically significant. Simi-
larly, in metformin-treated subjects who also were
receiving concomitant therapy with a sulfonylurea in
the UKPDS, a significant increase in CV events was
reported (). This emphasizes the problem of
interpreting results from studies that are markedly
underpowered to detect a clinically significant dif-
ference in cardiac event rates. In a meta-analysis of
randomized controlled trials with patients with TDM
comparing any dose and preparation of metformin
with placebo or lifestyle intervention, metformin was
slightly favored in all outcomes, with the exception of
stroke (); however, no endpoint achieved statistical
significance (all-cause mortality HR, .; CV death
HR, .; myocardial infarction HR, .; stroke HR,
.; peripheral vascular disease HR, .).

In summary, at the present time it is unclear
whether metformin has any CV benefit.

Sodium-glucose cotransporter 2 inhibitors
In the EMPA REG OUTCOME trial () the
sodium-glucose cotransporter  (SGLT) inhibitor
empagliflozin reduced the MACE endpoint by %
(HR, .; P 5 .) and hospitalization for heart
failure by % (HR, .; P5 .) in  high-risk
individuals with TDM with a prior CV event. The
reduction in -point MACE primarily was driven by a
% reduction in CV mortality, whereas myocardial
infarction and stroke did not change significantly.
Potential mechanisms responsible for the marked
reduction in CV mortality have been reviewed (,
). Because the reduction in CV events was evident
within  to months after the start of empagliflozin, it
is unlikely that the early beneficial CV effects can be
explained by an antiatherogenic mechanism. The
improvement in insulin sensitivity following a treat-
ment with SGLT inhibitors has been observed in
animal diabetic models (, ) and human TDM
studies () within  weeks. The most likely expla-
nation for the increase in insulin sensitivity is the
reduction in plasma glucose concentration resulting in
amelioration of glucotoxicity. However, the im-
provement in insulin sensitivity was modest, ~% to
%, and unlikely to explain the rapid and dramatic
reduction in CV mortality and hospitalization for
heart failure. SGLT inhibitors block Na1-glucose
cotransport in the proximal tubule, resulting in a
modest decrease in the intravascular volume and
preload reduction (, ). The SGLT inhibitors
also reduce systolic/diastolic blood pressure and

decrease aortic stiffness (, ), resulting in sub-
stantial afterload reduction. These hemodynamic ef-
fects are rapid in onset and most likely explain, at least
in part, the marked reduction in CV mortality ob-
served within  to  months after initiation of
empagliflozin in the EMPA REG OUTCOME trial.
Consistent with this scenario, empagliflozin treatment
of  months decreased left ventricular mass and im-
proved diastolic dysfunction (). However, the slope
of the curve relating the incidence of CV events to time
changes significantly after year  of empagliflozin
therapy, suggesting that mechanisms other than he-
modynamic ones contribute to the CV benefits re-
ported in the EMPA REG OUTCOME trial ().
Most recently, the results of CANVAS/CANVAS-R
() have been published and, similar to the EMPA
REG OUTCOME trial, demonstrated a % decrease
(HR, .; P , .) in the MACE endpoint, al-
though the reduction in CV mortality was modest and
not statistically significant. A surprising result in the
CANVAS study was the almost twofold increased risk
for lower-extremity amputations with canagliflozin
compared with placebo (HR, .; %CI, . to .;
P , .). The amputations were observed more
often in men and in patients with a history of prior
amputation, neuropathy, and peripheral vascular
disease (). It is noteworthy that in the recently
published CREDENCE study (), which demon-
strated a % decrease in the renal composite outcome
[dialysis, kidney transplantation, renal death, eGFR ,
 mL/min*. m, doubling of serum creatinine
(HR, .; % CI, . to .; P , .)], no in-
crease in lower-extremity amputations was observed in
individuals with TDM who had manifest diabetic
kidney on entry into the study. The metabolic effects of
canagliflozin have been less well studied compared
with dapagliflozin and empagliflozin (, ), but it
is reasonable to expect that the reduction in plasma
glucose concentration secondary to glucosuria would
lead to amelioration of glucotoxicity and a modest
improvement in insulin sensitivity. Nonetheless, as
previously reviewed (), we think that hemodynamic
factors—decreased preload and afterload reduction—
represent the most likely mechanism responsible for
the beneficial effect of SGLT inhibitors on -point
MACE. A number of other potential mechanisms
have been put forward to explain the CV benefits of
the SGLT inhibitors (), of which the “ketone
hypothesis” () has received considerable attention.
However, at the present time all of these mechanisms
remain unproven.

