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ABSTRACT In the Reference Architecture Model for Industrie 4.0, the concept of Asset Administration
Shell is presented as the corner stone of interoperability. Asset Administration Shell is defined as a digital
representation of an asset able to provide information about the asset including documents, properties,
parameters, and functionalities, all organized in a consistent way. Information provided by an Asset
Administration Shell can be adopted during whole life cycle of a production system, from its development
until its disposal. At the lowest level of the hierarchy of a production system, usually automation and control
programs are executed by Programmable Logic Controllers, whose programming technology is based on IEC
61131-3 standard. The IEC 61131-3 programs, the Programmable Logic Controllers where they run, and the
real plant controlled are closely related. Considering the life cycle of a production system, the description
of IEC 61131-3 programs and the relevant relationships with the plant should be clearly defined, leading to
several advantages for example regarding the definition of testing plant operations, maintenance operations
at run-time and reconfiguration process of the plant. What is missing for the realization of what said so far is
a standard way to realize this description. For this reason, the paper presents an Asset Administration Shell
model able to represent IEC 61131-3 programs and the relevant relationships with Programmable Logic
Controllers and each device of the controlled plant.

INDEX TERMS Industry 4.0, Asset Administration Shell, IEC 61131-3, PLC.

I. INTRODUCTION
Standards are the pillars of interoperability in the context
of Industry 4.0 because their adoption creates the basis for
the interworking between partners of a value-chain network.
With the progressing technological development and quick
market changes, adaptability is required to achieve agility in
the production systems in factories [1]. Consequently, cur-
rent manufacturing and production systems demand short re-
configuration time and rapid changeover [2]. Different tools
in different domain areas are adopted during the development
of a production systems and most of the time it is needed
for these tools to cooperate. For instance, just in automo-
tive industry more than 30 different engineering activities
are involved within the process of engineering a body work
production system [3]. Standards for communication and
information exchange is required in this context to achieve
interoperability [4] because same data can be used in different
domain for different purposes.
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In the Reference Architecture Model for Industrie 4.0
(RAMI 4.0) [5], the concept of Asset Administration Shell
(AAS) is presented as the corner stone of interoperability.
AAS is defined as a digital representation of a relevant asset;
it provides an interface to an Industry 4.0 network allow-
ing the communication with other assets and the exchange
of information. Assets are defined as entities owned by an
organization having either a perceived or actual value for the
organization itself; physical entities like machines, products
or controllers are considered assets, but even software, docu-
ments or licenses can be considered assets too.

In RAMI 4.0, an AAS is given to every asset, and the
composition of the AAS and the asset is referred in RAMI
4.0 as an Industry 4.0 Component (I4.0 Component). AAS
consists of several submodels within which information and
functionalities of a given asset are described. In last years,
an AAS metamodel has been released providing the basis for
the development and usage of new Industry 4.0-compliant
products and tools [6].

The objective of AAS is to provide information about
the asset; all the relevant information including documents,
properties, parameters, and functionalities are organized in
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a consistent way [7]. AAS is the information carrier of an
asset, therefore information provided by AAS can be adopted
during whole life cycle of a production system, from its
development until its disposal. In a production system every
device or a whole automation island can be represented by
an AAS whose information can be used, for instance, by
engineers during the production system development or from
operators during maintenance phase.

At the lowest level of the hierarchy of a production system,
usually automation and control programs are executed by
Programmable Logic Controllers (PLCs). Due to the massive
adoption of PLCs nowadays, it seems legit thinking that they
will be used in the age of Industry 4.0, as stated by [8]. The
PLC programming technology adopted nowadays is based on
IEC 61131-3 [9], and it is legit imagine I4.0 controllers based
on this standard [10].

There is a close relationship between IEC 61131-3 pro-
grams, the hardware and software resources of the PLCwhere
they run and the plant (which may include a set of controlled
machines, control devices, control applications and commu-
nication systems). For example, a variable of an IEC 61131-
3 programmay bemapped to a real input or output of the PLC
and then to a real device (e.g. sensors, actuators) connected
to a specific PLC input/output. Another example is a variable
shared between an IEC 61131-3 program running in a PLC
and a software tool running in another device and exchanging
information with the PLC. A comprehensive description of
IEC 61131-3 programs including the relevant mappings with
the PLC where they run, and the controlled plant could be
very useful. Considering the life cycle of a production system,
this description could help the definition of testing operations
before the utilization of the plant (after its realization) and the
maintenance operations at run-time. Changing the production
system or the product to produce often requires adjustments
in the plant configuration [11]; the reconfiguration process
may be easily conducted if a fully and standard description
of the entire system involving both the PLC programs and
the relationships with the real plant could be available.

What is needed is a standard way to realize this description.
Considering the AAS, what is missing for the realization of
what said so far is a model able to describe PLC programs-
based on IEC 61131-3 and the relevant relationships with the
PLC hardware and the devices of the controlled plant.

In this paper, authors propose some reasonings aimed to
define an approach to represent the entire set of PLC, its
internal programs, and the relationships with the real plant by
means of AAS. An AASmodel will be proposed in the paper,
and it will be defined following the metamodel introduced in
[6].

The paper is structured as follows. In Section II, the cur-
rent state of the art about the subject of the paper is
described. In Section III, main concepts of IEC 61131-
3 are provided as background for the paper comprehension.
In Section IV, the main parts of the AAS metamodel are
discussed. Section V contains the definition of the model
here proposed, describing how the AAS metamodel entities

are used for the representation of all the main elements of
IEC 61131-3. In Section VI, an approach to represent both
the PLC programs based on IEC 61131-3 and the relevant
relationships with the real plant will be presented. Section VII
shows a case study to give an example of the approach
presented in Sections V and VI. Section VIII details the
implementation made the authors. Finally, Section IX will
provide conclusions.

II. STATE OF THE ART
Current literature presents many research papers dealing with
integrated models including IEC 61131-3 programs and the
relevant plant controlled. The aim of this section is to provide
an overview of the state-of-the-art pointing out the main
activities that would benefit from a standardized modeling of
PLC programs and plants.

Since the implementation of a manufacturing line requires
heavy investment, proper verification of a line’s operational
status should be performed before the implementation to
ensure that the highly automated manufacturing system will
successfully achieve the intended benefits. Many existing
approaches utilize simulation techniques for the verifica-
tion. Since PLC programs only contain the control infor-
mation without device models, these approaches require a
corresponding plant model to perform simulation [12], [13].
In [14] a detailed overview is given about the subject to
construct a PLC simulation environment, pointing out that it
is necessary to build a corresponding virtual plant model (the
counterpart system) required to interact with the inputs and
outputs of the PLC. Other approaches present in the literature
are based on the verification of properties of the state machine
on which the PLC program is based; again these approached
are based on the use of a plant model integrated with the
PLC program to be verified [15]. In [16] another approach
for verification of PLC programs is proposed; it is based
on the visual verification of PLC programs that integrates
a PLC program with a corresponding plant model, so that
users can intuitively verify the PLC program in a 3D graphic
environment.

