
Theoretical Computer Science 592 (2015) 143–165
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Algebraic (trapdoor) one-way functions: Constructions

and applications ✩

Dario Catalano a, Dario Fiore b,∗, Rosario Gennaro c, Konstantinos Vamvourellis c

a Dipartimento di Matematica e Informatica, Università di Catania, Italy
b IMDEA Software Institute, Madrid, Spain
c City College of New York, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2015
Accepted 22 May 2015
Available online 1 June 2015
Communicated by G. Persiano

Keywords:
One-way functions
Homomorphic signatures
Verifiable computation
Sigma protocols

In this paper we introduce the notion of Algebraic (Trapdoor) One Way Functions, which,
roughly speaking, captures and formalizes many of the properties of number-theoretic
one-way functions. Informally, a (trapdoor) one way function F : X → Y is said to be
algebraic if X and Y are (finite) abelian cyclic groups, the function is homomorphic i.e.
F (x) · F (y) = F (x · y), and is ring-homomorphic, meaning that it is possible to compute
linear operations “in the exponent” over some ring (which may be different from Zp where
p is the order of the underlying group X) without knowing the bases. Moreover, algebraic
OWFs must be flexibly one-way in the sense that given y = F (x), it must be infeasible to
compute (x′, d) such that F (x′) = yd (for d �= 0). Interestingly, algebraic one way functions
can be constructed from a variety of standard number theoretic assumptions, such as RSA,
Factoring and CDH over bilinear groups.
As a second contribution of this paper, we show several applications where algebraic
(trapdoor) OWFs turn out to be useful. In particular:

• Publicly Verifiable Secure Outsourcing of Polynomials: We present efficient solutions which
work for rings of arbitrary size and characteristic. When instantiating our protocol
with the RSA/Factoring based algebraic OWFs we obtain the first solution which
supports small field size, is efficient and does not require bilinear maps to obtain
public verifiability.

• Linearly-Homomorphic Signatures: We give a direct construction of FDH-like linearly
homomorphic signatures from algebraic (trapdoor) one way permutations. Our
constructions support messages and homomorphic operations over arbitrary rings and
in particular even small fields such as F2. While it was already known how to realize
linearly homomorphic signatures over small fields (Boneh–Freeman, Eurocrypt 2011),
from lattices in the random oracle model, ours are the first schemes achieving this in
a very efficient way from Factoring/RSA.

• Batch execution of Sigma protocols: We construct a simple and efficient Sigma protocol
for any algebraic OWP and show a “batch” version of it, i.e. a protocol where many
statements can be proven at a cost (slightly superior) of the cost of a single execution
of the original protocol. Given our RSA/Factoring instantiations of algebraic OWP, this

✩ An abridged version of this paper appeared in the proceedings of TCC 2013.

* Corresponding author.
E-mail addresses: catalano@dmi.unict.it (D. Catalano), dario.fiore@imdea.org (D. Fiore), rosario@cs.ccny.cuny.edu (R. Gennaro), vabour@gmail.com

(K. Vamvourellis).
http://dx.doi.org/10.1016/j.tcs.2015.05.029
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.05.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:catalano@dmi.unict.it
mailto:dario.fiore@imdea.org
mailto:rosario@cs.ccny.cuny.edu
mailto:vabour@gmail.com
http://dx.doi.org/10.1016/j.tcs.2015.05.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.05.029&domain=pdf

144 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
yields, to the best of our knowledge, the first batch verifiable Sigma protocol for
groups of unknown order.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Algebraic one-way functions. This paper introduces the notion of Algebraic One-Way Function, which aims to capture and
formalize many of the properties enjoyed by number-theoretic based one-way functions. Intuitively, an Algebraic One-Way
Function (OWF) F :Xκ →Yκ is defined over abelian cyclic groups Xκ , Yκ , and it satisfies the following properties:

• Homomorphic: the classical property that says that group operations are preserved by the OWF.
• Ring-Homomorphic: this is a new property saying, intuitively, that it is possible to efficiently perform linear operations

“in the exponent” over some ring K. While this property turns out to be equivalent to the homomorphic property for
groups of known order n and the ring K = Zn , it might not hold for groups of unknown order. Yet for the case of RSA
Moduli we show that this property holds, and more interestingly it holds for any finite ring.

• Flexibly One-Way: We strengthen the usual notion of one-wayness in the following way: given y = F (x) is should be un-
feasible to compute (x′, d) such that F (x′) = yd and d ∈ K �=0 (in contrast with the traditional definition of one-wayness
where d is fixed as 1).

In our work we also consider natural refinements of this notion to the cases when the function is a permutation and when
there exists a trapdoor that allows to efficiently invert the function.

We demonstrate the existence of Algebraic OWFs with three instantiations, the security of which is deduced from the
hardness of the Diffie–Hellman problem in groups with bilinear maps and the RSA/Factoring assumptions respectively.

Applications. As a second contribution of this paper, we turn our attention to three separate practical problems: outsourcing
of polynomial computations, linearly homomorphic signatures and batch executions of identification protocols. In all three
separate problems, we show that Algebraic OWFs can be used for building truly efficient schemes that improve in several
ways on the “state-of-the-art”. In particular, we propose solutions for:

• Publicly Verifiable Secure Outsourcing of Polynomials which works over rings of arbitrary size and characteristic and does
not necessarily use bilinear maps.

• Linearly Homomorphic Signature Schemes also over arbitrary rings, and in particular even small fields such as F2. The only
known constructions for the latter case require assumptions over lattices [10] while we can use any of the assumptions
above obtaining more efficient algorithms.

• Batch Executions of Identification Protocols: we construct a Sigma-protocol based on algebraic one-way functions and then
we show that it is possible to construct a “batch” version of it where many statements are proven basically at the cost
of a single one. A similar batch version for Schnorr’s Sigma protocol has been proposed in [23] and we generalize it
to any of the assumptions above. In particular for the instantiation based on RSA we obtain a batch version of the
Guillou–Quisquater protocol [28] which yields, to the best of our knowledge, the first batch verifiable Sigma protocol
for groups of unknown order, a problem left open in [23].

Below, we elaborate in detail about the improvements of our solutions.