Recently, the results of the DECLARE study (),
which had two primary endpoints, were published.
Hospitalization for heart failure plus cardiovascular
mortality was significantly reduced (HR, .; % CI,
. to .; P = .), whereas MACE was not sig-
nificantly reduced (HR, .; % CI, . to .; P =
.). In a subgroup analysis (), diabetic individuals
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with a prior MI experienced a % decrease in recurrent
MI (HR, .; % CI, . to .; P = .). These
results are consistent with two real-world studies (CVD
REAL- and CVD REAL-), have shown that this
SGLT inhibitor also reduces the MACE endpoint and
CV mortality (–).

Glucagon-like peptide-1 receptor agonists and
DPP4 inhibitors
Two glucagon-like peptide- (GLP-) receptor ago-
nists (RAs), liraglutide (LEADER study) (by %, P 5
.) () and semaglutide (SUSTAIN- study) (by
%, P5 .) (), have been shown to significantly
reduce -point MACE in a high CV-risk population
with TDM. In the LEADER study the decrease in CV
events primarily was driven by a % reduction in CV
mortality (P 5 .), whereas nonfatal myocardial
infarction (by %, P 5 .) and nonfatal stroke (by
%, P 5 .) decreased but not significantly. In the
SUSTAIN- study the primary outcome (-point
MACE) was driven by a % decline in nonfatal stroke
(P5 .) and a % reduction in nonfatal myocardial
infarction (P 5 .) without any benefit on CV
mortality. Unlike the EMPA REG OUTCOME trial,
separation of the Kaplan–Meier curves did not occur
until after year , suggesting that the CV benefit was
more related to antiatherogenic benefits than to
any hemodynamic benefits of the two GLP- RAs.
GLP- RAs improve many CV risk factors (obesity,
hypertension, dyslipidemia, inflammation, visceral/
hepatic fat, hyperglycemia), but the magnitude of
improvement in these CV risk factors was modest in
the LEADER and SUSTAIN- studies and unlikely to
explain the reduction in primary outcome (-point
MACE) when reviewed individually. GLP- RAs do

not have a direct insulin-sensitizing effect (, ),
although they can ameliorate insulin resistance sec-
ondary to their effect to promote weight loss. None-
theless, it seems unlikely that the magnitude of the
weight loss would enhance insulin sensitivity suffi-
ciently to have a major impact on the atherosclerotic
process (). However, when viewed collectively, the
modest improvement in multiple components of the
IRS (blood pressure, dyslipidemia, visceral/hepatic fat),
when combined with the weight loss and associated
improvement in insulin sensitivity, could have exerted
a significant antiatherogenic effect. In a large -year
randomized controlled trial in  adults who were
obese/overweight with prediabetes, liraglutide (mg/d)
caused a significant, durable reduction in multiple
components of the IRS, which correlated with en-
hanced insulin sensitivity measured with both HOMA-
IR and the Matsuda index ().

Both the myocardium and vasculature express GLP-
 receptors (, ) and GLP- RAs exert multiple
beneficial effects on CV function: (i) direct effect to
augment myocardial function; (ii) vasodilatory effect on
small vessel blood flow secondary to enhanced nitric
oxide production; (iii) inhibitory effect on the athero-
genic process; (iv) altered autonomic nervous system
balance favoring parasympathetic activity; (v) reduced
myocardial injury after an ischemic insult (–);
and (vi) direct anti-inflammatory actions on the
myocardium and blood vessels (). In animal models,
GLP- RAs have been shown to directly slow the
atherogenic process (–). Although the cellular/
molecular mechanisms responsible for these anti-
atherogenic effects remain to be elucidated, they could
have contributed to the decrease in CV events in the
LEADER and SUSTAIN- studies.

