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Abstract: The technological advances of remote sensing (RS) have allowed its use in a number of
fields of application including plant disease depiction. In this study, an RS approach based on an
18-year (i.e., 2001–2018) time-series analysis of Normalized Difference Vegetation Index (NDVI) data,
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and processed with
TIMESAT free software, was applied in Sicily (insular Italy). The RS approach was carried out in
four orchards infected by Citrus tristeza virus (CTV) at different temporal stages and characterized by
heterogeneous conditions (e.g., elevation, location, plant age). The temporal analysis allowed the
identification of specific metrics of the NDVI time-series at the selected sites during the study period.
The most reliable parameter which was able to identify the temporal evolution of CTV syndrome and
the impact of operational management practices was the “Base value” (i.e., average NDVI during
the growing seasons, which reached R2 values up to 0.88), showing good relationships with “Peak
value”, “Small integrated value” and “Amplitude”, with R2 values of 0.63, 0.70 and 0.75, respectively.
The approach herein developed is valid to be transferred to regional agencies involved in and/or in
charge of the management of plant diseases, especially if it is integrated with ground-based early
detection methods or high-resolution RS approaches, in the case of quarantine plant pathogens
requiring control measures at large-scale level.
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1. Introduction

The adoption of remote sensing (RS) approaches is gaining special relevance to monitor, quantify
and map vegetation dynamics resulting from life-cycle patterns, climatic conditions, photosynthetic
activity and plant diseases [1,2]. Plant pathogens cause damage to crops, quantifiable in direct and
indirect costs. In addition to the direct costs, quantified as yield losses, in the case of virus diseases and
consequent quarantine plan, the indirect costs (i.e., plant protection treatments, environmental impact
of pesticides, replacement of plants and loss of biodiversity) find the major item being prevention costs
with a strong economic and social impact for the community. The most modern challenges of plant
pathology are to combine the classic systems of prevention and quarantine with modern automated
methods of detection, which, being characterized by precision and reliability, allow for a more efficient
management of phytosanitary emergencies. In situ monitoring approaches for plant health have made
tremendous progress, but they are intensive and often integrate subjective indicators. RS bridges the
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gaps of these limitations by monitoring indicators of plant health on different spatio-temporal scales
and in a cost-effective, rapid, repetitive and objective manner [3]. For example, research conducted
by CIHEAM of Bari showed the application of RS in the monitoring of two quarantine pathogens
in the Apulia region (Italy): Citrus tristeza virus (CTV) and Xylella fastidiosa [4]. Visible/near-infrared
(VIS/NIR) and thermal (TIR) imaging techniques have been applied for detecting the stress condition of
plants infected by pathogens, such as fungi [5,6], bacteria [7] and viruses, e.g., tobacco mosaic virus [8],
grape leaf roll-associated virus-3 [9] or sugarcane yellow leaf virus [10].

Most of the RS applications in plant pathology are targeted to early diagnosis and represent
a fundamental tool at low/moderate cost in decision-making and monitoring the effectiveness of
control measures [11–13]. In the last decades, particular attention has been paid to the development of
procedures based on multi-temporal and multi-spectral RS data for monitoring land uses changes,
including land-cover conversions due to deforestation and natural disturbance phenomena [14–17],
and for classifying land uses [18–21]. In particular, statistical approaches, such as principal component
analysis [22] and curve fitting (CF) methods [23–25], are well acknowledged for identifying vegetation
changes of the land surface. In many fields of application, the CF methods have already proven to be
adapted for depicting multi-temporal non-stationary processes related to vegetation phenology [26].
The CF approaches are generally divided into three main sub-categories: (i) the threshold-based
methods, such as the best index slope extraction algorithm, used for extracting the seasonal metrics of
vegetation phenology [27] and estimating the gross primary productivity (GPP) and the net primary
productivity (NPP) [28]; (ii) the Fourier-based fitting approach, employed for deriving terrestrial
biophysical parameters and evaluating NPP dynamics [29,30] and (iii) the asymmetric function fitting
methods, mainly used for extracting seasonal information for phenological studies [26].