1.1. Secure outsourcing of polynomials

Starting from work by Benabbas et al. [7], several papers have been investigating the problem of securely outsourcing
the computation of large polynomials. The problem can be described as follows: a computationally weak client stores a
large polynomial (say in m variables, of degree d) with a powerful server. Later, the client will request the server to evaluate
the polynomial at a certain input x and the server must provide such result together with a “proof” of its correctness. In
particular, it is crucial that verifying such a proof must require substantially less resources than computing the polynomial
from scratch. Furthermore, the client must store only a “small” amount of secret information, e.g. not the entire polynomial.

Following [7], several other papers (e.g. [37,38,19]) have investigated this problem, focusing specifically on the feature of
public verification, i.e. the proof of correctness of the result provided by the server can be verified by anyone. This comes in
contrast with the original solution in [7] which obtained only private verification, i.e. the proof of correctness of the result
provided by the server can be verified only by the client who initially stored the polynomial.

The popularity of this research problem can be explained by its numerous practical applications including, as discussed
in [7], Proofs of Retrievability (the client stores a large file F with the server and later wants a short proof that the entire file
can be retrieved) and Verifiable Keyword Search (given a text file T = {w1, . . . , w�} and a word w , the server tells the client
if w ∈ T or not).

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 145
Limitation of previous solutions. The solutions for outsourcing of polynomial computations mentioned above suffer from
two main drawbacks:

• Large Field Size. The schemes presented in [7,37,19] work only for polynomials computed over fields of prime charac-
teristic p, which is the same p as the order of the underlying cryptographic group that is used to prove security. That
means that for the schemes to be secure, p must be large. Therefore up to now, none of the existing schemes could
handle small field sizes. The solution recently proposed in [38] can support polynomials over Z2, and thus, by working
in a “bit-by-bit” fashion, over any field. However, to work over other fields of any characteristic p, it incurs a O (log p)

computational overhead since O (log p) parallel instances of the scheme must be run. It would be therefore nice to have
a scheme that works for polynomials over arbitrary fields, without a “bit-by-bit” encoding, so that the same scheme
would scale well when working over larger field sizes.

• Public Verifiability via Bilinear Maps. All previous solutions that achieve public verifiability [37,38,19] do so by means of
groups with bilinear maps as the underlying cryptographic tool. Since pairing computations may be expensive compared
to simpler operations such as exponentiations, and given that bilinear maps are the only known algebraic structure
under which we can currently build publicly verifiable computation, it is an interesting question to investigate whether
we can have solutions that use alternative algebraic tools and cryptographic assumptions (e.g. RSA moduli) to achieve
public verifiability.

Our new solution removes these two problems. As discussed above, we can instantiate our protocols over RSA moduli,
and prove their security under the DDH/RSA/Factoring Assumptions over such groups, therefore avoiding the use of bilinear
maps. Perhaps more interestingly, our protocols can handle finite rings of any size and any characteristic, thus allowing
for much more flexibility and efficiency. Moreover, the schemes in [38] are based on specific Attribute-Based Encryption
schemes (e.g. [32]) whose security relies on “q-type” assumptions, whereas our solution can do so based on the well known
RSA/Factoring assumptions.

As in the case of [19] our techniques extend for building a protocol for Matrix Multiplication. In this problem (also studied
in [34]) the client stores a large (n × d) matrix M with the server and then provides d-dimensional vectors �x and obtains
�y = M · �x together with a proof of correctness.

Other comparisons with related work. The subject of verifiable outsourced computation has a large body of prior work,
both on the theoretical front (e.g. [4,27,31,33,26]) and on the more applied arena (e.g. [35,5,43,44]).

Our work follows the “amortized” paradigm introduced in [21] (also adopted in [17,2]) where a one-time expensive
preprocessing phase is allowed. The protocols described in those papers allow a client to outsource the computation of an
arbitrary function (encoded as a Boolean circuit) and use fully homomorphic encryption (i.e. [24]) resulting in solutions of
limited practical relevance. Instead, we follow [7] by considering a very limited class of computations (polynomial evaluation
and matrix multiplication) in order to obtain better efficiency.

As discussed above, we improve on [37] by providing a solution that works for finite rings of arbitrary characteristic
(even small fields) and by avoiding the use of bilinear maps. Given that our solution is a generalization of [19] we also
inherit all the improvements of that paper. In particular, compared to [37]:

• we get security under constant-size assumptions (i.e. assumptions that do not asymptotically depend on the degree of
the polynomial), while their scheme uses a variation of the CDH Assumption that grows with the degree.

• we handle a larger class of polynomial functions: their scheme supports polynomials in m variables and total degree d
(which we also support) but we additionally consider also polynomials of degree d in each variable.

• For the case we both support, we enjoy a much faster verification protocol: a constant amount of work (a couple of
exponentiations over an RSA modulus) while they require O (m) pairings.1

1.2. Linearly homomorphic signatures

Imagine a user Alice owns some data set m1, . . . , mn ∈ M that she keeps (signed) in some database stored at a, not
necessarily trusted, server. Imagine also that some other user, Bob, is allowed to query the database to perform some basic
computation (such as the mean or other statistics) over Alice’s data set. The simplest way to do this in a reliable manner
(for Bob) is to download the full data set from the server, check all the signatures and compute the desired statistic. This
solution, however, has two drawbacks. First, it is inefficient in terms of bandwidth. Second, even though Alice allows Bob
to access some statistics over her data, she might not want this data to be explicitly revealed. Homomorphic signatures
allow to overcome both these issues in a very elegant fashion [10]. Indeed, using a homomorphic signature scheme, Alice
can sign m1, . . . , mn , thus producing the signatures σ1, . . . , σn , which can be verified exactly as ordinary signatures. The
homomorphic property provides the extra feature that given σ1, . . . , σn and some function f :Mn →M, one can compute
a signature σ f on the value f (m1, . . . , mn) without knowledge of the secret signing key SK. In other words, for a fixed set

1 In contrast the delegation phase is basically free in their case, while our delegation step requires O (md) work—note however that in a publicly verifiable
scheme, the verification algorithm might be run several times and therefore its efficiency is more important.

146 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
of original signed messages, it is possible to provide any y = f (m1, . . . , mn) with a proof of correctness σ f . In particular
the creation and the verification of σ f does not require SK. The security definition is a relaxation over the classical security
notion for signatures: it should be impossible to create a signature σ f for m �= f (m1, . . . , mn) without knowing SK.