Figure 4. Effect of metformin on insulin sensitivity and hepatic glucose production in T2DM. (a) Metformin has no effect to improve
muscle insulin sensitivity (measured with euglycemic insulin clamp) in individuals with T2DM in the absence of weight loss. (b) The
primary effect via which metformin reduces the HbA1c in T2DM is related to the suppression of hepatic glucose production via
inhibition of gluconeogenesis (284). [Reproduced with permission from Cusi K, DeFronzo RA. Metformin: a review of its metabolic
effects. Diabetes Reviews 6:89–131, 1998. ©1998 by the American Diabetes Association® Diabetes Review 6:89–131, 1998. Reprinted with
permission from the American Diabetes Association®.]
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Recently, the results of the EXSCEL trial have been
published (), and from a purely statistical stand-
point sustained-release exenatide was shown to be CV
neutral in high-risk individuals with TDM (HR 5
., P 5 .). However, the median duration of
exposure in the exenatide group compared with the
amount of time that they were expected to be on the
GLP- RA was %, most likely because the study was
initiated with the old preparation of Bydureon, which
is very cumbersome to use and because of a higher
drop in rate of SGLT inhibitors and GLP- RAs in the
placebo group. When viewed in the context of these
two factors, it could be argued that the EXSCEL trial
was a positive study with respect to CV protection. The
results of the recently published REWIND study ()
with dulaglutide are consistent with those of LEADER
() and SUSTAIN- () and demonstrate a %
decrease in the MACE endpoint (HR, .; % CI,
. to .; P 5 .).

Although not yet published, the CV results of the
FREEDOM trial () have been stated to be neutral.
The neutral result of the FREEDOM (and possibly
EXSCEL) trial stand in contrast to those of the
LEADER and SUSTAIN- trials. The reasons un-
derlying these different results are unclear, but exe-
natide has only ~% homology with human GLP-,
whereas liraglutide and semaglutide (which are very
similar in structure) both are closely homologous to
human GLP-. Although the ELIXA study () failed
to demonstrate any CV benefit, lixisenatide is short
acting, in the range of  to  hours, and the patient
population (acute coronary syndrome) was very dif-
ferent than prior CV trials of GLP-RAs in diabetes. The
result of the REWIND trial () with dulaglutide may
help to clarify whether the observed antiatherogenic
effects of the GLP- RAs represent a class effect.

The DPP inhibitors exert their major effect by
inhibiting glucagon secretion by the pancreatic
a-cells and to a lesser extent by increasing insulin
secretion (–). The DPP inhibitors have no
insulin-sensitizing effect (, ). Four CV outcome
trials have been reported with the DPP inhibitors
[SAVOR-TIMI (saxagliptin), ESAMINE (alogliptin),
TECOS (sitagliptin) and CARMELINA (linogliptin)]

(–), and all four have failed to demonstrate any
CV protective effect in patients with TDM with
established ASCVD.

Summary

Macrovascular complications (heart attack and
stroke) remain the major cause of mortality in in-
dividuals with the IRS, in nondiabetic people with
obesity, and in prediabetic subjects and subjects with
TDM, and the increase in CV mortality cannot be
fully accounted for by the classic CV risk factors.
Considerable evidence suggests that insulin re-
sistance and the basic molecular etiology of the in-
sulin resistance can explain a major component of
the unexplained CV risk in these populations. CV
outcome trials have demonstrated that three
classes of antidiabetic agents can reduce -point
MACE: TZDs (pioglitazone), GLP- RAs (liraglutide,
semaglutide), and SGLT inhibitors (empagliflozin,
canagliflozin). Of these three classes, strong evidence
supports that the insulin-sensitizing agent pioglita-
zone exerts its antiatherogenic effect by improving
insulin resistance and multiple components of the
IRS. The current recommended approach in TD
management still focuses on lowering the plasma
glucose concentration rather than correcting the
underlying metabolic abnormalities that cause the
hyperglycemia. However, we now have antidiabetes
medications that, in addition to lowering the plasma
glucose concentration, also improve CV risk factors
and CV events in subjects with TDM with estab-
lished CVD. Thus, these agents should be favored
over agents that lower plasma glucose but have no
beneficial effects on CV risk factors or CVD. As
opposed to pioglitazone, it seems unlikely that either
the SGLT inhibitors or GLP- RAs exert their CV
protective effects by enhancing insulin sensitivity.
This raises the intriguing possibility that combination
therapy with pioglitazone plus either a SGLT in-
hibitor or GLP- RA could provide an additive or
even synergistic effect to reduce CV events in high-
risk individuals ().
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Friedman S, Berg G, Zago V, Schreier L. Over-
production of altered VLDL in an insulin-resistance
rat model: influence of SREBP-1c and PPAR-a. Clin
Investig Arterioscler. 2015;27(4):167–174.