Among the available time-series RS products that can be implemented in this realm of analyses,
the Normalized Difference Vegetation Index (NDVI) is considered one of the most reliable proxies of
the aboveground biomass status. NDVI is, in fact, correlated with green-leaf density, mass fluxes and
NPP [31,32]. This index oscillates between + 1 and −1, where the higher value indicates greener and
denser vegetation and close to 0, and even negative NDVI identifies non-vegetated zones (i.e., water,
urban areas, etc.) [33]. The NDVI pattern for vegetation generally increases with plant growth, reaching
a steady condition (i.e., plateau), and decreases with plant death or leaf senescence [34]. The availability
of NDVI time-series products (8–16 day), offered by Moderate Resolution Imaging Spectroradiometer
(MODIS), gives useful information on vegetation conditions, allowing the identification of seasonal
changes of vegetation cover, forest/agricultural disturbances and degradation [35,36]. Despite the
coarser spatial resolution of MODIS (i.e., 250 m, in the visible and near-infrared portions of the
electromagnetic spectrum), the main advantage of its use is the possibility to offer a high temporal
resolution profile of the vegetation dynamics able to characterize inter-annual and intra-annual
variations of the vegetation cover [23]. In general, NDVI time-series data show non-stationary features
and are characterized by seasonality trends. Discontinuities of the main statistical trends can be
associated with disturbances events. A number of freeware tools are given in the literature for
characterizing changes within time-series for vegetation studies, such as BFAST [37], green-brown [38],
npphen [39], phenopix [40] and TIMESAT [41]. As already described, several RS approaches have been
adopted for vegetation monitoring purposes, which can be translated to depict plant diseases.

Citrus tristeza virus (CTV), the causal agent of one of the most destructive viral diseases of citrus,
is responsible for the death of millions of trees and has a severe negative impact on production in
many citrus-growing areas [13]. Different strains of this closterovirus cause distinct syndromes on
rutaceous hosts (Citrus, Fortunella and Poncirus genera). The virus, already known since the early
1900s, is practically present in all citrus areas of the world [42]. The main symptoms caused by
European isolated CTV [43] are leaf yellowing, plant decline and death. Sicily, where more than
50% of Italian citrus fruits are produced, has remained CTV-free for over a century, and the risk of
introduction was largely expected. Conversely, epidemic management and control measures following
its first appearance in 2002 did not result in effective containment of epidemic [44], mainly due to the
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fragmentation of citriculture in this region and late legislative action. Effective management of the
disease would have required the assessment of epidemic evolution followed by the application of
medium and long-term containment programs on a territorial scale, which also included the eradication
and replanting of tolerant rootstocks.

In this scenario, the approach carried out in this study is based on the application of the asymmetric
function CF method on NDVI time-series products derived by MODIS for depicting the Citrus tristeza
virus (CTV) epidemic effects. In light of the aforementioned scientific context, the aim of the study is to
identify the dynamics of the vegetation of citrus trees in relation to the occurrence and/or evolution of
the signs of tristeza disease in the agricultural context of Eastern Sicily (southern Italy). The study aims
to develop an effective, rapid and exportable tool for the monitoring and management of cultivated
areas affected by plant pathogens similar to CTV.

2. Materials and Methods

2.1. Case Studies Selection Criteria

Four case studies (CS), named from CS1 to CS4, have been selected in Eastern Sicily (insular Italy)
for the application of the proposed RS methodological approach (Figure 1). The study area (Catania
Plain, located at the foothills of Etna Volcano) is the most suitable production area for blood orange
(pigmented cultivars) and is characterized by semi-arid Mediterranean climatic conditions.
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Spectroradiometer (MODIS) pixel resolution) in Sicily with the indications of the first Citrus tristeza
virus (CTV) focus area and of the meteorological stations.

The CSs were selected on the basis of the following common features (Table 1): (i) presence of the
rootstock susceptible to CTV (Citrus aurantium L.); (ii) an extent identifiable with the spatial resolution
of the MODIS pixel (250 × 250 m); (iii) characterized by a quite uniform canopy ground cover (i.e.,
higher than 80%) within the entire MODIS pixel dimension (i.e., between rows, there is only the natural
ground cover).

All the CSs were supplied by full (i.e., potential) irrigation, in order to avoid water deficit and
potential damage to crops due to water stress conditions e.g., [45,46]. In particular, CS1 and CS2 were
supplied by micro-irrigation systems, while CS3 and CS4 were subjected to drip irrigation. The soil
type at the CSs is clay loam (USDA classification) with mean % (± standard deviation) of 42.1 (±
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4.8), 28.0 (± 4.6), 29.9 (± 3.9) for silt, sand and clay, respectively, and bulk density varies from 0.92 to
1.19 gr cm−3 [47,48].

Table 1. Case studies’ (CS) main features.

ID Pixel Rootstock Age
(years)

Lat
(◦ N)

Long
(◦ E)

Elevation
(m, a.s.l.) Area (ha) Planting

Layout (m)

CS1
Citrus

aurantium L.