The notion of homomorphic signature was introduced by Johnson et al. [29] and later refined by Boneh et al. [9]. Its
main motivation was realizing a linear network coding scheme [1,40] secure against pollution attacks. The construction
from [9] uses bilinear groups as the underlying tool and authenticates linear functions on vectors defined over large prime
fields. Subsequent works considered different settings as well. In particular, the constructions in [22,15,16] are based on
RSA, while [11,10] rely on lattices and can support linear functions on vectors over small fields. A general framework for
building homomorphic signatures in the standard model, was recently provided by Freeman [20].

Our contribution. In this paper we show that algebraic trapdoor one way permutations, directly allow for a very simple
and elegant extension of Full Domain Hash (FDH) to the case of linearly homomorphic signatures. Similarly to standard FDH
signatures our construction is secure in the random oracle model and allows for very efficient instantiations. Our framework
allows for great flexibility when choosing a homomorphic signature scheme and the underlying message space. Indeed our
constructions support messages and homomorphic linear operations over arbitrary finite rings. While it was already known
how to realize linearly homomorphic signatures over small fields [11,10], ours seem to be the first schemes achieving this
in a very efficient way and based on simple assumptions such as Factoring and RSA. To give a more concrete idea about
the efficiency of our scheme, if we consider the case of messages in F2, then our signing algorithm is more efficient than
that in [10] in the same order of magnitude as taking a square root in Z∗

N is more efficient than sampling a pre-image in
lattice-based trapdoor functions, at comparable security levels.

1.3. Batch executions of sigma protocols

We show that for any Algebraic One-Way Permutation there exists a simple and efficient Sigma protocol that allows a
Prover to convince a Verifier that he “knows” a pre-image of an Algebraic OWP. Our protocol can be seen as an exten-
sion of the classical Schnorr and Guillou–Quisquater protocols [41,28]. Following [23] we then considered the question of
constructing a “batch” version of it where many statements are proven basically at the cost of a single one.

Gennaro et al. discuss in [23] many applications of such a protocol. As an example, consider an access control system
where users belong to various privilege classes. Access control classes for the data are defined using such privileges, i.e. as
the users who own a given subset of privileges. For instance, the access control class for a given piece of data D , can be
defined as the users who own privileges P1, P2, P3.

This can be realized by associating a different public key to each privilege.2 Then a user would prove that she knows
the secret keys required for the authorization. Using typical proofs of knowledge, to prove knowledge of k keys the user
has to perform k proofs. Although these proofs can be performed in parallel, keeping the round complexity the same, the
computational complexity goes up by a factor of k.

The question posed in [23] was to design a proof of knowledge of � secrets at the cost of less than � proofs. They an-
swered this question for Schnorr’s protocol and they left it open for the Guillou–Quisquater protocol as the same techniques
did not seem to work for groups of unknown order.

Following [23] we show a batch version of our Sigma protocol where the prover can prove knowledge of � pre-images
of the OWP, at a cost slightly superior to the cost of a single execution of the Sigma protocol, thus saving a factor of � in
computation and bandwidth over the best previously known solutions. Given our RSA/Factoring instantiations of Algebraic
OWP, this immediately solves the problem left open in [23] thus offering a batch verifiable Sigma protocol even for groups
of unknown order.

Related work. Apart from [23] we are not aware of other work dealing with batch execution of proofs of knowledge. There
has been a lot of work on batching the computation of modular exponentiations (e.g. [6]). But the obvious application of
such solution to Sigma-protocols would still yield a scheme with higher communication and computation cost by a factor
of � (the prover would still have to send and compute the � initial commitments of the Sigma protocol).

1.4. Publication note and organization

An abridged version of this paper appeared in the proceedings of TCC 2013 [14]. In this version we include complete
proofs and provide additional results. Most notably, this version presents the results related to the application of algebraic
one-way functions to the batch executions of sigma protocols.

Organization. The paper is organized as follows. In Section 2 we provide the necessary background and recall the crypto-
graphic primitives used in our work. Section 3 presents our main contribution, that is the definition and the instantiations of

2 Another way to implement such an access control system is to give each user a certified public key. The certificate would indicate the subset of
privileges associated with this public key. Then in order to gain access, the user proves knowledge of her secret keys, and if her privileges are a superset
of the ones required for the access she is attempting, access is granted. As discussed in [23] this approach violates Alice’s privacy, as she is required to
reveal all her privileges, when, theoretically, in order to gain access she should have had to reveal only a subset of them. Moreover another advantage of
associating different keys to different privileges, is that the latter can be easily transferred simply by transferring the corresponding secret key.

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 147
algebraic (trapdoor) one-way functions. Finally, Sections 4, 5 and 6 present the applications of algebraic OWFs to verifiable
computation, linearly-homomorphic signatures and batch execution of sigma protocols, respectively.

2. Background and definitions

In what follows we will denote with λ ∈ N a security parameter. We say that a function ε is negligible if it vanishes
faster than the inverse of any polynomial. If S is a set, we denote with x $← S the process of selecting x uniformly at random
in S . Let A be a probabilistic algorithm. We denote with x $← A(·) the process of running A on some appropriate input and
assigning its output to x.

2.1. Algebraic tools and computational assumptions

Let G(1λ) be an algorithm that on input the security parameter 1λ outputs a tuple (p, G1, G2, GT , e) such that: p is
a prime of size at least λ, G1, G2, GT are groups of order p, and e : G1 × G2 → GT is an efficiently computable, non-
degenerate bilinear map.

The co-Computational Diffie–Hellman problem was introduced by Boneh, Lynn and Shacham as a natural generalization
of the Computational Diffie–Hellman problem in asymmetric bilinear groups [12]. It is defined as follows.

Definition 1 (co-CDH). Let (p, G1, G2, GT , e) $← G(1λ), g1 ∈ G1, g2 ∈ G2 be generators, and a, b $← Zp be chosen at random.
We define the advantage of an adversary A in solving the co-Computational Diffie–Hellman problem as

Advcdh
A (λ) = Pr[A(p, g1, g2, ga

1, gb
2) = gab

1]
where the probability is taken over the random choices of G, a, b and the adversary A. We say that the co-CDH Assumption
holds for G if for every PPT algorithm A we have that Advcdh

A (λ) is negligible.