60. Nakao J, Ito H, Kanayasu T,Murota S. Stimulatory effect
of insulin on aortic smooth muscle cell migration
induced by 12-L-hydroxy-5,8,10,14-eicosatetraenoic
acid and its modulation by elevated extracel-
lular glucose levels. Diabetes . 1985;34(2):185–
191.

61. Golovchenko I, Goalstone ML, Watson P, Brownlee
M, Draznin B. Hyperinsulinemia enhances tran-
scriptional activity of nuclear factor-kB induced by
angiotensin II, hyperglycemia, and advanced gly-
cosylation end products in vascular smooth muscle
cells. Circ Res. 2000;87(9):746–752.

62. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T,
Cybulsky MI. The NF-kB signal transduction
pathway in aortic endothelial cells is primed for
activation in regions predisposed to atherosclerotic
lesion formation. Proc Natl Acad Sci USA. 2000;
97(16):9052–9057.

63. Hsueh WA. Insulin signals in the arterial wall.
J Cardiol. 1999;84(1):21–24.

64. Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P,
Jenkinson CP, Cersosimo E, Defronzo RA, Coletta
DK, Sriwijitkamol A, Musi N. Elevated Toll-like re-
ceptor 4 expression and signaling in muscle from
insulin-resistant subjects. Diabetes. 2008;57(10):
2595–2602.

65. Lindsey JB, House JA, Kennedy KF, Marso SP. Di-
abetes duration is associated with increased thin-
cap fibroatheroma detected by intravascular ultrasound
with virtual histology. Circ Cardiovasc Interv. 2009;2(6):
543–548.

66. Stout RW. The effect of insulin on the in-
corporation of sodium (1-14C)-acetate into the
lipids of the rat aorta. Diabetologia. 1971;7(5):
367–372.

67. Porter KE, Riches K. The vascular smooth muscle
cell: a therapeutic target in type 2 diabetes? Clin Sci
(Lond). 2013;125(4):167–182.

68. Stamler J, Pick R, Katz LN. Effect of insulin in the
induction and regression of atherosclerosis in the
chick. Circ Res. 1960;8(3):572–576.

69. Duff GL, McMillan GC. The effect of alloxan di-
abetes on experimental cholesterol atherosclerosis
in the rabbit. J Exp Med. 1949;89(6):611–630.

70. Cruz AB Jr, Amatuzio DS, Grande F, Hay LJ. Effect of
intra-arterial insulin on tissue cholesterol and fatty
acids in alloxan-diabetic dogs. Circ Res. 1961;9(1):
39–43.

71. Meehan WP, Buchanan TA, Hsueh W. Chronic
insulin administration elevates blood pressure in
rats. Hypertension. 1994;23(6 Pt 2):1012–1017.

72. DeFronzo RA, Goldberg M, Agus ZS. The effects of
glucose and insulin on renal electrolyte transport.
J Clin Invest. 1976;58(1):83–90.

73. Henry RR, Gumbiner B, Ditzler T, Wallace P, Lyon R,
Glauber HS. Intensive conventional insulin therapy
for type II diabetes. Metabolic effects during a 6-mo
outpatient trial. Diabetes Care. 1993;16(1):21–31.

74. Holman RR, Thorne KI, Farmer AJ, Davies MJ,
Keenan JF, Paul S, Levy JC. Addition of biphasic,
prandial, or basal insulin to oral therapy in type 2
diabetes. N Engl J Med. 2007;357(17):1716–1730.