40 37.52 14.92 190 3.0 * 4.5 × 4.5

CS2 60 37.37 14.82 46 7.5 * 4.5 × 4.5

CS3 30 37.37 14.89 57 8.0 * 4.5 × 4.5

CS4 25 37.27 14.88 64 20.0 4.0 × 5.5

* the selected sites are homogeneous in terms of canopy ground cover within the MODIS pixel.

The preliminary evaluation of the evolution of the CTV and the timing of the related corrective
actions (e.g., decline of the green, eradication of plants) during the MODIS 2001–2018 monitoring is
based on the photointerpretation of the satellite images of Google Earth (https://earth.google.com/web/)
and on interviews with farmers. To that purpose, the spatial resolution of the Google images was
scaled at the MODIS pixel resolution (Figure 1).

2.2. MODIS Data

Free RS data were retrieved from MODIS sensor on board of the Terra satellite (https://modis.
gsfc.nasa.gov/). Specifically, Terra-MODIS vegetation index (VI) product (MOD13Q1, Version 6
Level 3, [49]), generated every 16 days at 250 m of spatial resolution, was used for the time-series
analyses. This product provides two primary vegetation layers: NDVI and Enhanced Vegetation Index
(EVI). The MODIS algorithm chooses the best available pixel value from all the acquisitions from the
16-day period, on the basis of low cloud coverage, low view angle and the highest NDVI/EVI value.
The main difference between the two VI layers is that EVI has improved sensitivity over high biomass
areas, avoiding the problem of NDVI saturation [50]. However, in this study, NDVI was selected as
the representative index of the vegetation dynamics because of the absence of NDVI saturation at the
selected CSs (i.e., orange orchards).

In general, NDVI is representative of vegetation vigor [33], offering a valid tool for identifying/

monitoring the vegetation status, mainly related to biotic and abiotic site conditions. It is calculated
as follows:

NDVI =
NIR−RED
NIR + RED

, (1)

where NIR and RED are the reflectance values in the red and near-infrared bands of the electromagnetic
spectrum, respectively.

In this study, NDVI time-series, referring to CS1–CS4, were analyzed in the period from 1 January
2001 to 31 December 2018. Data of the vegetation index were extracted and downloaded from
the Global Subsets Tool [51]. This tool provides a summary of selected MODIS and VIIRS (Visible
Infrared Imaging Radiometer Suite) products that can be freely used by the community for several
applications (e.g., for validating models and remote-sensing products and for characterizing field
sites) (https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl). The pixel selection (ID pixel, Table 1
and Figure 1) was defined using the geographic coordinates (latitude and longitude) of the center
of the four selected CS. Eighteen years of NDVI time-series (23 images per year) were retrieved by
Terra-MODIS for a total of 414 layers for each CS. Data quality was assessed by checking the VI Quality
and Pixel Reliability indicators, that come together with the MOD13Q1 product.

2.3. Meteorological Data Clustering

Daily meteorological data, including solar radiation (Rs, MJ m−2), relative humidity (RH, minimum
and maximum; %), air temperature (Tair, minimum, maximum, mean; ◦C), wind speed and direction (u2,

https://earth.google.com/web/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
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m s−1 and WD, ◦) and rainfall (P, mm), were obtained by the Sistema Informativo Agrometeorologico
Siciliano (SIAS). Specifically, the meteorological data were measured at two SIAS stations (in operation
since 2002) located 6 km from CS1 (S234, 37.51◦N, 14.85◦E, 100 m a.s.l.) and about 2–8 km from
CS2–CS4 (S292, 37.35◦N, 14.91◦E, 50 m a.s.l.). Daily meteorological data were averaged at 16-day
intervals as the Terra-MODIS products used for deriving the NDVI time-series (see Section 2.2).

Figure 2 reports the 16-day meteorological data recorded at the weather stations S234 and S292
during the 2002–2018 period. No significant changes were observed in the main meteorological patterns
during the reference period. In particular, the daily average values (± standard deviation) at 16-day
intervals were 17.12 ± 6.56 MJ m−2 for Rs, 63.32 ± 9.63% for RH, 18.18 ± 6.25 ◦C Tair, 1.46 ± 0.38 m s−1

for u2 and 1.54 ± 2.21 mm for P.
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(c,d) S292 weather stations during the available 2002–2018.