Notice that in symmetric bilinear groups, where G1 = G2, this problem reduces to standard CDH. For asymmetric groups,
it is also easy to see that co-CDH reduces to the computational Bilinear Diffie–Hellman problem [8].

We recall below the decisional version of the CDH Assumption for groups G of prime order p.

Definition 2 (DDH). Let G be a group of prime order p, g ∈ G be a generator and a, b, c $← Zp be chosen at random. We
define the advantage of an adversary A in deciding the Decisional Diffie–Hellman (DDH) problem as

Advddh
A (λ) =

∣∣∣Pr[A(p, g, ga, gb, gab) = 1] − Pr[A(p, g, ga, gb, gc) = 1]
∣∣∣

We say that the DDH Assumption holds in G if for every PPT algorithm A: Advddh
A (λ) is negligible.

2.1.1. The RSA group
Let Z∗

N be the group of invertible integers modulo N . A group element g ∈ Z∗
N can be efficiently sampled by choosing a

random value in {0, . . . , N −1} and testing whether gcd(g, N) = 1. An element h is called a quadratic residue if h = g2 mod N
for some g ∈ Z∗

N . In our work we consider the subgroup QRN ⊂ Z∗
N of quadratic residues in Z∗

N . Similarly to Z∗
N , QRN also

allows to efficiently sample a group element: choose g
$← Z∗

N and compute h = g2 mod N . For our convenience we consider
moduli N which are product of “safe primes” p · q. We recall that p is called a safe prime if p = 2p′ + 1 and p′ is also a
prime number. Moreover, we assume that both p and q are congruent 3 mod 4 so that N is a so-called “Blum integer”. In
this case a few simple facts hold: QRN is a cyclic group of order p′q′; almost any element of QRN is a generator (unless it
is 1 modulo p or q); every element x ∈QRN has four square roots in Z∗

N , exactly one of which is in QRN , thus the squaring
function x2 mod N is a permutation over QRN .

Let RSAGen(1λ) be the following procedure. On input a security parameter λ, choose two random safe primes p and q
of size at least λ, compute N = pq, and return (N, p, q).

Definition 3 (Factoring assumption). We define the advantage of an adversary A in factoring as:

Advfact
A (λ) = Pr[(N, p,q)

$← RSAGen(1λ); (p,q)←A(N)]
where the probability is taken over the random choices of RSAGen, and the adversary. We say that the Factoring assumption
holds for RSAGen if for every PPT algorithm A: Advfact

A (λ) is negligible.

Definition 4 (RSA assumption). Let (N, p, q) $← RSAGen(1λ), τ be a random element in Z∗
N and e ≥ 3 be a prime number

such that gcd(e, φ(N)) = 1. We define the advantage of an adversary A in solving the RSA problem as:

148 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Advrsa
A (λ) = Pr[x←A(N, e, τ) : xe = τ mod N]

where the probability is taken over the random choices of RSAGen, τ and the adversary. We say that the RSA assumption
holds for RSAGen if for every PPT algorithm A Advrsa

A (λ) is negligible.

According to the distribution from which e is chosen, there are several variants of the RSA assumption. In our work, we
consider the case when e is some fixed prime. In this case we say that RSA holds for e.

Below we recall some results that will be useful in our proofs.

Lemma 1. (See Shamir [42].) Given u, v ∈ Z∗
N and integers a, b ∈ Z such that ua = vb mod N, it is possible to efficiently compute

z ∈ Z∗
N such that za = vγ where γ = gcd(a, b).

Proof. The proof is a straightforward application of the extended Euclidean algorithm. One can indeed use this algorithm to
compute integers c, d such that ac + bd = γ = gcd(a, b). Finally, setting z = ud vc gives the desired result and completes the
proof. �

Using the above lemma it is possible to show via a simple reduction that the RSA assumption in the subgroup QRN ⊂ Z∗
N

is at least as hard as the RSA assumption in Z∗
N .

We also recall the following result due to Rabin.

Lemma 2. (See Rabin [39].) Let N be an RSA modulus and τ be a random value in QRN . If there exists an efficient algorithm A that
on input (N, τ) outputs a value z ∈ Z∗

N such that z2 = τ mod N with probability ε , then it is possible to build an efficient algorithm
B that on input N uses A to output its unique prime factorization with probability ε/2.

Finally, we observe that in the subgroup of quadratic residues QRN where N is the product of two safe primes, the DDH
assumption is assumed to hold (even if the factorization is revealed [30]).

2.2. Closed form efficient PRFs

The notion of closed form efficient pseudorandom functions was introduced in [7]. Their definition however seemed
geared specifically towards the application of polynomial evaluation and therefore proved insufficient for our matrix mul-
tiplication protocol. Here we extend it to include any computations run on a set of pseudo-random values and a set of
arbitrary inputs.

A closed form efficient PRF consists of algorithms (PRF.KG,PRF.F). The key generation PRF.KG takes as input the
security parameter 1λ (and possibly additional information to specify the input space), and outputs a secret key K and
some public parameters pp that specify domain X and range Y of the function. On input x ∈ X , PRF.FK (x) uses the secret
key K to compute a value y ∈ Y . It must of course satisfy the usual pseudorandomness property. Namely, (PRF.KG, PRF.F)

is secure if for every PPT adversary A, the following difference is negligible:∣∣∣Pr[APRF.FK (·)(1λ,pp) = 1] − Pr[AR(·)(1λ,pp) = 1]
∣∣∣

where (K , pp) $← PRF.KG(1λ), and R(·) is a random function from X to Y .
In addition, it is required to satisfy the following closed-form efficiency property. Consider an arbitrary computation Comp

that takes as input � random values R1, . . . , R� ∈ Y and a vector of m arbitrary values �x = (x1, . . . , xm), and assume that the
best algorithm to compute Comp(R1, . . . , R�, x1, . . . , xm) takes time T . Let z = (z1, . . . , z�) an �-tuple of arbitrary values in
the domain X of PRF.F. We say that a PRF (PRF.KG, PRF.F) is closed-form efficient for (Comp, z) if there exists an algorithm
PRF.CFEvalComp,z such that

PRF.CFEvalComp,z(K , x) = Comp(F K (z1), . . . , F K (z�), x1, . . . , xm)

and its running time is o(T). For z = (1, . . . , �) we usually omit the subscript z.
Note that depending on the structure of Comp, this property may enforce some constraints on the range Y of PRF.F. In

particular in our case, Y will be an abelian group. We also remark that due to the pseudorandomness property the output
distribution of PRF.CFEvalComp,z(K , x) (over the random choice of K) is indistinguishable from the output distribution of
Comp(R1, . . . , R�, x1, . . . , xm) (over the random choices of the Ri).