Another time- and resource-consuming process exists
before a real plant can start its activity; it is relevant to the
commissioning. In order to save time and resources, many
times virtual commissioning is considered. While the real
commissioning of a manufacturing system involves a real
plant system and a real controller, the virtual commissioning
deals with a virtual plant model and a real controller. The
expected benefits of virtual commissioning are the reduction
of debugging and correction efforts during the subsequent
real commissioning stage. However, this approach requires
a virtual plant model integrated with the PLC program. The
research paper [17] gives a detailed survey on application of
virtual commissioning technology for automatedmanufactur-
ing systems.

Considering Cyber-Physical Systems (CPS), current liter-
ature presents several approaches pointing out the need to
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model the entire set of CPS functionalities, including control
programs and the on-board hardware (e.g. sensors) [18].

A last consideration needed to summarize this overview
is that at this moment any standard representation of the
integrated model made up of PLC program and plant con-
trolled does not exist. Each of the approaches given in this
overview represents the PLC program and the plant using pro-
prietary formalisms. For this reason, the authors would like
to highlight the importance of the proposal here presented,
based on the use of AAS metamodel of Industry 4.0. The
proposal can give a standard representation of PLC program
and the relevant plant controlled; this representation can be
used in each of the above-mentioned applications, improving
interoperability of the same applications. Proposal is original,
as solutions aimed to propose consistent ways to structure
information relevant to PLC inside AAS seem missing in the
current literature.

III. IEC 61131-3
The use of PLCs for industrial control application is consol-
idated after the release of the standard IEC 61131-3. This
last provides an architectural definition and a software model
for industrial PLCs. In particular, the IEC 61131-3 cope with
the problem of having different vendor-specific languages for
PLCs programming [19]. IEC 61131-3 specifies syntax and
semantics of a unified suite of programming languages for
PLCs consisting in Instruction List (IL), Structured Text (ST)
Ladder Diagram (LD), Function Block Diagram (FBD) and
Sequential Function Chart (SFC).

FIGURE 1. Software model of IEC 61131-3.

The foundation of IEC 61131-3 is the definition of a uni-
fied software model for the PLC, depicted in Fig. 1, which
provides the basic high-level language elements that are pro-
grammed using the aforementioned programming languages.

The main elements composing the software model of
IEC 61131-3 are Configuration, Resource, Task and Pro-
gram Organisation Unit (POU).

Configuration defines the entire software project and must
include at least one Resource (described in the following).
A Configuration may refer to one or more PLCs involved in
the project.

Resource represents a processing facility of the PLC that
can execute a program. It is defined inside a Configuration
and it allows the definition of several information about
the PLC, among which hardware features (e.g. type of pro-

cessor, memory dimension, number of physical inputs and
outputs) and software features (e.g. operating system version,
firmware identification).

Task is the software element used to define the desired exe-
cution mode of a program. Among the available scheduling
facilities there is the cyclic execution, according to which a
program can be periodically executed; in this case, an interval
is assigned to a Task, specifying the period the program is
executed.

In IEC 61131-3 control programs are decomposed in
functional elements referred as Program Organisation Units
(POUs). A POU may be a Program, a Function Block
(FB) or a Function (F). All of them may defined using one of
the programming languages of IEC 61131-3. A Program typ-
ically consists of interconnected Function Blocks exchanging
data. A program can communicate with other programs. The
execution of different parts of a program may be controlled
using Tasks, as explained before. Function Block is another
kind of POU, and it is used to wrap an algorithm and make
it reusable inside different parts of a Program. Using FBs,
it is possible to create reusable parts of code for a better
modularization of the program. It consists of variables for
inputs, outputs, and internal storage, and it can use other FBs
internally. The last kind of POU is Function, that is a reusable
software element that generates the same output values when
the same values are provided as input. It differentiates from
FB because it has no internal state whilst FB retain their
internal values from latest executing.

Variables are a very important element for IEC 61131-
3 programs. They can be declared inside any of the aforemen-
tioned elements of the software model. Depending on where
and how they are defined, variables can be global, local,
input, output, external. Variables may be featured by several
attributes among which there is the AT [9]; it allows the
association of a variable to particular memory address. It is
important to recall that according to IEC 61131-3 standard,
internal memory of PLC is made up by the Input (I), Output
(Q) process images and Marker (M) memories. The I and Q
process images are those updated at each Program Scan [9];
inputs are sampled and copied in memory I, whilst data is
stored in memory Q in order to update the actual values of
outputs at the end of each Program Scan.

All the software elements composing the model in IEC
61131-3 can be related as depicted in Fig. 2; the UML repre-
sentation highlights all the relationships between all the soft-
ware elements showing the cardinality of every association.
This diagram will be used as a starting point for the definition
of a Submodel for an AAS in Section V.

IV. ASSET ADMINISTRATION SHELL METAMODEL
In the context of Industry 4.0, every asset is managed by an
AAS containing all its relevant information; such informa-
tion includes properties, operations, but also documentation,
datasheets, CAD files or source code. This is what makes
AAS so appealing for a production system life cycle man-
agement, since all this information is structured under just
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FIGURE 2. Relationships between IEC 61131-3 software model’s entities
represented in UML.

one entity, i.e. the AAS, and accessible by different domain-
specific tools. What is needed in this scenario is a unique
and consistent manner to structure the information inside the
AAS; the document ‘‘Details of the Asset Administration
Shell’’ [6] provides an AAS metamodel to meet this need.
Following the metamodel, the AAS information model can
be implemented using different formats, among others XML,
JSON, AutomationML, RDF and OPC UA. In [6], a package
format and different serialization formats for the exchange of
AASs between partners are provided.

From a high-level point of view, an AAS consists of a
header and a body, as depicted in Fig. 3.

FIGURE 3. Internal structure of an AAS from a high-level point of view.

The header contains all the information relevant to the
identification of both asset and AAS, whilst the body contains
all the properties and operations describing the asset and
organized under submodels covering specific aspects of the
asset (e.g. energy efficiency, positioning, etc.). Properties
shall be defined in an unambiguous manner, using hierarchi-
cally structured dictionaries, and following the standard IEC
61360 for their definition [20].

The AAS metamodel is provided as a UML class diagram
describing all the main entities that shall be adopted to struc-
ture the information inside an AAS. The main classes and
concepts of the metamodel will be briefly discussed in the
remainder of this section. In the following, the terms class
and entity are used interchangeably.

A. AAS METAMODEL COMMON CLASSES
At the base of the metamodel, some abstract classes are
defined to identify aspects common to the other classes of
the metamodel; these last will be referred in the following
with the name common classes. From a practical point of
view, common classes collect attributes that can be shared by
different classes in the metamodel.

Some of the main common classes defined in the AAS
metamodel are Referable, Identifiable, and HasSemantics,
but more are specified in [6].

All entities in the metamodel inheriting from Referable
provide a short identifier (idShort) that is unique only in the
context of its name space. The name space for a Referable
element is defined as its parent element. Another attribute
inherited from referable is category which provides further
metadata information about the class of the element.

Identifiable entities, instead, consists of all those classes
whose instances can be uniquely and globally identified by
means of its attribute identification. In other words, Identifi-
able entities are characterized by absolute identifiers, whilst
Referable entities are characterized by relative identifiers.
These identifiers will be used inside instances of the class
Reference (or Reference, for brevity), as will be discussed
in the next subsection.

The entities inheriting from HasSemantics identify all
those classes that can be described bymeans of a concept. The
class HasSemantics defines an attribute semanticId that is a
Reference pointing to the semantics description. Reference
will be clarified in the following.