2.4. TIMESAT Curving Fitting Method

The TIMESAT software (version 3.3), developed by [41], was used for generating smoothed NDVI
time-series in the period 2001–2018 from Terra-MODIS satellite spectral measurements (see Section 2.2).
The TIMESAT software is freely available at http://web.nateko.lu.se/timesat/timesat.asp and has a
user-friendly graphical interface. It implements three CF methods: (i) the adaptive Savitzky–Golay
filter that uses local polynomial functions for data fitting; and (ii) the asymmetric Gaussian and (iii) the
double logistic model functions, both based on the least-squares methods, where data are fitted to
non-linear model functions of different complexity. For these latter methods, the model functions are
fitted to the data in intervals between maxima and minima of the time-series (t). The general form of
the model functions is defined as:

f (t) = f (t; c, x) = c1 + c2g(t; x) (2)

http://web.nateko.lu.se/timesat/timesat.asp
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where linear c parameters determine the base level (c1) and the amplitude (c2) for the seasons.
The non-linear parameter x determines the shape of the basis function g (t; x) that in this study was
considered as a double logistic filter [52], as reported in Equation (3):

g(t; x1 . . . .x4) =
1

1 + exp ( x1−t
x2

)
−

1

1 + exp ( x3−t
x4

)
(3)

where the non-linear parameters x1 and x3 determine the position of the left and right inflection points
for the season, respectively, whereas x2 and x4 determine the time period of increase and decrease (i.e.,
rate of change), respectively.

Firstly, a pre-processing phase was performed. It consists of the seasonality definition (e.g., fixed
unimodal), which considers the growing seasons’ timings for the CSs under study (i.e., annual for
citrus). No spikes and outliers were removed from the Terra-MODIS NDVI time-series at the CSs due
to the high quality of the RS products used. Then, the season “start” and “end” were determined using
the seasonal amplitude method, defined as the difference between the base level and the maximum
NDVI value for each individual season. As reported in [53], the “start” occurs when the left part of the
fitted curve has reached a specified fraction of the amplitude, counted from the base level. The “end” of
the season is defined similarly, but for the right side of the curve. The details on the setting parameters
used in this study are reported in Table 2.

Table 2. Parameters setting in TIMESAT.

TIMESAT Parameter Value

CF method Double logistic
Seasonal parameter 1

Spike method 0
No. of envelop iterations 1

Start of the season method Seasonal amplitude
Season start, Season end 0.2, 0.2

In order to exploit the information of the NDVI time-series, the derived phenological TIMESAT
metrics were extracted and analyzed at the selected CSs during the reference period. Figure 3 shows
the typical representation of the seasonality parameters [41] (as reported in Table 3).
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Table 3. Description of the seasonal parameters analyzed in the study.

Seasonal Parameters Description

Length of the season Time from the “start” to the “end” of the season
Peak value Maximum NDVI for the fitted function during the season
Base level Average of the left and the right minimum NDVI values

Seasonal amplitude Difference between maximum NDVI and the base level
Small seasonal integral Small integrated NDVI value for the fitted function during the season
Large seasonal integral Integral of the function describing the season from the “start” to the “end”

2.5. Statistical Analysis

Linear regression models (Statistix analytical software, v. 9.0, Tallahassee, FL, USA) were
adopted for analyzing the seasonal parameter trends. These trends were identified on the basis of the
increasing/decreasing patterns (regression slope) and goodness-of-fit (coefficient of determination, R2).
The significance of the trends was assessed for each seasonal parameter (Table 3) using the t-test at
significance levels (p-value) of 0.05, 0.01 and 0.001, respectively.

3. Results

3.1. Case Studies Selection

The preliminary analysis of the Google Earth imagery provides useful insight for visualizing the
CTV syndrome effects at the CSs (Figure 4). However, the limited temporal availability of the images
does not permit a clear picture of the on-site CTV-related dynamics. In particular, CS1 (located 4 km in
the southern-eastern direction from the first CTV epidemic focus) showed the presence of an irregular
distribution of CTV symptomatic trees since 2002 (Figure 1). CS2–CS4 showed quite similar conditions,
with the distinct identification of the following phases, corresponding to the epidemic evolution of CTV
as a function of the distance from the first area of focus of the virus (Figures 1 and 4): (i) growing phase
(e.g., more evident in CS4 since trees were younger than in CS2 and CS3) together with the appearance
of the symptomatic trees, and (ii) the adoption of corrective operations for the containment of CTV.
In particular, CS2 (located 16 km in the south-western direction from the first CTV epidemic focus)
exhibited the presence of the first symptomatic trees since 2007. At CS3 and CS4, the beginning of the
CTV plant decline was observed starting from 2010 and 2013, respectively. These CSs were located 18
and 23 km from the CTV epidemic focus in the southern and southern-eastern directions, respectively.
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3.2. Terra-MODIS NDVI Data