75. Purnell JQ, Dev RK, Steffes MW, Cleary PA, Palmer
JP, Hirsch IB, Hokanson JE, Brunzell JD. Relationship
of family history of type 2 diabetes, hypoglycemia,
and autoantibodies to weight gain and lipids with
intensive and conventional therapy in the Diabetes
Control and Complications Trial. Diabetes. 2003;
52(10):2623–2629.

76. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath
CW Jr. Body-mass index and mortality in a pro-
spective cohort of U.S. adults. N Engl J Med. 1999;
341(15):1097–1105.

77. Allison DB, Fontaine KR, Manson JE, Stevens J,
VanItallie TB. Annual deaths attributable to obesity
in the United States. JAMA. 1999;282(16):1530–
1538.

78. Sinha S, Perdomo G, Brown NF, O’Doherty RM.
Fatty acid-induced insulin resistance in L6 myo-
tubes is prevented by inhibition of activation and
nuclear localization of nuclear factor kB. J Biol Chem.
2004;279(40):41294–41301.

79. Bhatt BA, Dube JJ, Dedousis N, Reider JA, O’Doherty
RM. Diet-induced obesity and acute hyperlipidemia
reduce IkBa levels in rat skeletal muscle in a fiber-
type dependent manner. Am J Physiol Regul Integr
Comp Physiol. 2006;290(1):R233–R240.

80. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW,
Rutledge JC. Triglyceride-rich lipoprotein lipolysis
releases neutral and oxidized FFAs that induce
endothelial cell inflammation. J Lipid Res. 2009;
50(2):204–213.

81. Felton CV, Crook D, Davies MJ, Oliver MF. Relation
of plaque lipid composition and morphology to the
stability of human aortic plaques. Arterioscler
Thromb Vasc Biol. 1997;17(7):1337–1345.

82. Felton CV, Crook D, Davies MJ, Oliver MF. Dietary
polyunsaturated fatty acids and composition of
human aortic plaques. Lancet. 1994;344(8931):
1195–1196.

83. Stachowska E, Dołegowska B, ChlubekD,Wesołowska T,
Ciechanowski K, Gutowski P, SzumiłowiczH, Turowski R.
Dietary trans fatty acids and composition of hu-
man atheromatous plaques. Eur J Nutr. 2004;43(5):
313–318.

84. Steinberg HO, Tarshoby M, Monestel R, Hook G,
Cronin J, Johnson A, Bayazeed B, Baron AD. Elevated
circulating free fatty acid levels impair endothelium-
dependent vasodilation. J Clin Invest. 1997;100(5):
1230–1239.

85. Ross R. The pathogenesis of atherosclerosis: a
perspective for the 1990s. Nature. 1993;362(6423):
801–809.

86. Cersosimo E, DeFronzo RA. Insulin resistance and
endothelial dysfunction: the road map to cardio-
vascular diseases. Diabetes Metab Res Rev. 2006;
22(6):423–436.

87. Gerstein HC, Bosch J, Dagenais GR, D́ıaz R, Jung H,
Maggioni AP, Pogue J, Probstfield J, Ramachandran
A, Riddle MC, Rydén LE, Yusuf S; ORIGIN Trial
Investigators. Basal insulin and cardiovascular and
other outcomes in dysglycemia. N Engl J Med. 2012;
367(4):319–328.

88. Eaton RP, Allen RC, Schade DS, Standefer JC.
“Normal” insulin secretion: the goal of artificial
insulin delivery systems? Diabetes Care. 1980;3(2):
270–273.

89. Gerstein HC, Miller ME, Byington RP, Goff DC Jr,
Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-
Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton
DG, Friedewald WT; Action to Control Cardio-
vascular Risk in Diabetes Study Group. Effects of
intensive glucose lowering in type 2 diabetes. N Engl
J Med. 2008;358(24):2545–2559.

90. Patel A, MacMahon S, Chalmers J, Neal B, Billot L,
Woodward M, Marre M, Cooper M, Glasziou P,
Grobbee D, Hamet P, Harrap S, Heller S, Liu L,
Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers
A, Williams B, Bompoint S, de Galan BE, Joshi R,
Travert F; ADVANCE Collaborative Group. In-
tensive blood glucose control and vascular out-
comes in patients with type 2 diabetes. N Engl J
Med. 2008;358(24):2560–2572.