In this paper we do not introduce new PRFs with closed form efficiency but we use previous proposals (in one case
with a small modification). For the CDH-based solution we use the PRFs based on the Decision Linear Assumption described
in [19].

For the RSA/Factoring based solutions we use the PRF constructions described in [7] that are based on the Naor–Reingold
PRF [36]. The only difference is that in our case we have to instantiate the PRFs in the group QRN , and thus claim their
security under the hardness of DDH in the group QRN .

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 149
2.3. Verifiable computation

A verifiable computation scheme is a tuple of distributed algorithms that enable a client to outsource the computation
of a function f to an untrusted worker, in such a way that the client can verify the correctness of the result returned by the
worker. In order for the outsourcing to make sense, it is crucial that the cost of verification at the client must be cheaper
than computing the function locally.

In our work we are interested in computation schemes that are publicly verifiable as defined by Parno et al. [38]: any
third party (possibly different from the delegator) can verify the correctness of the results returned by the worker.

Let F be a family of functions. A Verifiable Computation scheme VC for F is defined by the following algorithms:

KeyGen(1λ, f) → (SK f ,PK f ,EK f): on input a function f ∈ F , it produces a secret key SK f that will be used for input
delegation, a public verification key PK f , used to verify the correctness of the delegated computation, and a public
evaluation key EK f which will be handed to the server to delegate the computation of f .

ProbGen(PK f ,SK f , x) → (σx,VKx): given a value x ∈ Dom(f), the problem generation algorithm is run by the delegator to
produce an encoding σx of x, together with a public verification key VKx .

Compute(EK f , σx) → σy : given the evaluation key EK f and the encoding σx of an input x, this algorithm is run by the
worker to compute an encoded version of y = f (x).

Verify(PK f ,VKx, σy) → {y} ∪ {⊥}: on input the public key PK f , the verification key VKx , and an encoded output σy , this
algorithm returns a value y or an error ⊥.

Correctness. Informally, a verifiable computation scheme VC is correct if the values generated by the problem genera-
tion algorithm allows an honest worker to output values that will verify correctly. More formally, for any f ∈ F , any
(SK f , PK f , EK f)

$← KeyGen(1λ, f), any x ∈ Dom(f), if (σx, VKx)
$← ProbGen(PK f , SK f , x) and σy←Compute(EK f , σx), then

f (x) = Verify(PK f , VKx, σy) holds with all but negligible probability.

Security. For any verifiable computation scheme VC , let us define the following experiment:

Experiment ExpPubVer
A [VC, f , λ]

(SK f ,PK f ,EK f)
$← KeyGen(1λ, f)

For i = 1 to q:
(st, xi)←A(st,PK f ,EK f , σx,1,VKx,1, . . . , σx,i−1,VKx,i−1)

(σx,i,VKx,i)
$← ProbGen(SK f , xi)

(st, x∗)←A(st,PK f ,EK f , σx,1,VKx,1, . . . , σx,q,VKx,q)

(σx∗ ,VKx∗)
$← ProbGen(SK f , x∗)

σ̂y←A(st,PK f ,EK f , σx,1,VKx,1, . . . , σx,q,VKx,q, σx∗ ,VKx∗)
ŷ←Verify(PK f ,VKx∗ , σ̂y)

If ŷ �= ⊥ and ŷ �= f (x∗), output 1, else output 0.

For any λ ∈ N, any function f ∈ F , we define the advantage of an adversary A making at most q = poly(λ) queries in the
above experiment against VC as

AdvPubVer
A (VC, f ,q, λ) = Pr[ExpPubVer

A [VC, f , λ] = 1].

Definition 5. A verifiable computation scheme VC is secure for F if for any f ∈ F , and any PPT A it holds that
AdvPubVer

A (VC, f , q, λ) is negligible.

Note that our definition captures full adaptive security, where the adversary decides “on the fly” on which input x∗ it
will try to cheat. The weaker selective security notion requires the adversary to commit to x∗ at the beginning of the game.

2.4. Linearly-homomorphic signatures

Digital signature schemes allow a user to create a signature σ on a message m (in some appropriate set M), such
that any other user knowing only a public verification key PK can verify the validity of σ on m. Boneh and Freeman
[10] recently introduced the notion of homomorphic signatures which extends regular signatures as follows: given a set of
signatures (σ1, σ2, . . . , σm), corresponding set of messages (M1, M2, . . . , Mm) ∈ Mm , and a function f (in an appropriate
set F = { f | f : Mm → M}) any user can produce a valid signature on the message f (M1, M2, . . . , Mm). Furthermore, any
message M can be verified against a signature σ as well as a function f . A linearly homomorphic signature scheme is a
homomorphic signature scheme where the only admissible functions f are linear, i.e. F = { f :Mm →M| f is linear}.

We recall below the formal notion of linearly-homomorphic signatures, as defined by Freeman in [20].

150 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Definition 6 (Linearly-homomorphic signatures). A linearly-homomorphic signature scheme is a tuple of probabilistic,
polynomial-time algorithms (Hom.KG,Hom.Sign,Hom.Ver,Hom.Eval) with the following properties:

Hom.KG(1λ,m) takes a security parameter λ, a maximum data set size m, and outputs a public key PK and a secret key SK.
The public key PK defines implicitly a message space M, a signature space
, and a set F of admissible linear
functions, that in our case is F = { f :Mm →M| f is linear with no constant term}.

Hom.Sign(SK, τ , M, i) takes a secret key SK, a tag τ , a message M ∈M and an index i ∈ {1, 2, . . . , m}. It outputs a signature
σ ∈
.

Hom.Ver(VK, τ , M, σ , f) takes a public key PK, a tag τ , a message M ∈ M, a signature σ ∈
, and a function f ∈ F . It
outputs either 0 (reject) or 1 (accept).