B. REFERENCING MECHANISM OF THE METAMODEL
The AAS metamodel defines a very important referencing
mechanism to establish relationships between entities com-
posing the AAS. The foundation of the referencing mecha-
nism consists of the class Reference. It features an attribute
key, which is logically structured as an ordered list of keys
where each key points to an entity by its identifier. The
structure of this list of keys resembles anURI structure, where
the first key refers to the root element and every following
key spans a hierarchy until the referred element, which is
identified by the last key of the list. A Reference can also be
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used to point to an element outside the AAS, e.g. an entry of
an external dictionary entry or an element of another AAS.
More details on Reference in [6]. In the remainder of the
paper, the nomenclature &(<elem>) represents a Reference
instance pointing to <elem>.

C. CLASS HIERARCHY IN THE AAS
All the classes defined in the AAS metamodel are used to
decompose and simplify the representation of the internal
information of an AAS because of [21]. The class hierarchy
respects this structure, therefore the topmost class AssetAd-
ministrationShell represent an AAS as a whole, the class Sub-
model represents an aspect of the asset, and the abstract class
SubmodelElement represents all those elements that must
be collected under a Submodel (e.g. properties, operations,
files, etc.). The AAS metamodel defines several classes but
only the ones adopted in the authors’ proposal will be briefly
described here to ease the comprehension of the paper; a full
description of the metamodel is provided in [6]. Fig. 4 shows
the class hierarchy relevant to the submodel of an AAS.

FIGURE 4. Class hierarchy relevant to submodel structure.

As shown in figure, a Submodel defines a compositionwith
the class SubmodelElement. The terms composition here is
used to indicate the existence of an attribute in Submodel that
contains multiple instances of the class SubmodelElement,
hence Submodel is composed by multiple SubmodelElement
entities.

SubmodelElement is an abstract superclass for all those
entities composing the internal structure of a Submodel, e.g.
properties, files, operations. As the reader can notice, Sub-
model is Identifiable whilst SubmodelElement is Referable.
As discussed in the previous subsection, this means that
an instance of Submodel is globally and uniquely locatable
by its identifier; an instance of SubmodelElement, instead,
is locatable only in the context of the parent instance, i.e. a
Submodel or another SubmodelElement. In general, a Sub-
modelElement can contain other SubmodelElements creating
an internal hierarchy. The concrete class SubmodelElement-
Collection (SEC) serves for this purpose as it is defined as

a set or a list of SubmodelElements; such collection can be
ordered and either allowing or refusing duplicate elements.
SEC is a very important entity because it is the only one that
allows the internal organization of a submodel, like a folder
in a directory.

DataElement is an abstract class inheriting from Submod-
elElement identifying all those classes that are no further
composed out of other SubmodelElements. Property is a
concrete class of DataElement, and it represent a property
of an asset. The Property class defines attributes to contain
data value (value) and to specify the type of such data value
(valueType). Properties are among the most important ele-
ments of a Submodel since they constitute the main source
of information regarding an asset. Another concrete class of
DataElement is File that represent the location of a real file.
Its attribute value is an URI that can represent an absolute or a
relative path.

Finally, the class ReferenceElement is a DataElement that
defines a logical reference to another element of the same
AAS or to a different one, but it may also represent a reference
to an external object or entity. For example, a ReferenceEle-
ment instance may be used to correlate two properties of
different AASs. The attribute value of ReferenceElement
contains an instance of the class Reference.

V. PROPOSAL OF AAS SUBMODEL FOR IEC 61131-3
As said in the Introduction, the proposal here presented aims
to give a representation using AAS metamodel of each ele-
ment present in an IEC 61131-3 Configuration. The aim of
this section is to point out author’s reasonings about how
each element relevant to PLC programs based on IEC 61131-
3 could be represented using AAS.

An AAS Submodel is proposed to represent an IEC 61131-
3 Configuration. In the following, such a submodel will be
often referenced as ‘‘IEC 61131-3 Submodel’’.

As IEC 61131-3 Configuration is made up by several ele-
ments (e.g. Resources, POUs, Tasks, etc.), definition of AAS
SubmodelElements inside the IEC 61131-3 Submodel could
be done to represent the IEC 61131-3 elements. Submod-
elElements may be organized by SECs introduced in Section
IV.C. Organization may be realized in different ways and the
relevant choices proposed by the authors will be explained in
the following.

The simplest way to organize SubmodelElements is that
of using SEC as a folder. A SEC may be defined to contain
several SubmodelElements, each of which represent an IEC
61131-3 element. In this case the SEC does not represent
an IEC 61131-3 element, but it has only organization pur-
pose. This kind of organization is proposed to group Sub-
modelElements representing IEC 61131-3 elements of the
same category (e.g. Variables, Tasks, POUs) into separate
folders. The relevant advantage is an easier classification of
SubmodelElements.

According to the proposal just described, a SEC acting as
a folder organizes SubmodelElements representing homoge-
neous IEC 61131-3 elements. A problem may occur when

142610 VOLUME 8, 2020



S. Cavalieri, M. G. Salafia: AAS for PLC Representation Based on IEC 61131-3

a single SubmodelElement is not able to fully represent
a particular IEC 61131-3 element. In some cases, an IEC
61131-3 element features so many characteristics that cannot
be represented using the standard attributes provided by the
subclasses of SubmodelElement. Let us consider the Variable
element of IEC 61131-3; as known, it may feature a lot of
attributes, like AT, scope, and type. In these cases, the authors
propose to use a particular strategy to represent an IEC 61131-
3 elements featuring complex structures. It is always based
on the use of SEC, but in this case, it represents the IEC
61131-3 element. In order to represent all the complete set
of the features of the original element, it is assumed that
the SEC is the container of the other SubmodelElements
representing these features. Considering again the example of
Variables, in this case a SEC may be defined to represent the
Variable itself; it will contain SubmodelElements modelling,
for example, the attribute AT (e.g. %Q0.0), the scope of the
Variable (e.g. local) and the type (e.g. BOOL).

According to the proposal made by the authors, amethod to
differentiate SEC at a glance is needed because, as previously
said, SEC may be used to represent both a folder-like con-
tainer of SubmodelElements and an IEC 61131-3 element.
In this paper, it has been assumed to use the values of the
attribute category (inherited by the common class Referable)
to this aim. In particular, a value ‘‘SET’’ is used for a SEC
representing just a container of other SubmodelElements (like
a folder), whilst a value ‘‘ELEMENT’’ is used for a SEC
representing a complex element made up by several features,
each represented by a SubmodelElement organized by the
SEC.

The following subsections will point out details of the
structure of the proposed IEC 61131-3 Submodel. In order
to improve the readability of the paper, authors decided to
describe the components of such Submodel by means of
examples supported by UML diagrams and with description
of the reasonings behind the solutions adopted to model IEC
61131-3 software components.

FIGURE 5. Representation of an IEC 61131-3 configuration.

A. CONFIGURATION
As previously said, it is assumed that the IEC 61131-3 Con-
figuration is represented in the AAS as a Submodel, as shown
in Fig. 5. Properties of the Configuration can be aggregated

under this Submodel describing the Configuration itself; for
instance a Property ‘‘Name’’ could provide amnemonic name
of the Configuration, whilst a File named ‘‘ProjectFile’’ could
contain the path to the location of the project file (e.g. the path
shown in the value attribute).