91. Duckworth W, Abraira C, Moritz T, Reda D,
Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN,
Hayward R, Warren SR, Goldman S, McCarren M,
Vitek ME, Henderson WG, Huang GD; VADT In-
vestigators. Glucose control and vascular compli-
cations in veterans with type 2 diabetes. N Engl J
Med. 2009;360(2):129–139.

92. Nolan CJ, Ruderman NB, Kahn SE, Pedersen O,
Prentki M. Insulin resistance as a physiological
defense against metabolic stress: implications for
the management of subsets of type 2 diabetes.
Diabetes. 2015;64(3):673–686.

93. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner
N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H,
Kraegen EW, Cooney GJ, Richardson AR, James DE.
Insulin resistance is a cellular antioxidant defense
mechanism. Proc Natl Acad Sci USA. 2009;106(42):
17787–17792.

94. Muoio DM, Neufer PD. Lipid-induced mitochon-
drial stress and insulin action in muscle. Cell Metab.
2012;15(5):595–605.

95. Brownlee M. The pathobiology of diabetic com-
plications: a unifying mechanism. Diabetes. 2005;
54(6):1615–1625.

96. Chess DJ, Stanley WC. Role of diet and fuel over-
abundance in the development and progression of
heart failure. Cardiovasc Res. 2008;79(2):269–278.

97. Stienstra R, Tack CJ, Kanneganti TD, Joosten LA,
Netea MG. The inflammasome puts obesity in the
danger zone. Cell Metab. 2012;15(1):10–18.

98. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo
WB, Contos MJ, Sterling RK, Luketic VA, Shiffman
ML, Clore JN. Nonalcoholic steatohepatitis: asso-
ciation of insulin resistance and mitochondrial
abnormalities. Gastroenterology. 2001;120(5):1183–
1192.

99. Yki-Järvinen H. Liver fat in the pathogenesis of
insulin resistance and type 2 diabetes. Dig Dis. 2010;
28(1):203–209.

100. Bugianesi E, Gastaldelli A, Vanni E, Gambino R,
Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E,

1460 Di Pino and DeFronzo Insulin Resistance and Atherosclerosis Endocrine Reviews, December 2019, 40(6):1447–1467

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article-abstract/40/6/1447/5482541 by U
ni C

atania user on 17 July 2020



Rizzetto M. Insulin resistance in non-diabetic pa-
tients with non-alcoholic fatty liver disease: sites
and mechanisms. Diabetologia. 2005;48(4):634–642.

101. Targher G, Day CP, Bonora E. Risk of cardiovascular
disease in patients with nonalcoholic fatty liver
disease. N Engl J Med. 2010;363(14):1341–1350.

102. Misra VL, Khashab M, Chalasani N. Nonalcoholic
fatty liver disease and cardiovascular risk. Curr
Gastroenterol Rep. 2009;11(1):50–55.

103. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR.
Metabolic syndrome: evaluation of pathological
and therapeutic outcomes. Am Heart J. 2005;149(1):
20–32.

104. Reaven G. Insulin resistance, hypertension, and
coronary heart disease. J Clin Hypertens (Greenwich).
2003;5(4):269–274.

105. Sironi AM, Pingitore A, Ghione S, De Marchi D,
Scattini B, Positano V, Muscelli E, Ciociaro D,
Lombardi M, Ferrannini E, Gastaldelli A. Early hy-
pertension is associated with reduced regional car-
diac function, insulin resistance, epicardial, and
visceral fat. Hypertension. 2008;51(2):282–288.

106. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA,
Oleggini M, Graziadei L, Pedrinelli R, Brandi L,
Bevilacqua S. Insulin resistance in essential hyper-
tension. N Engl J Med. 1987;317(6):350–357.

107. Solini AD. Insulin resistance, hypertension, and
cellular ion transport systems. Acta Diabetol. 1992;
29(3–4):196–200.