Hom.Eval(VK, τ , f , �σ) takes a public key PK, a tag τ , a function f ∈ F , and a tuple of signatures {σi}m
i=1. It outputs a new

signature σ ′ ∈
.

In order to define the correctness we first fix some notation. We denote by πi the projection function πi : Xm → X ,
where X ∈ {M,
, F}, as follows: πi(x1, x2 . . . , xm) = xi .

Informally speaking, a linearly-homomorphic signature scheme is correct if: (i) the signature on any initial message with
index i as output by Hom.Sign must verify correctly against the corresponding projection function πi ; (ii) if any vector of
signatures �σ verifies correctly on respective messages �M , then the output of Hom.Eval(VK, τ , f , �σ) should verify correctly
for f (M1, M2, . . . , Mm).

More formally, for correctness we require that:

1. For all public keys (PK, SK) $← Hom.KG(1λ, m), any tag τ , any message M ∈ M, any index i ∈ {1, 2, . . . , m} and any
signature σ $← Hom.Sign(SK, τ , M, i), Hom.Ver(VK, τ , M, σ , f) = 1 holds with overwhelming probability.

2. For all public keys (PK, SK) $← Hom.KG(1λ, m), any tag τ the following holds with overwhelming probability as well.
Suppose a message-vector �μ ∈Mm , a function-vector �f ∈Fm and a signature-vector �σ are such that for all i = 1, . . . , m

Hom.Ver(VK, τ , Mi = f i(μ1,μ2, . . . ,μm),σi, f i) = 1.

Then, for every g ∈F the following must hold with overwhelming probability:

Hom.Ver(VK, τ , g(M1, M2, . . . , Mm),Eval(VK, τ , g, �M, �σ), g ◦ f) = 1,

where g ◦ �f :Mm →M is defined as [g ◦ �f (μ1, μ2, . . . , μm)]i = πi(g(f1(�μ), f2(�μ), . . . , fm(�μ))), so that

g ◦ �f (μ1,μ2, . . . ,μm) = g(M1, M2, . . . , Mm).

2.4.1. Security of linearly-homomorphic signatures
Recall that in a linearly homomorphic signature scheme, given valid signatures on a set of messages M1, M2, . . . , Mm ,

anyone (only with the knowledge of the public key) can produce valid signatures on any message M = f (M1, M2, . . . , Mm),
for some linear function f . In particular, in order for the homomorphic property to work, these messages must be in
the same “data set”, which is identified by a tag τ . Freeman recently proposed in [20] a security notion for linearly-
homomorphic signatures, which is stronger than the ones proposed by earlier works, such as [9,22,10,16]. In our work we
adopt this definition. Informally, the goal of the adversary is to produce a signature on a message M that cannot be obtained
by applying functions on previously observed data sets. This means, that the forgery is either a signature for a new data set
(Type 1 forgery), or it is a signature on a previously observed data set (M1, . . . , Mm), but on an incorrect value, i.e., a value
which is not obtained by applying f (M1, . . . , Mm).

More formally, we define the following security game:

Key generation The challenger runs (PK, SK) $← Hom.KG(1λ, m) and gives PK to the adversary.
Queries The adversary submits queries of the form (F , i, M), where F is a filename (i.e., an identifier for the data set),

i ∈ {1, . . . , m}, and M ∈ M. Also note that these queries can come at any order. For each queried file name F , the
challenger generates a tag τF and keeps a state so that he returns the same τF next time the same F is queried.
The challenger computes σ $← Hom.Sign(SK, τF , M, i) and returns the tag τF together with the signature σ . The
challenger also keeps a state of the indices i queried for each file F so that it rejects queries of the form (F , i, M)

if (F , i, M ′) has been queried before for some message M ′ �= M , and it returns the same signature as before if
M = M ′ .

This stage is repeated a polynomial number of times. At the end of the querying stage the challenger (and the
adversary) have a list of states with file names F j and corresponding tags τ j ; and for each file name Fk there is
also a list of indices i with corresponding messages Mi for 0 ≤ i ≤ m.

Forgery The adversary outputs a tuple (τ ∗, M∗, σ ∗, f ∗).

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 151
In order to define all possible forgeries we need to fix some notation. We denote by i F the number of messages asked
for the data set with filename F . A function f is said to be well-defined on F if either i F = m, or i F < m and

f (M1, . . . , MiF , MiF +1, . . . , Mm)

takes the same value for all possible choices of (MiF +1, . . . , Mm) ∈Mm−i F .
The adversary wins the game if Hom.Ver(VK, τ ∗, M∗, σ ∗, f ∗) = 1 and any of the following holds:

1. τ ∗ �= τ j for all τ j chosen by the challenger
2. τ ∗ = τ j for some τ j chosen by the challenger, corresponding to file name F j and set of (M1, M2, . . . , Mm) queried with

that file in total. Then for the adversary to win it must be that M∗ �= f ∗(M1, M2, . . . , Mm).
3. τ ∗ = τ j for some τ j chosen by the challenger, corresponding to file name F j and set of (M1, M2, . . . , Mk) queried with

that file in total. Then the adversary to win it must be that f ∗ is not well-defined on F j .

It has been shown in [20] that for linearly-homomorphic schemes Type 3 forgeries reduce to Type 2. Therefore, in our
work we will focus only on Type 1 and Type 2 forgeries.

We define the advantage AdvLHS
A (λ) of an adversary against a linearly-homomorphic signature scheme as the probability

of A winning the above game.

Definition 7 (Unforgeability of linearly homomorphic signatures [20]). A linearly-homomorphic signature scheme is unforgeable
if for all m the advantage AdvLHS

A (λ) of any PPT algorithm A is negligible.

2.5.
-protocols

Let L be an NP language with associated relation R. Informally, a
-protocol for R is a two party (interactive) protocol,
consisting of 3 rounds of communications and involving two parties: an (honest) prover P and an (honest) verifier V . Both
P and V start with some common input statement of the form x ∈ L. The private input for P is a witness w ∈ {0, 1}p(|x|)
(where p(·) is some polynomial), certifying the fact that x ∈ L (i.e., such that (x, w) ∈ R). At the end of the protocol V
should be able to efficiently decide whether the produced transcript is accepting with respect to the statement or not.