Configurations contain Variables and Resources, as dis-
cussed in Section III.

It has been assumed to organize the representations of Vari-
ables under a folder for a better organized hierarchy. A SEC
named ‘‘IECVariables’’ is defined under the IEC 61131-
3 Submodel to contain information related to Variables. For
this reason, the category attribute of the SEC ‘‘IECVariables’’
is set to ‘‘SET’’. Details about representation of Variables
under this SEC will be given in Section V-G.

Differently, a Resource is represented as a SEC whose
category is ‘‘ELEMENT’’ and its definition is provided in the
Section V.B. The reason of this choice is due to the strategy
adopted about the use of SEC element, as explained before.

FIGURE 6. Representation of an IEC 61131-3 resource.

B. RESOURCE
A Resource is represented using an instance of SEC with
category set to ‘‘ELEMENT’’, as shown in Fig. 6. It features
Properties specific for the Resource, e.g. name, CPU model,
Operating System version, firmware identification.

Resources containVariables, POUs and Tasks, as discussed
in Section III.

A SEC named ‘‘IECVariables’’ is used to collect all
the information related to the Variables defined under the
Resource; for this reason, its category attribute is set to
‘‘SET’’. As said before, details about representation of Vari-
ables under this SEC will be given in Section V-G.

A SEC with category ‘‘SET’’ named ‘‘IECPOUs’’ is used
to collect all the information related to Programs, Func-
tion Blocks and Functions that are used inside the relevant
Resource. Programs, Function Blocks and Functions will be
discussed in the Sections V.C, V.D and V.E, respectively.

A SEC of category ‘‘SET’’ named ‘‘IECTasks’’ is used to
collect all the information related to the Tasks defined in the
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relevant Resource. The description of a Task representation
is given in Section V.F.

C. PROGRAM
Similarly, to Resource, Program is represented as a SEC
of category ‘‘ELEMENT’’ inside the Submodel, as shown
in Fig. 7.

FIGURE 7. Representation of an IEC 61131-3 program and its relationship
with an IEC task.

Such element contains Properties related to the Pro-
gram description like a mnemonic name (‘‘Declara-
tionName’’) and the type of the POU (which is set to
‘‘Program’’ in this case). Another Property that is shown in
Fig. 7 is the ‘‘ProgrammingLanguage’’ which is in charge
to specify the IEC 61131-3 programming language adopted
for the program; the authors have defined the enum type
‘‘IECLanguage’’ inside the AAS Submodel, which provides
all the names of the IEC 61131-3 languages as allowed
values. Using this enum, it is possible specify the language
for each POU modelled by AAS Submodel; Fig. 7 shows
the value ‘‘ST’’ for this Property, belonging to the enum
type ‘‘IECLanguage’’, meaning that the language used for
the Program is Structured Text. Furthermore, an instance
of ReferenceElement named ‘‘AssignedTask’’ is defined to
represent which Task the Program is associated with. It is
worth noting that the Task pointed by ‘‘AssignedTask’’ is
one of the elements collected under the SEC ‘‘IECTasks’’
of the relevant Resource described in the previous section.
Fig. 7 shows that the program represented features a task
named ‘‘Task1’’ whose representation is collected under the
‘‘IECTasks’’ SEC shown by the same figure.

As done for Configuration and Resource, a SEC ‘‘IEC-
Variables’’ is defined to represent information related to
Variables defined inside the relevant Program. According to
the IEC 61131-3 standard, Programs may have input and

output parameters, called VAR_INPUT and VAR_OUTPUT,
respectively [9], [19]. VAR_INPUT represents the set of
information received by a Program, whilst VAR_OUTPUT
are the parameters whose value is given back by the program.
For this reason, two folder-like SECs named ‘‘Var_Input’’ and
‘‘Var_Output’’, respectively, may optionally be defined inside
‘‘IECVariable’’ in order to collect all the entities representing
VAR_INPUT and VAR_OUTPUTVariables for the Program,
if present.

Since a Program may contains POUs like instances of
Function Blocks or Function calls, a SEC ‘‘IECPOUs’’ is
used to collect all the information about such POUs, i.e.
instances of Function Blocks and Functions called inside the
Program.

D. FUNCTION BLOCK
Function Blocks are like Programs; therefore, they can also
be represented as a SEC of category ‘‘ELEMENT’’, as shown
in Fig. 8.

FIGURE 8. Representation of an IEC 61131-3 function block and its
relationship with an IEC variable.

Such element contains Properties related to the Func-
tion Block instance like the declaration name and the type
of the POU (which is set to ‘‘Function Block’’ in this
case). An instance of ReferenceElement named ‘‘Assigned-
Task’’ can be defined to show which Task the Function
Block is eventually associated with, as done for Program in
Section V.C.

In the same manner of Programs, a SEC ‘‘IECVariables’’
is used to collect all the information related to the Variables
of the Function Block. As a Function Block may be fea-
tured by theVAR_INPUT andVAR_OUTPUTVariables, like
the program, the SECs ‘‘Var_Input’’ and ‘‘Var_Output’’ can
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optionally be used to collect input and output Variables of the
Function Block, respectively.

A SEC of category ‘‘SET’’ named ‘‘IECPOUs’’ is used to
collect all the information relevant the POUs adopted by the
Function Block, i.e. instances of other Function Blocks and
Functions called by the Function Block (as pointed out by
Fig. 2).

Usually, in an IEC 61131-3 Program a Function Block
instance is assigned to a Variable; this fact may be represented
inside the proposed AAS Submodel with a ReferenceElement
named ‘‘AssignedTo’’ (present in Fig. 8) pointing to the
SEC representing the Variable containing the Function Block
instance. The strategy adopted for this representation will be
more detailed in Section V.G.

FIGURE 9. Representation of an IEC 61131-3 function.

E. FUNCTION
A Function is represented as a SEC with category ‘‘ELE-
MENT’’, as shown in Fig. 9. It may contain Properties related
to the Function description like the name and the POU type.

A SEC ‘‘IEC Variables’’ is used to collect all the informa-
tion related to the Variables of the Function. Functions may
have one or any number of input parameters (VAR_INPUT
Variables) [9], [19]. As opposed to FBs, they do not have
output parameters but return exactly one element as the func-
tion (return) value. For this reason, the SECs ‘‘Var_Input’’
can optionally be used to collect input Variables representing
the input parameters of the Function. In order to capture the
value returned by the Function, a variable named ‘‘Output’’
is defined among the Variables of the Function.

A SEC of category ‘‘SET’’ named ‘‘IECPOUs’’ is used
to collect, if necessary, all the information relevant to the
Function calls present inside the Function.

F. TASK
A Task is represented as a SEC of category ‘‘ELEMENT’’
as depicted in Fig. 10. It collects all Properties containing
information related to the task, e.g. Interval and Priority.

FIGURE 10. Representation of an IEC 61131-3 task and its relationship
with POU.

It is worth noting that information about which POU is
running under the Task can be represented by means of a
ReferenceElement, in the same manner as ‘‘AssignedTask’’
for IEC Programs and IEC Function Blocks. Such Refer-
enceElement could be named ‘‘AssignedPOU’’. As shown
in figure, the element pointed by ‘‘AssignedPOU’’ is a SEC
representing a POU and contained in the SEC ‘‘IECPOUs’’
of the relevant Resource.