The analysis of the MOD13Q1 VI pixel quality and reliability indicators showed that the overall
quality of the input data used here is classified as “good data” for 99% of the NDVI products. Figure 5
shows the temporal patterns of the Terra-MODIS NDVI data referring to CS1–CS4 during the 2001–2018
period. NDVI values ranged from 0.28 to 0.81 in CS1, from 0.43 to 0.89 in CS2, from 0.47 to 0.90
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in CS3 and from 0.33 to 0.86 in CS4 (Figure 4). The highest mean (± standard deviation) NDVI
values were observed at CS2 and CS3 (0.74 ± 0.09 and 0.76 ± 0.08, respectively), whereas lower
NDVI values were detected at CS1 (0.59 ± 0.14) and CS4 (0.64 ± 0.11). Figure 6 shows the monthly
NDVI box diagram for CS1–CS4 sites in the period of 2001–2018; this graph shows the minimum
and maximum NDVI values found, respectively, in Summer (June–August) and in Autumn–Winter
(January–February/October–December).
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3.3. TIMESAT Fitting Curves

The time-series analysis was applied successfully to Terra-MODIS NDVI data of the different CSs.
The fitted functions obtained by applying the double logistic filter CF method in TIMESAT (in red)
to the original NDVI data (in blue) are shown in Figure 7. The “start” and the “end” of the growing
seasons are marked with the red filled circles. Generally, the fitting curves reproduced the NDVI data
quite well (Figure 7) due to their high quality, typical of clear sky conditions (i.e., absence of spikes
of outliers).
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3.4. Seasonal Parameters from NDVI Time-Series

The TIMESAT seasonal parameters extracted in CS1–CS4 were useful for depicting the site-specific
dynamics that occurred during the reference period (2001–2018) (Figures 8–11).Remote Sens. 2020, 12, x 11 of 21 

 

 
Figure 8. Seasonal parameters in CS1: (a) length value, (b) base value, (c) peak value, (d) amplitude 
value, (e) small seasonal integral and (f) large seasonal integral. Significant p-value (p < 0.05, 0.01 and 
0.001) are indicated with *, ** and ***, respectively. 

 
Figure 9. Seasonal parameters in CS2: (a) length value, (b) base value, (c) peak value, (d) amplitude 
value, (e) small seasonal integral and (f) large seasonal integral. The grey areas refer to the time 
interval when corrective measures have been implemented for facing CTV. Significant p-value (p < 
0.05, 0.01 and 0.001) are indicated with *, ** and ***, respectively. 

Figure 8. Seasonal parameters in CS1: (a) length value, (b) base value, (c) peak value, (d) amplitude
value, (e) small seasonal integral and (f) large seasonal integral. Significant p-value (p < 0.05, 0.01 and
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Figure 10. Seasonal parameters in CS3: (a) length value, (b) base value, (c) peak value, (d) amplitude
value, (e) small seasonal integral and (f) large seasonal integral. The grey areas refer to the time interval
when corrective measures have been implemented for facing CTV. Significant p-value (p < 0.05, 0.01
and 0.001) are indicated with *, ** and ***, respectively.
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value, (e) small seasonal integral and (f) large seasonal integral. The grey areas refer to the time interval
where corrective measures have been implemented for facing CTV. Significant p-value (p < 0.05, 0.01
and 0.001) are indicated with *, ** and ***, respectively.

In particular, in CS1, near-stable trends of the seasonal parameters were observed i 2001–2018,
with slopes ranging from −0.03 to 0.05 and low values of R2 for all parameters (R2 between 0 and 0.35,
even with the significant trend for “Small integrated value”, p < 0.05) except for the “Base value”,
which reached an R2 of 0.62 (p < 0.001) (Figure 8).

In contrast to CS1, two different phases were identified in CS2–CS4 on the basis of the
photo-interpretation analysis (Figures 9–11). Specifically, in CS2, the parameter that better identified
the first phase was the “Base value” (R2 of 0.48, p < 0.01), whereas in CS3 and CS4, this phase was
well represented by the “Peak value” (R2 of 0.37 and 0.63, respectively, p < 0.05). At CS3, “Amplitude”
and “Small integrated value” also contributed in representing the first phase (R2 of 0.33 and 0.36,
respectively, p < 0.05).

Regarding the second phase, the “Base value” (R2 of 0.58) and the “Peak value” (R2 of 0.54)
represented better this trend in CS2, even with no significance trends (p < 0.05). In CS3, this second phase
was more clearly observed than in CS2, with the “Base value” and “Peak value” (R2 of 0.88 and 0.93,
respectively) being the most representative parameters (p < 0.05 and 0.01). The performance obtained
from TIMESAT in CS4 was different, with the parameters explaining the trend being the “Length”
(R2 of 0.74), “Base value” (R2 of 0.81), “Small and Large seasonal integral values” (R2 of 0.86 and 0.83,
respectively); those parameters provided the highest R2 values, even with no significant trends.