More formally, a
-protocol for a relation R consists of algorithms (
.Setup,
.Com,
.Resp,
.Ver) such that:

•
.Setup(1λ, R) → (x, w) is a PPT algorithm that on input the security parameter and a relation R outputs a statement
x and a witness w such that (x, w) ∈ R.

•
.Com(x; r) → R is a PPT algorithm run by the prover that on input the public value x and random coins r in some
appropriate randomness space RndSp, outputs the first message R of the protocol.

•
.Resp(x, w, r, c) → s is a PPT algorithm that is run by the prover to compute the third message s of the
-protocol.
The algorithm takes as input the pair (x, w) generated by
.Setup, random coins r ∈ RndSp, and the second message
of the verifier c ∈ ChSp. Here ChSp denotes the challenge space.

•
.Ver(x, R, c, s) → 0/1 is the PPT verification algorithm that on input the message R , a challenge c ∈ ChSp and a
response s, outputs 1 (accept) or 0 (reject).

Here we will focus on
-protocols having the following properties

Completeness. ∀(x, w) $←
.Setup(1λ, R), any R $←
.Com(x, r) for r $← RndSp, any c ∈ ChSp, and s $←
.Resp(x, w, r, c),

.Ver(x, R, c, s) = 1

holds with overwhelming probability.
Special Soundness. There exists an extractor algorithm
.Ext such that ∀x ∈ L, ∀R, c, s, c′, s′ such that
.Ver(x, R, c, s) = 1

and
.Ver(x, R, c′, s′) = 1,
.Ext(x, R, c, s, c′, s′) = w ′ such that (x, w ′) ∈R.
Special HVZK. There exists a simulator Sim such that ∀c ∈ ChSp, Sim(x, c) generates a pair (R, s) such that

.Ver(x, R, c, s) = 1 and the probability distribution of (R, c, s) is identical to that obtained by running the real
algorithms.

3. Algebraic (trapdoor) one-way functions

A family of one-way functions consists of two efficient algorithms (Gen, F) that work as follows. Gen(1λ) takes as input
a security parameter 1λ and outputs a key κ . Such key κ determines a member Fκ (·) of the family, and in particular it
specifies two sets Xκ and Yκ such that Fκ :Xκ → Yκ . Given κ , for any input x ∈Xκ it is efficient to compute y ∈Yκ where
y = Fκ (x). In addition, we assume that κ specifies a finite ring K that will be used as described below.

(Gen, F) is a family of algebraic one-way functions if it is:

152 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Algebraic: ∀λ ∈ N, and every κ $← Gen(1λ), the sets Xκ , Yκ are abelian cyclic groups. In our work we denote the group
operation by multiplication, and we assume that given κ , sampling a (random) generator as well as computing the
group operation can be done efficiently (in probabilistic polynomial time).

Homomorphic: ∀λ ∈N, every κ $← Gen(1λ), for any inputs x1, x2 ∈Xκ , it holds:

Fκ (x1) · Fκ (x2) = Fκ (x1 · x2)

Ring-homomorphic: intuitively, this property states that it is possible to evaluate inner product operations in the exponent
given some “blinded” bases. Before stating the property formally, we give a high level explanation of this idea by
using an example. Assume that one is given values W1 = hω1 , W2 = hω2 ∈ Xκ , ω1, ω2 ∈ Z, and wants to compute
h(ω1α1+ω2α2 mod q) for some integer coefficients α1, α2. If q �= |Xκ | and the order of Xκ is not known, then it is
not clear how to compute such a value efficiently (notice that h is not given). The ring-homomorphic property
basically says that with the additional knowledge of Fκ (h), such computation can be done efficiently.

More formally, let κ $← Gen(1λ), h1, . . . , hm ∈ Xκ be generators (for m ≥ 1), and let W1, . . . , W� ∈ Xκ be group

elements, each of the form W i = h
ω

(1)
i

1 · · ·h
ω

(m)
i

m · Ri , for some Ri ∈ Xκ and some integers ω(j)
i ∈ Z (note that this

decomposition may not be unique).
We say that (Gen, F) is ring-homomorphic (for the ring K specified by κ) if there exists an efficient algorithm

Eval such that for any κ $← Gen(1λ), any set of generators h1, . . . , hm ∈Xκ , any vector of elements �W ∈X �
κ of the

above form, and any vector of integers �α ∈ Z� , it holds

Eval(κ, �A, �W , ��, �α) = h〈 �ω(1),�α〉
1 · · ·h〈 �ω(m),�α〉

m

�∏
i=1

Rαi
i

where �A = (A1, . . . , Am) ∈ Ym
κ is such that Ai = Fκ (hi), �� = (ω

(j)
i)i, j ∈ Z�×m , and each product 〈 �ω(j), �α〉 in the

exponent is computed over the ring K. We notice that over all the paper we often abuse notation by treating
elements of the ring K as integers and vice versa. For this we assume a canonical interpretation of d ∈ K as an
integer [d] ∈ Z between 0 and |K| − 1, and that both d and [d] are efficiently computable from one another.

We note that in the case when the ring K is Zp , where p is the order of the group Xκ , then this property is
trivially realized: every OWF where Xκ is a group of order p, is ring-homomorphic for Zp . To see this, observe
that the following efficient algorithm trivially follows from the simple fact that Xκ is a finite group:

Eval(κ, �A, �W , ��, �α) =
�∏

i=1

W αi
i

What makes the property non-trivial for some instantiations (in particular the RSA and Factoring-based ones
shown in the next section) is that the algorithm Eval must compute the inner products 〈 �ω(j), �α〉 over the ring K,
which might be different from Zp , where p is the order of the group Xκ over which the function is defined.

Flexibly One-way: finally, we require a family (Gen, F) to be non-invertible in a strong sense. Formally, we say that
(Gen, F) is flexibly one-way if for any PPT adversary A it holds:

Pr[A(1λ, κ, y) = (x′,d) : d �= 0 ∧ d ∈K∧ Fκ (x′) = yd]
is negligible, where κ $← Gen(1λ), x $←Xκ is chosen uniformly at random and y = Fκ (x).

Our definition asks for d �= 0 as we additionally require that in the case when d = 0 (over the ring K) the
function must be efficiently invertible. More precisely, given a value y = Fκ (x) ∈ Yκ (for any x ∈ Xκ) and an
integer d such that d = 0 over the ring K (d may though be different from zero over the integers), there is an
efficient algorithm that computes x′ ∈Xκ such that Fκ (x′) = yd .