FIGURE 11. Representation of an IEC 61131-3 variable.

G. VARIABLE
A single Variable is represented as a SEC of category ‘‘ELE-
MENT’’ as shown in Fig. 11. It contains Properties related
to the description of the Variable itself, e.g. Name, Retentive,
Scope, DataType Value and Address.

Inside each single POU the value of a Variable may be
assigned to another Variable; moreover, a Variable may be
assigned to input/output Variable of a POU. Other possible
scenarios are represented by a Variable containing the result
of a Function output and by a Variable containing the instance
of a Function Block. Finally, it may happen that a value
of a (dependent) Variable is given by an expression applied
to one or more (independent) Variables. All these examples
point out the existence of relationships among Variables and
other elements inside the IEC 61131-3 Submodel.

The authors propose to represent these relationships
through suitable ReferenceElement instances defined
between Variables and/or between Variables and SECs in
the IEC 61131-3 Submodel. Two ReferenceElements named
‘‘AssignedFrom’’ and ‘‘AssignedTo’’ are proposed to point to
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the element giving the value or receiving the value, respec-
tively; the name used for this ReferenceElement depends on
the direction considered for the assignment. Fig. 8 depicts an
example of usage of the ‘‘AssignedTo’’ ReferenceElement.

When the content of a Variable in the IEC 61131-3 pro-
gram is obtained from the result of an expression containing
other Variables, it has been assumed that the counterpart
in the AAS representing such Variable (i.e. SEC) features
one or more ReferenceElements named ‘‘DependsOn’’ point-
ing to the representations of the relevant Variables used in
the expression. For example, if the value of a Variable Z is
obtained applying the formula Z = X+3∗Y, where X and Y
are in turn Variables, we say that Z depends on the value of
both X and Y. Therefore, the SEC representing Z will expose
two ReferenceElements ‘‘DependsOn’’ pointing to the SECs
representing X and Y, respectively.

H. SEMANTICS
The previous subsections presented the main elements com-
posing the IEC 61131-3 Submodel proposed in the paper.

Definition of semantics played a very important role in the
definition of this Submodel because amandatory requirement
for the interoperability is that the meaning of each element
(i.e. what each element represents) must be clearly under-
stood by all the partners of the value chain. When the IEC
61131-3 Submodel is explored, it must be clear what each
element represents regarding the IEC 61131-3 standard. For
instance, value-chain partners must be able to distinguish
a SEC representing an IEC 61131-3 Variable from a SEC
representing an IEC 61131-3 Resource.

Since each element inside the IEC 61131-3 Submodel is
defined as HasSemantics (i.e. an entity that inherits fromHas-
Semantics common class), the relevant SemanticId attribute
of each element references a semantic description in a Seman-
tics Repository properly defined. This repository has been
realized as a set of the official names of IEC 61131-3 com-
ponents, e.g. ‘‘Configuration’’, ‘‘Task’’, ‘‘POU’’ and so on.
The repository could be considered like a dictionary of IEC
61131-3 terms adopted by the standard. In this way when
accessing a specific element of the IEC 61131-3 Submodel,
the SemanticId attribute allows to point to the IEC 61131-
3 terms which define the role of the element inside the IEC
61131-3 standard. In this way the role, and thus the relevant
meaning, is univocally defined end exposed.

It has been assumed that this Semantics Repository must
be shared between all the value-chain partners using the AAS
IEC 61131-3 Submodel.

VI. REPRESENTING PLC AND REAL PLANT BY AAS
It is worth noting that an IEC 61131-3 program is strictly
related to several details of the plant (or its subset) to be
controlled; these details may include, for example, the con-
trol devices (e.g. sensors, actuators) to be connected to the
PLC and the exchange of information (e.g. shared variables)
with other PLCs and/or computing devices among which the
control application is distributed. Representation of the IEC

61131-3 program alone by AAS (as described in Section V)
cannot take into account all these details, as explained in the
following.

As known, a PLC generally features a set of electrical
connections to which control devices are attached depending
to the characteristics of those connections (e.g., input, output,
0-24V digital, 0..20mA analog, 4-20mA analog). Sometimes,
these connections are organized into I/O modules mounted
in racks. Fig. 12 shows a very simple PLC featuring input
and output connections; it is a so-called compact PLC as it
does not feature modular racks, but just embedded electrical
connections.

FIGURE 12. PLC and I/O electrical connections.

When configuring a PLC, electrical connections are inter-
nally mapped to memory locations of the I and Q memory
blocks [19] to which internal variables may be associated
through the AT attribute (see Section III). When a PLC
is used to control a real plant, each I/O electrical connec-
tion is connected with the proper device that the PLC con-
trols or receives information from. On the basis of what said,
let us consider a boolean Variable named Test inside a IEC
61131-3 program; moreover, let us assume that the Variable
features the attribute AT representing the mapping to the
memory location %Q0.0 (i.e. output process image memory).
Furthermore, let us assume that during the configuration
phase of the PLC (where the IEC 61131-3 program must
be executed), a 0-24V digital output connection of the PLC
is associated to the memory location %Q0.0. Finally, let us
assume that a pump is physically connected to this output.
This means that a strict relationship between Variable Test,
the output electrical PLC connection and the controlled actu-
ator exists such that the pump is switched on every time the
value of the Variable Test is true. This relationship is partially
included in the AAS IEC 61131-3 Submodel described in
the previous section, because this last is able to represent
only the mapping between the Variable Test and the memory
location (e.g. %Q0.0), as said in Section V.G (see Fig. 11).
The description of the relationships between internal vari-
ables and physical devices is missing in the AAS IEC 61131-
3 Submodel.

Another example of relationships between the PLC and
the real plant may consist of control applications distributed
among several PLCs and/or other computing devices. In this
scenario it may happen that the applications running into the
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different devices have the need to share one or more informa-
tion (e.g. variables). For instance, let us consider the case of
a Variable defined in the IEC 61131-3 program running on a
certain PLC and let us assume that it must be set at run-time
by means of a configuration tool or a SCADA application
running in another device connected to the PLC. Even in
this case, the description of the relationships between internal
variables and the external tools cannot be represented in the
definition of the IEC 61131-3 program.

These examples are very simple, but they point out the
limitations of the AAS IEC 61131-3 Submodel presented in
the previous section. The authors propose a methodological
solution to provide a more general description by means of
AASs. This solution also involves the representation of the
relationships between IEC 61131-3 programs running on a
PLC and the ‘‘world’’ around it (at least, the portion of envi-
ronment which has actual dependencies which the programs
running in the PLC). The remainder of this section is aimed
to describe this solution.

First, an AAS describing the PLC (or in general the
computing device where the IEC 61131-3 program runs)
must be defined. It must include the IEC 61131-3 Submodel
(described in Section V) and should be enriched by the def-
inition of other Submodels aimed to represent the actual I/O
electrical connections provided by the PLC. It is assumed
that such kind of Submodel contains Properties describing
the features of the physical connections. On the basis of
this assumption, it is worth noting that relationships between
each Variable in the IEC 61131-3 program and each physical
connection may be modelled in the AAS by ReferenceEle-
ments. The references may connect the elements modelling
the Variables inside the IEC 61131-3 Submodel with the
elements representing the physical connections the Variables
are referring to. The formers are present in the IEC 61131-
3 Submodel, whilst the latter ones are located in the AAS
Submodel representing I/O connections. Therefore, Refer-
enceElements connect elements of two different Submodels
of the same AAS modelling the PLC.