When analyzing individually each seasonal parameter, it was observed that, in general, the trends
observed in all the CSs were quite similar (Figures 8–11). The “Length” parameter presented a positive
slope term that ranged from 0.10 to 0.19 and from 0.04 to 0.89 in the first and second phases, respectively.
The “Base value” exhibited a positive slope term in the first phase (ranging from 0.00 to 0.01 in all
CS), whereas the patterns are inverted in the second phase, showing negative slope terms (−0.03 to
−0.02). “Peak value” showed a trend similar to “Base value”, with positive slopes in the first phase
(0.00–0.01) and negative slopes in the second phase (−0.01 to 0.00). Regarding the “Amplitude” and
“Small integrated value”, in CS3 and CS4 they exhibited positive slope values in the first phase (ranging
from 0.00 to 0.01 and from 0.05 to 0.10, for “Amplitude” and “Small integrated value”, respectively).
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Conversely, in the first phase in CS2, these parameters had negatives slopes (ranging from −0.02 to
−0.00). Nevertheless, the behavior of “Amplitude” and “Small integrated value” in the second phase
was similar in CS2–CS4, with slopes ranging from 0.01–0.02 and from 0.12–0.44 for “Amplitude” and
“Small integrated value”, respectively. The “Large integrated value” presented positive slopes in the
first phase (0.15–0.23), whereas it changed the sign in the second phase (slope terms of −0.14 and
−0.23 at CS2 and CS3, respectively), except for CS4, where a positive slope value was observed (0.50;
Figure 11).

By analyzing the inter-seasonality parameter relationship in terms of R2, it can be observed that, in
general, good relationships were observed between “Length” and “Large integrated value” (R2 = 0.52)
and between “Amplitude” and “Small integrated value” (R2 = 0.83) (Figure 12). In addition, the “Base
value” showed good relationships with “Peak value”, “Small integrated value” and “Amplitude”,
with R2 values of 0.63, 0.70 and 0.75, respectively. The relationships between the other parameters
were quite poor with R2 values lower than 0.41.
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4. Discussion

TIMESAT software and MODIS products have been widely used in the agriculture context.
Specifically, [54] explored their potential for accurately deriving crop phenological metrics in comparison
with ground-observed vegetation green-up dates. Additionally, the suitability of TIMESAT with
different MODIS-derived VI time series has been assessed for large area vegetation dynamic monitoring
over arid and semi-arid lands [55]. TIMESAT has been also used to evaluate the scaling effects on
spring phenology detections using MODIS data at multiple spatial resolutions [56]. In addition, [57–59]
highlighted the strengths of the TIMESAT approach for mapping crop phenological stages and
crop-calendar events, and for crop classification. Despite these promising applications, the main
weakness of TIMESAT implementation is related to the correct choice of the CF method capable of
providing the most robust description of the seasonal dynamics [58–60]. Other limitations are due to
the influence of noise level of data input on CF technique performance [60,61] and the presence of
sample impurity and landscape heterogeneities that can largely affect the classification accuracy [59].
Nowadays, although several authors have compared different CF methods for identifying vegetation
features changes through VI metrics, no consensus has been reached in the election of the best CF
method (e.g., [22,24,56,60–62]). In general, authors corroborated that the choice of the most suitable CF
method (and filtering parameters) depends on the quality of the input data and has to be assessed
case-by-case by inspecting how well the CF functions match the row data for preserving the signal
integrity [63].

In this study, the double-filter CF method was selected for analyzing the main seasonal parameters
of areas affected by CTV in Sicily, with this choice being supported by the excellent quality of the
Terra-MODIS NDVI data used as inputs (Figures 5–7). Specifically, no spikes or outliers were detected
in the NDVI time-series, which were quite robust, consisting of 18 years of continuous data with
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16-day temporal resolution. Even though multiple definitions of seasonality parameters and ways for
extracting these parameters are reported in RS literature [53], the importance of the seasonal parameters
lies in the possibility to describe the temporal changes in the vegetation cover resulting from abiotic or
biotic changes (climatic or land use or disease).