108. DeFronzo RA. Insulin resistance: a multifaceted
syndrome responsible for NIDDM, obesity, hyper-
tension, dyslipidaemia and atherosclerosis. Neth J
Med. 1997;50(5):191–197.

109. Rana JS, Visser ME, Arsenault BJ, Després JP, Stroes
ES, Kastelein JJ, Wareham NJ, Boekholdt SM, Khaw
KT. Metabolic dyslipidemia and risk of future
coronary heart disease in apparently healthy men
and women: the EPIC-Norfolk prospective pop-
ulation study. Int J Cardiol. 2010;143(3):399–404.

110. Stamler J, Vaccaro O, Neaton JD, Wentworth D.
Diabetes, other risk factors, and 12-yr cardiovascular
mortality for men screened in the Multiple Risk
Factor Intervention Trial. Diabetes Care. 1993;16(2):
434–444.

111. Jeppesen J, Hollenbeck CB, Zhou MY, Coulston AM,
Jones C, Chen YD, Reaven GM. Relation between
insulin resistance, hyperinsulinemia, postheparin
plasma lipoprotein lipase activity, and postprandial
lipemia. Arterioscler Thromb Vasc Biol. 1995;15(3):
320–324.

112. Sheu WH, Shieh SM, Fuh MM, Shen DD, Jeng CY,
Chen YD, Reaven GM. Insulin resistance, glucose
intolerance, and hyperinsulinemia. Hypertriglyceridemia
versus hypercholesterolemia. Arterioscler Thromb. 1993;
13(3):367–370.

113. Galvan AQ, Santoro D, Natali A, Sampietro T, Boni
C, Masoni A, Buzzigoli G, Ferrannini E. Insulin
sensitivity in familial hypercholesterolemia. Metab-
olism. 1993;42(10):1359–1364.

114. Steinberg HO, Brechtel G, Johnson A, Fineberg N,
Baron AD. Insulin-mediated skeletal muscle vaso-
dilation is nitric oxide dependent. A novel action of
insulin to increase nitric oxide release. J Clin Invest.
1994;94(3):1172–1179.

115. Kashyap SR, Roman LJ, Lamont J, Masters BS, Bajaj
M, Suraamornkul S, Belfort R, Berria R, Kellogg DL Jr,
Liu Y, DeFronzo RA. Insulin resistance is associated
with impaired nitric oxide synthase activity in
skeletal muscle of type 2 diabetic subjects. J Clin
Endocrinol Metab. 2005;90(2):1100–1105.

116. Kashyap SR, Lara A, Zhang R, Park YM, DeFronzo
RA. Insulin reduces plasma arginase activity in type
2 diabetic patients. Diabetes Care. 2008;31(1):
134–139.

117. Baron AD. Hemodynamic actions of insulin. Am J
Physiol. 1994;267(2 Pt 1):E187–E202.

118. Brunner H, Cockcroft JR, Deanfield J, Donald A,
Ferrannini E, Halcox J, Kiowski W, Lüscher TF,
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Mart́ınez-González MA; PREDIMED Study In-
vestigators. Primary prevention of cardiovascular
disease with a Mediterranean diet supplemented
with extra-virgin olive oil or nuts. N Engl J Med. 2018;
378(25):e34.

223. Yki-Järvinen H. Thiazolidinediones. N Engl J Med.
2004;351(11):1106–1118.

224. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy
D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI,
Petersen KF. The effects of rosiglitazone on insulin
sensitivity, lipolysis, and hepatic and skeletal muscle
triglyceride content in patients with type 2 diabetes.
Diabetes. 2002;51(3):797–802.

225. Natali A, Ferrannini E. Effects of metformin and
thiazolidinediones on suppression of hepatic glu-
cose production and stimulation of glucose uptake
in type 2 diabetes: a systematic review. Diabetologia.
2006;49(3):434–441.

226. Abdul-Ghani M, DeFronzo RA. Is it time to change
the type 2 diabetes treatment paradigm? Yes! GLP-1
RAs should replace metformin in the type 2 di-
abetes algorithm. Diabetes Care. 2017;40(8):1121–
1127.

227. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann
E, Massi-Benedetti M, Moules IK, Skene AM, Tan
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