FIGURE 13. AASs representing PLC and the real plant.

Fig. 13 shows on the left an example of AASmodelling the
PLC shown in Fig. 12 (and present in the same figure). This

AAS includes a Submodel representing the IEC 61131-3 pro-
grams running on the PLC, defined according to the content
of Section V; for the ack of space, only two SECs of category
‘‘ELEMENT’’ are shown representing a local Variable and
a global Variable, respectively. According to the content of
Section V, the local Variable may be represented by a SEC of
category ‘‘ELEMENT’’ organized inside SEC representing
POU (e.g. a Program), whilst the global Variable may be rep-
resented by another SEC of category ‘‘ELEMENT’’ placed
in a SEC representing a Resource. It has been assumed that
the local Variable features the AT attribute mapping it to a
certain memory location; we consider the location %I0.0 in
the following.

Fig. 13 shows that another Submodel is present inside
the AAS modelling the PLC. This Submodel contains the
representations of the I/O connections of the PLC, among
which there is the input connection associated to the memory
address %I0.0. In figure, this Submodel contains a Property
named ‘‘Channel 0’’ representing the above-mentioned input
connection. Due to the mapping of the local Variable to
the address %I0.0 and to the assignment of ‘‘Channel 0’’
to the same address, a relationship exists between the local
Variable and the ‘‘Channel 0’’ Property. This relationship is
represented by a ReferenceElement (drawn as a dashed red
arrow) connecting the local Variable and the ‘‘Channel 0’’
Property, as shown on the left of Fig. 13.

In order to represents the ‘‘world’’ around the PLC,
the authors assume the existence of another AAS modelling
the real plant (or the subset of it) controlled by the PLC.
Details about the realization of this kind of AAS are not given
in this paper as they are out of scope and they strictly depends
on the actual features of the real plant to be represented. Such
AAS may feature Submodels based on specific existing stan-
dards depending on the features of the plant to be represented.
For example, the standards IEEE 1364 [22] and IEEE 1800
[23] may be used for the hardware description of particular
devices present in the plant; a Submodel may be based on IEC
61804 Electronic Device Description Language (EDDL) [24]
for the description of digital communication characteristics
of intelligent field instrumentations and equipment parame-
ters. A Submodel for condition monitoring may be based on
VDMA 24582 [25], and a Submodel representing parameters
related to energy efficiency may be based on ISO/IEC 20140-
5 [26].

The only assumption made in this paper is that for each
device in the plant (e.g. sensor, pump, motor) connected to
the PLC, a Submodel must be present in order to represent
the relevant physical connections used for the communication
with the PLC. As done for the PLC, the Submodel must
contain one or more Properties representing the features of
the physical connections of the device.

Let us assume that in real plant, a temperature sensor is
physically connected with the input terminal represented by
the Property ‘‘Channel 0’’ shown in Fig. 13. Among the
available Submodels of the AAS modelling the plant, there
is one called ‘‘Device Connections’’ in Fig. 13, which has
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been assumed to contain properties relevant to the physical
connections of each device present in the real plant. One of
these properties is named Temperature Sensor and represents
the physical connections of the relevant sensor with the PLC.
In order to represent the relationship between this sensor and
the input connection represented by the Property ‘‘Channel
0’’, a ReferenceElementmay be used to connect the two Prop-
erties of the two different Submodels, as shown by Fig. 13.
In this way the relationships between the local Variable,
the PLC input terminal and the relevant input device is clearly
represented flowing the ReferenceElement instances shown
by the same figure.

The AAS modelling the real plant may contain other
kinds of Submodels. As said before the real plant may fea-
ture distributed applications running on other devices (e.g.
PLC, computers) and exposing configuration values that
must be used by the PLC. Again, it has been assumed that
for each application sharing variables with the PLC, an
AAS Submodel must be present to represent the variable.
Fig. 13 for example shows a Submodel named ‘‘Config-
uration tool’’ containing a Property (named ‘‘Parameter’’)
modelling a setting value that must be used inside the PLC
Program to fill a Global Variable. The ReferenceElement
shown in Fig. 13 aims to connect this Global Variable with
the Property ‘‘Parameter’’ of the Submodel ‘‘Configuration
tool’’ inside the AAS representing the real plant. Again,
the relationships between the PLC Variables and external
applications may be clearly represented flowing the Refer-
enceElement elements.

Considering Fig. 13, it is important to point out that the
set of AASs and the relevant relationships proposed in this
paper are able to give an overview of the connections between
elements composing the entire plant, including devices, appli-
cations and I/O terminals.

VII. CASE STUDY: DRILLING MACHINE
In this section an application of the proposed approach pre-
sented in Sections V and VI will be provided. The use
case here discussed considers a PLC controlling a drilling
machine, as depicted in Fig. 14.

The drilling mechanism may be moved up and down
through a vertical guide shown in the figure. The drilling
machine features two sensors; SensorUp is a limit switch
which gives the value ON when the drill is in the upmost
upright position. The figure shows another sensor, which is a
proximity sensor that gives the value ON when the drill bit is
close to the piece to be drilled. The drilling machine features
a motor able to move up and down the drilling mechanism.
The motor receives the DrillDown and DrillUp commands
to move the driller down and up, respectively. The Rotate
command is used to rotate the drill bit. Fig. 14 shows the Start
signal which represents the command given by an operator
(e.g. pushing a button) to start the control program. The same
figure shows the connections between the sensors/actuators
of the drilling machine, the Start push button and the I/O
physical connections of the PLC.

FIGURE 14. PLC and drilling machine.

The control program running inside the PLC is listed
in Fig. 15; it is written using the Structured Text programming
language, according to the IEC 61131-3 standard [9].

The Program Drill uses a global Variable (T_PARAM),
defined at the Resource level. It is assumed that this Variable
is filled using a value retrieved by a configuration tool running
in another computing device not shown in the Fig. 14.

Several local binary Variables are defined as shown
in Fig. 15; they are assigned to the I and Q process images
and to the memory M, through the AT attribute. The list of
local Variables includes a local instance of the TON timer
[9]; in particular, the Variable Timer01 is used to contain the
instance of the TON timer FB.

The ST code shown by Fig. 15 realizes a very simple
control program; when the Start push button is pressed,
the program starts, and the DrillDown command is activated.
Once the Proximity Sensor assumes the value ON (due to the
drill pit closeness to the piece to be drilled), the rotation of
the drill bit is activated. The drill bit rotates, and the drilling
machine moves down for a certain time interval given by a
user-configurable global Variable called T_PARAM. Once
the time expires, the drilling machine moves up (i.e. DrillUp
command is activated) until it reaches the upmost upright
position (i.e. SensorUp is ON); the drilling machine stops
when this condition occurs. It has been assumed that the
control program is restarted when the operator presses the
Start push-button again.