The time-series of NDVI at the different CSs (Figures 5 and 6) have shown a typical annual pattern
deriving from the sum of two contributions: (i) the fairly stable vegetation dynamic of citrus trees
and (ii) the presence of typical conditions of grassed soil [64–67]. It can be assumed, given that the
ground cover plays a role of constant "background" every year, that the dynamics of the seasonal
NDVI parameters are mainly linked to the presence of citrus groves. In addition, some of the seasonal
parameters analyzed (e.g., "Base value", defined as the average of the minimum left and right NDVI
values within a season) are independent of the presence of ground cover since they refer to summer
periods, when the soil is generally bare due to weed control. Furthermore, the age of trees can play a
crucial role in specific seasonal parameter trends. This effect is more evident when the trees are not
subject to any management of the size of the canopy (for example, some rain-fed olive groves with
large planting structures). However, the size of the crown of citrus groves is commonly managed by
pruning, especially in the Sicilian context, where the citrus systems are maintained in a fairly stable size.
Therefore, despite the wide age range of the citrus groves examined in this study (which vary from 25
to 60 years, Table 1), and given that the canopy size is kept almost constant, the main differences in the
seasonal parameters of NDVI depend on the citrus groves pathology. This is also supported by similar
time patterns for the main meteorological variables observed in the two stations located close to the
CSs during the reference period (Figures 1 and 2). This allows us to imagine that the observed trends
for NDVI are quite independent of the variability of meteorological parameters.

Results derived from TIMESAT analysis reflected a stable pattern of the seasonal parameters in
CS1, which can be related to the in situ conditions influenced both by the CTV effects on plants and
by the adoption of spotted mitigation actions such as eradication of infected plants and replanting
with trees grafted on tolerant rootstocks in order to prevent economic damages since 2002 (Figure 4).
This stability also reflected the low rate of plant growing in CS1 as a consequence of the tree age
(Table 1), indicating that the plant growing stage has been reduced. Nevertheless, the temporal
trends of the seasonal parameters in CS2–CS4 allowed recognizing two different phases (Figures 9–11),
accordingly identified by the Google Earth imagery analysis (Figure 4). The first phase (observed
in the period 2001–2014 in CS2 and CS3 and in the period 2001–2015 in CS4) corresponded to the
citrus growing period in combination with the occurrence of the CTV epidemic effects. Therefore,
this phase was characterized by a slight increase of all seasonality parameters with the exception of
“Amplitude” and “Small integrated value” in CS2, which experienced a decrease, probably because in
this site CTV has been present for longer without being countered by corrective measures. The second
phase (observed in the period of 2014–2018 in C2 and CS3 and in the period of 2015–2018 in CS4) was
characterized by the corrective measures applied by the growers for facing CTV (such as eradication
and trees replanting on CTV-tolerant rootstocks) (see the grey areas in Figures 9–11). In this phase
“Length”, “Amplitude” and “Small integrated value” experienced increasing patterns in CS2–CS4,
whereas “Base value”, “Peak value” and “Large integrated value” showed a decreasing trend with the
exception of “Large integrated value” in CS4. At this site, the intensive corrective actions taken since
2015 by the grower strongly modified the NDVI signals, with an abrupt increase of the “Length” and
“Amplitude” (positive slopes), resulting in a more evident increase of “Small integrated value” and
“Large integrated value”.

In the first phase, a number of parameters were able to accurately describe the vegetation dynamics
at the different CS. Specifically, in CS1 (Figures 4 and 8), the contemporary occurrence of CTV with
mitigations actions was observed in the “Base value”, whereas in CS2–CS4, site-specific patterns in the
seasonality parameters were distinguished within the first phase due to tristeza severity. These patterns
are more related to the range of variations (minimum and maximum values) of the seasonal parameters
(e.g., “Base value”, “Peak value”, “Amplitude” and “Small integrated value”), than to their “Length”.
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For example, the CTV epidemic effects were better identified once more by “Base value” in CS2 (i.e.,
which experienced CTV syndrome since 2007) than in CS3 and CS4 (i.e., which experienced CTV since
2010 and 2013 ), by the “Peak value” in CS3 and CS4, and by this latter parameter plus “Amplitude”
and “Small integrated value” in CS3.

Regarding the second phase, the “Base value” and “Peak value” were recognized as the most
representative seasonal parameters of the site-specific conditions in CS3, giving a picture of the timing
of CTV-corrective actions and the epidemic evolution.

However, care should be taken in analyzing the linear relationship of the seasonal parameters,
which in some cases showed a low magnitude of the R2 values. In this sense, future research must tend
to couple linear and non-linear trends and to analyze seasonal variations, cyclical variations, random
or irregular patterns.

In addition, the “Base value” showed a well-defined increasing trend in CS2–CS4 (Figures 9–11),
as a function of the changes in NDVI due to the adoption of CTV-corrective actions, even without a
significant trend due to the limited numbers of years considered in the second phase. More specifically,
these actions were more intense in CS4, followed by CS3 and CS2, as can be observed by the slope terms
in Figures 9–11. Therefore, as observed in Figures 8–11, the “Base value” helps to provide information
on the evolution of the areas affected by the CTV.