The Fig. 15 shows the definition of the Configura-
tion (named ‘‘Config1’’), which includes the Resource
‘‘Resource1’’. This resource features the global shared Vari-
able T_PARAM, and a periodic task named ‘‘MainTask1’’
featuring a time interval of 100ms controlling the execution
of the Program Drill.

According to the approach presented in Section VI, PLC
and the real plant controlled (i.e. the drilling machine and
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FIGURE 15. IEC 61131-3 PLC program.

the relevant control devices) have been modelled by the two
AASs shown by Fig. 16.

The AAS of the PLC contains several Submodels, includ-
ing the IEC 61131-3 Submodel, defined following the
approach proposed in Section V; its internal details will be
deeply discussed in the following.

Fig. 17 depicts the representation of the drilling machine
program using an IEC 61131-3 Submodel created follow-
ing the guidelines presented in Section V. It is a UML
Object Diagram where the IEC 61131-3 Submodel and the
SECswith category ‘‘ELEMENT’’ are highlighted with gray-
colored objects. The semantic of each element in Fig. 17 must
be deduced by the attribute semanticId, as explained in
Section V.H; the attribute semanticId is not represented in fig-
ure for space reason.

FIGURE 16. Case study scenario showing relationships between variables
and properties of AASs of both a PLC and a drilling machine.

In Fig. 17 the topmost element is a Submodel named ‘‘IEC
61131-3’’ representing the Configuration of the program
in Fig. 15; as for that, two SubmodelElements are connected
to the Submodel: one is a Property providing the name of the
Configuration in the program (i.e., Name), whilst the other
one is a File containing the path to the project file containing
the program (i.e. ProjectFile).

The SEC ‘‘Resource1’’ represents the Resource defined
inside the program. As explained in Section V, this last
contains the value ‘‘ELEMENT’’ in the attribute category
because this SEC represents a real software entity (i.e. the
IEC Resource instance ‘‘Resource1’’) and not a folder-like
entity. This SEC, in turn, contains three SECs: ‘‘IECPOUs’’,
‘‘IECVariables’’, and ‘‘IECTasks’’. The attribute category of
these last contains the value ‘‘SET’’ because they represent
folder-like entities organizing SubmodelElements represent-
ing POUs, Variables and Tasks, respectively. It is worth
noting that the IEC 61131-3 elements represented by these
SubmodelElements are only the ones related to the Resource
named Resource1. In other words, the hierarchy of Submod-
elElements reflects the contextual relationship in the IEC
61131-3 Program.

The global Variable T_PARAM is mapped as SEC and
organized under ‘‘IECVariables’’. It features some Proper-
ties reflecting the relevant scope, value, and data type; their
attributes are filled according to the definition of the Variable
in the program in Fig. 15.

The Task ‘‘MainTask1’’ is mapped as a SEC and organized
under ‘‘IECTasks’’. It features two properties containing the
interval and the priority of the Task, filled according to the
declaration in the program in Fig. 15.

The Program instance ‘‘MainInst1’’ declared in Fig. 15 is
mapped as a SEC and organized under IECPOUs of
Resource1. As previously said, this organization of the Sub-
model highlights the relationship between ‘‘Resource1’’ and
‘‘MainInst1’’, showing which Program is assigned to the
Resource. This SEC features some Properties describing the
Program like the programming language adopted, the kind
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FIGURE 17. Representation of the drilling machine PLC program using a submodel.

of POU and the name used for the declaration of the Pro-
gram in Fig. 15. It is worth noting that the ReferenceElement
‘‘AssignedTask’’ is used here to highlight that the program
MainInst1 is executed under the Task ‘‘MainTask1’’; this is
reflected from the attribute value which contains a Reference
to the SEC MainTask1.

Like ‘‘Resource1’’, ‘‘MainInst1’’ features a SEC ‘‘IEC-
Variables’’ and a SEC ‘‘IECPOUs’’ organizing all the Sub-
modelElements mapping Variables and Function
Blocks/Functions used inside the Program, respectively. Due
to lack of space, only few Variables are represented, i.e.
DrillDown, Sensor and Timer01. As usual, DrillDown fea-
tures Properties describing the Variable, like scope, data
type and memory address associated (by AT attribute) to
the Variable. Similar consideration can be done for Sensor
too. Instead, the Variable Timer01 shows that its data type is
TON, therefore it can contain an instance of a Function Block
TON as value. Which Function Block instance is contained
in the Variable Timer01 is shown by the ReferenceElement
‘‘AssignedFrom’’ that contains a Reference to the SEC repre-
senting the relevant Function Block, i.e. Timer01_TON. This
last will be described in the following.

As shown in Fig. 15, the Program ‘‘MainInst1’’ use a
Function Block (i.e. TON). For this reason, the instance of the

Function Block is created as SEC named ‘‘Timer01_TON’’
and organized under ‘‘IECPOUs’’ of ‘‘MainInst1’’. The name
‘‘Timer01_TON’’ is chosen to logically differentiate the
Function Block instance from the Variable Timer01 con-
taining it. ‘‘Timer01_TON’’ features Properties describing
the Function Block instance like the type of POU and the
Function Block type. The ReferenceElement ‘‘AssignedTo’’
here shows that ‘‘Timer01_TON’’ is assigned to the Variable
Timer01, as shown in Fig. 15. As discussed in Section V.G,
a SEC ‘‘IECVariables’’ is used to organize all the Vari-
ables used inside the Function Block. A SEC ‘‘Var_Input’’
is used to organize the SubmodelElement representing the
input Variables of the Function Block ‘‘Timer01_TON’’
(i.e. IN and PT). For both IN and PT, a ReferenceEle-
ment ‘‘AssignedFrom’’ is used to show which Variables are
passed as argument to the ‘‘Timer01_TON’’. For this reason,
‘‘AssignedFrom’’ of IN contains a Reference to Sensor, whilst
AssignedFrom of PT contains a Reference to T_PARAM,
in accordance with the program depicted in Fig. 15.

Coming back to the Fig. 16, it is possible to notice
that the AAS representing the PLC contains a Submodel
‘‘I/O Connections’’. According to the approach presented in
Section VI, it features properties describing the I/O physical
connections of the PLC. In particular, the ‘‘Output Channel
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0’’ Property is shown; it refers to the output connection asso-
ciated to the memory location %Q0.0. A shown by Fig. 15,
DrillDown Variable features the AT attribute set to %Q0.0.
For this reason, a ReferenceElement is considered between
this Variable and the Property ‘‘Output Channel 0’’, as shown
by Fig. 16.

Let us consider the other AAS shown by Fig. 16. This
AAS represents the drilling machine; among its Submodels
not shown in the figure, this AAS contains a Submodel ‘‘I/O
Device Connections’’, which has been assumed to contain
properties relevant to the physical connections of each device
present in the drilling machine. Among these connections
there is that relevant to the Motor in charge to move the drill
up and down. The Property ‘‘T9-Motor-Down’’ represents the
physical connection relevant to the command which moves
the drill up. On the basis of the program shown by Fig. 15 this
physical connection must be linked to the PLC terminal
associated to the memory location %Q0.0. For this reason,
the ReferenceElement shown in the Fig. 16 represents the
relationship between the Property ‘‘Output Channel 0’’ and
the Property ‘‘T9-Motor-Down’’ of the two AASs.