Furthermore, the matrix in Figure 12 shows high R2 values between the "Base value" and most of
the other parameters, suggesting that the analysis of the seasonal parameters for monitoring the areas
affected by CTV can be limited to the evaluation of this parameter.

This study contributes to corroborate the significant use of RS technologies in the phytopathology
field of application. In fact, RS applications have recently already demonstrated their promising ability
for describing and monitoring plant diseases with respect to field- and laboratory-based analyses
(e.g., [68,69]). The main limitation of these latter approaches (e.g., including visual inspection for
symptoms at early stages and spectroscopic and imaging techniques) is that they are time-consuming,
i.e., needing a large number of samples, expensive [70] and not standardized because they are influenced
by the observer’s expertise. The main advantage of using RS technologies is their cheapness and the
ability to provide a large-scale detector for pathogen control [38]. The potential use of time-series
RS procedures can be exploited for being adapted in phytopathology studies and being used as a
monitoring system of long-term changes [71].

CTV is one of the most complex pathosystems known in plant virology [72]. This complexity is
determined by some key factors: the quasispecies nature of viruses, which makes them particularly
prone to the continuous evolution of populations of variants under selective pressure operated by the
genome of the hosts and the climatic conditions; the vastness of the genetic patrimony of rutaceous
hosts; the use of rootstocks with different susceptibility, which determines another important factor of
deep interaction with the virus; the quite vast climatic range as well as the soil conditions of citrus
growing areas. The number and diversity of these involved factors leads to a very large plethora of
disease phenotypes being related to the pathogen. In this context, the effects of CTV on yield are
difficult to estimate also due to the fact that, in most phenotypes, the plants died within a few years,
as in the case of the CTV epidemic in Sicily, where the syndrome had a rapid evolution with the death
of the plants in about 2 years after the infection. In 2002, it was estimated that CTV had caused the
death of about 80 million citrus trees worldwide, about half of which were in Spain [73]. When the
main symptoms of yellowing foliage or plant decline are visible, the pathogenic process is already at an
advanced stage; for this reason, the development of stress detection systems based on RS or proximal
sensing techniques is desirable [74,75] because it would allow the early interception of viral infection
and the application of more effective containment methods (e.g., elimination of inoculation sources).

The approach developed in this study is valid to be transferred to regional agencies involved in
and/or in charge of the management of devastating plant diseases, especially if it is integrated with
ground-based early detection methods or high-resolution thermal and hyperspectral imagery acquired
by airborne and/or unmanned aerial vehicles (UAV), for the early detection and quantification of plant
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diseases, (i.e., Xylella fastidiosa [76], Verticillium dahliae infections in Olea europaea L. [77], red leaf blotch
in Prunus amigdalus [78]), especially in the case of quarantine plant pathogens requiring complex control
schemes that must be readily adaptable to the evolution of epidemics. Furthermore, the application
carried out under these heterogeneous conditions of citrus crops can allow the methodology for
large-scale interventions and epidemic management programs to be exported.

5. Conclusions

The adoption of the RS approach described for the characterization of long-term changes in NDVI
Terra-MODIS data was performed with the aim of bridging the gap between the temporal distribution
of CTV diseases and the recognition of corrective mitigation actions implemented autonomously
by growers.

This study outlined the history of the tristeza epidemic in Sicily and showed how the management
choices were ineffective because they were not coordinated at the regional level. In fact, the legislative
gap of about 14 years between the first version of the Italian Ministerial Decree for compulsory control
of the CTV (1996) and the current version, implemented only in 2014, has reinforced the difficulty of
farmers in implementing effective operational choices. As a result, fragmentation of interventions
is observed, which, if analyzed from an economic point of view, outlines a picture of avoidable
economic losses.

The main results obtained from the study are the following:

• The Terra-MODIS products represented a valuable data source for the implementation of long-term
time series approaches and for the support of phytopathological studies, the limitation of the
spatial resolution being largely compensated by their high temporal resolution and the availability
of images for long time intervals;

• The Terra-MODIS time series approach has proven to be reliable for identifying the specific
phenological phases of citrus groves linked to the evolution of CTV, with reference to conditions
prior to and subsequent to the implementation of corrective measures by farmers;

• Considering TIMESAT statistics analyzed, the “Base value” was identified as a representative
proxy for identifying the timing of corrective actions to contain the CTV.

To conclude, it is necessary to underline that the management of severe epidemic events cannot
be left solely to individual farmers, but instead, it needs coordinated short-, medium- and long-term
interventions. The remote-sensed-based time series analysis proposed in this study is economically
advantageous and, if used at the level of territories or regions, it would therefore be useful both in the
forecasting phase of the epidemic trend and in the phase of the definition of management interventions.
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