As said before, it is assumed that a configuration tool run-
ning in another computing device is present in the ‘‘world’’
around the PLC. Fig. 16 contains another Submodel named
‘‘Configuration tool’’ containing all the information relevant
to the configurable parameters of the drilling machine set by
a configuration tool. Such values must be used inside the PLC
Program (e.g. drill time, rotation speed, etc.).

The Property ‘‘DrillTime’’ represents the Variable whose
current value is downloaded into the PLC and assigned to
the Variable T_PARAM. For this reason, the Property ‘‘Drill-
Time’’ exposes a relationship with the Variable T_PARAM
of the PLC program represented with the ReferenceElement
shown in Fig. 16.

FIGURE 18. Implementation scenario taken into consideration.

VIII. IMPLEMENTATION
An implementation of the proposed approach has been real-
ized. Fig. 18 shows the scenario considered for the implemen-
tation.

It has been assumed to realize an IEC 61131-3 program
controlling an educational factory model produced by fis-
chertechnik [27]; it is composed by different working stations
as shown by Fig. 18, i.e. warehouse, gripper, hoven, and sort-
ing line. Both software development tool and runtime system
for the IEC 61131-3 program are based on OpenPLC [28].
OpenPLC has been used as it is open source allowing to avoid
the use of proprietary PLC run-time and editor software.
OpenPLC may be installed on different kinds of embedded
systems. Among the compliant embedded systems there is
the Raspberry Pi which was used in the implementation
scenario. Although Raspberry Pi is not a PLC, the OpenPLC
run-time allows it to behave as a PLC. The OpenPLC run-
time was installed on the Raspberry Pi allowing to execute
an OpenPLC project containing the control program of the
factory model.

The AASs of both PLC and factory model have been
defined according to the approach presented in Section V
and VI. The two AASs have been implemented using OPC
UA [29] which is one of the technologies suggested in [6]
for the implementation of AAS metamodel. In particular,
the two AASs have been realized by mapping each AAS
element into OPC UA Nodes according to the proposal made
by the authors in [30]. This proposal is based on the use of
an OPC UA information model defined by the same authors
and aimed to map each AAS element into OPC UA Nodes;
the information model is called ‘‘CoreAAS’’ and it is freely
available in [31]. AAS implementation intoOPCUAhas been
realized using the OPC UA SDK [32] for Node.js. According
to this implementation choice, the OPC UA Server maintains
the representation in OPC UA of the two AASs describing
the control device and the factory model. A generic OPC UA
Client is able to explore the OPCUAServer accessing the two
AASs to discover all the details about the IEC 61131-3 pro-
grams and the relationships between IEC 61131-3 Variables,
I/O connections, and the factory model’s control I/O devices.

A web application has been developed as it will be
described in the remainder. It includes an OPC UA Client for
the communication with the OPC UA Server, allowing the
web application to give to a web user the description of the
entire system made up by the PLC and the controlled plant.
The web application is also in charge to allow the creation
of an AAS representation into OPC UA, given the relevant
UML description. Updates of existing AASs maintained by
OPC UA Server are also possible using the web application.
Fig. 18 points out that the web application communicates
also with the Raspberry Pi (and with the OpenPLC run-
time); communication is based on Rest services. Using these
services, it is possible to upload an OpenPLC program from
the web application towards the Raspberry Pi. The web appli-
cation has been developed in AngularJS and deployed on a
web server application based on Node.js.
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Each component of the implementation here described is
freely available on GitHub [33], under Apache 2.0 license.

Using the scenario depicted by Fig. 18 just described,
several tests have been carried out. Among them there is one
about a reconfiguration process which will be described in
the following. A production process has been defined; an IEC
61131-3 program has been written to perform a certain con-
trol algorithm on the factory model, involving a certain set of
the available control devices connected to certain I/O pins of
the Raspberry Pi. The twoAASs depicted in Fig. 18 have been
defined in UML and the OPC UA representation has been
created inside the OPC UA Server by the web applications.
The test involved the introduction of somemodification in the
production process (e.g. changing the control algorithm on
which the IEC 61131-3 program is based, adding/removing
control devices, changing the relevant connections with the
I/O pins of the Raspberry Pi). The web application was used
to update the AASs’ representation based on OPC UA and
maintained inside the OPC UA Server. Once this update has
been done, the web application was used to access the OPC
UA Server to acquire the current OpenPLC-based project
which was uploaded into the OpenPLC run-time running into
the Raspberry Pi.

The following consideration may be done to point out
the relationship between the test just described and a real
scenario concerning reconfiguration process. In a real sce-
nario the AASs representations maintained by the OPC UA
Server may be used by technician teams to introduce the real
modification into the plant, after the reconfiguration process.
The availability of a unique and complete vision of the plant
greatly simplifies the work of the technician teams due to
the possibility to better synchronize their works. Finally,
the feature to upload the control program into the Raspberry
Pi is very useful in a real scenario, allowing an automatic
reconfiguration of the software once reconfiguration of the
control program has been concluded.

IX. CONCLUSION
The paper presented the use of AAS metamodel to repre-
sent an IEC 61131-3 program and its relationships with the
real plant controlled. Use of the AAS metamodel has the
advantage that engineers or technicians coming from differ-
ent domains can easily understand the relationships between
the real plant and the relevant control programs. Considering
an Industry 4.0 scenario where all assets, including PLCs, are
represented in the digital world with their own AASs, every
relationship between properties of different assets are tracked
and available in the network and structured in a standard
manner.

The proposed solution may make easier the development
and the reconfiguration of the production system. The test
presented in Section VIII is an example of advantages of the
proposed approach in a real process reconfiguration scenario.
Furthermore, maintenance of control programs is greatly sim-
plified because all the information relevant to variables are
documented and semantically enriched in the AASs. If the

developer is changed in a future iteration, the new one can
easily track-down, for instance, what a variable is referring
to because it points directly to the associated property of
a device’s AAS. Furthermore, parameters inside the IEC
61131-3 program can be configurated automatically spilling
the value from the information contained in the AAS of the
relevant machine or device. This is possible because each
software component inside the PLC points to the asset’s
property it refers to.

The work here presented do not discuss how the AAS
Submodel for the IEC 61131-3 program must be created
and who is in charge of its creation. These topics are out
of the scope of this paper but can be considered in future
work. Authors strongly believe that automatic creation of an
AAS Submodel starting from an existent PLC program is
feasible and it represents a very important issue. IEC 61131-3
program are contained in XML-based project file according
to the novel IEC 61131-10 standard part [34]. A solution for
the automatic creation of AAS Submodel representing IEC
61131-3 programsmay involve the use of annotated statement
in the XML-based project file consisting in additional meta-
data (e.g. semantic references, AAS-specific information).
For instance, a variable declaration may be annotated with
a reference to the AAS property it represents. By means of a
suited tool, such XML project file can be parsed to retrieve
both the IEC 61131-10 tags and the AAS-based tags and
using them for the automatic definition of an AAS. This
opens completely new scenarios; for instance, IDE for PLC
programming can be extended to include new AAS-related
functionalities which in turn help the developer to create the
aforementioned extensions for an IEC 61131-10XMLproject
file.

The paper pointed out that an implementation of the pro-
posed approach is maintained and freely available on GitHub
repository, allowing whatever interested researcher to down-
load and experiment its use in real scenarios, introducing
improvements as needed.
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