Notice that flexible one-wayness is stronger than standard one-wayness (in which d is always fixed to 1). Also, our notion is
closely related to the notion of q-one wayness for group homomorphisms given in [18]. Informally, this latter notion states
that for some prime q: (1) f is one-way in the standard sense, (2) there is a polynomial-time algorithm that on input
(f , z, y, i) such that f (z) = yi (for 0 < i < q) computes x such that f (x) = y, and (3) yq is efficiently invertible. It is not
hard to see that when q = |K| flexible one-wayness and q-one-wayness are basically equivalent, except for that we do not
require the existence of an efficient algorithm that on input (F , z, y, i) such that F (z) = yi computes x such that F (x) = y.

We stress that even though flexible one-wayness may look non-standard, in the next section we demonstrate that our
candidates satisfy it under very simple and standard assumptions.

Algebraic trapdoor one-way functions. Our notion of algebraic one-way functions can be easily extended to the trapdoor
case, in which there exists a trapdoor key that allows to efficiently invert the function. More formally, we define a family
of trapdoor one-way functions as a set of efficient algorithms (Gen, F , Inv) that work as follows. Gen(1λ) takes as input a
security parameter 1λ and outputs a pair (κ, td). Given κ , Fκ is the same as before. On input the trapdoor td and a value

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 153
y ∈Yκ , the inversion algorithm Inv computes x ∈Xκ such that Fκ (x) = y. Often we will write Invtd(·) as F −1
κ (·). Then we say

that (Gen, F , Inv) is a family of algebraic trapdoor one-way functions if it is algebraic, homomorphic and ring-homomorphic,
in the same way as defined above.

Finally, when the input space Xκ and the output space Yκ are the same (i.e., Xκ = Yκ) and the function Fκ : Xκ → Xκ

is a permutation, then we call (Gen, F , Inv) a family of algebraic trapdoor permutations.

3.1. Instantiations

We give three simple constructions of algebraic (trapdoor) one-way functions from a variety of number theoretic as-
sumptions: CDH in bilinear groups, RSA and factoring.

3.1.1. CDH in bilinear groups
Gen(1λ): use G(1λ) to generate groups G1, G2, GT of the same prime order p, together with an efficiently computable

bilinear map e : G1 × G2 → GT . Sample two random generators g1 ∈ G1, g2 ∈ G2 and output κ = (p, e, g1, g2).
The finite ring K is Zp .

Fκ (x): the function Fκ : G1 →GT is defined by:

Fκ (x) = e(x, g2)

The algebraic and homomorphic properties are easy to check. Moreover, the function is trivially ring-homomorphic for
Zp as p is the order of G1.

Its security can be shown via the following Theorem.

Theorem 3. If the co-CDH assumption holds for G(·), then the above function is flexibly one-way.

The proof can be obtained via a straightforward reduction. Given a co-CDH instance (p, g1, g2, ga
1, g

b
2) compute y =

e(ga
1, g

b
2) and run A on input (p, g1, g2, y). If A returns (x, d) ∈G1 ×Zp such that e(x, g2) = yd , then compute gab

1 = x1/d .
Since K = Zp , for d = 0 mod p computing a pre-image of yd is trivial, i.e., 1G1 .

3.1.2. RSA (over QRN)
This construction is an algebraic trapdoor permutation, and it allows to explicitly choose the ring K as Ze for any prime

e ≥ 3.

Gen(1λ, e): let e ≥ 3 be a prime number. Run (N, p, q) $← RSAGen(1λ) to generate a Blum integer N , product of two safe
primes p and q. If gcd(e, φ(N)) �= 1, then reject the tuple (N, p, q) and try again. Output κ = (N, e) and td = (p, q).

Fκ (x): the function Fκ : QRN → QRN is defined by:

Fκ (x) = xe mod N

Invtd(y): the inversion algorithm computes c = e−1 mod φ(N), and then outputs:

Invtd(y) = xc mod N

Eval(κ, �A, �W , ��, �α): for j = 1 to m, compute ω(j) = 〈 �ω(j), �α〉 over the integers and write it as ω(j) = ω(j)′ + e · ω(j)′′ , for
some ω(j)′ , ω(j)′′ ∈ Z. Finally, output

V =
∏�

i=1 W αi
i∏m

j=1 Aω(j)′′
j

mod N

The algebraic and homomorphic properties are easy to check. To see that the function is ring-homomorphic for K = Ze ,
we show the correctness of the Eval algorithm as follows:

V =
∏�

i=1 W αi
i∏m

j=1 Aω(j)′′
j

mod N =
∏l

i=1(
∏m

j=1 h
ω

(j)
i

j · Ri)
αi

∏m
j=1 h(eω(j)′′ mod φ(N))

j

mod N

=
∏m

j=1 h(〈 �ω(j),�α〉 mod φ(N))

j

∏l
i=1 Rαi

i∏m h(eω(j)′′ mod φ(N))
mod N
j=1 j

154 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
=
∏m

j=1 h(ω(j)′+eω(j)′′ mod φ(N))

j

∏l
i=1 Rαi

i∏m
j=1 h(eω(j)′′ mod φ(N))

j

mod N

= hω(1)′
1 · · ·hω(m)′

m

l∏
i=1

Rαi
i mod N.

The security of the function is shown via the following Theorem:

Theorem 4. If the RSA assumption holds for RSAGen, the above function is flexibly one-way.

To prove the theorem, we simply observe that since d �= 0 and d ∈ Ze , it holds gcd(e, d) = 1. Therefore, it is possible to
apply the result of Lemma 1 to transform any adversary against the security of our OWF to an adversary which solves the
RSA problem for the fixed e.

On the other hand, given y ∈Yκ , in the special case when d = 0 mod e, finding a pre-image of yd can be done efficiently
by computing yd′

where d′ is the integer such that d = e · d′ .

3.1.3. Factoring
This construction also allows to explicitly choose the ring K, which can be Z2t for any integer t ≥ 1.

Gen(1λ, t): run (N, p, q) $← RSAGen(1λ) to generate a Blum integer N product of two safe primes p and q. Output κ =
(N, t) and td = (p, q).

Fκ (x): The function Fκ :QRN →QRN is defined by:

Fκ (x) = x2t
mod N

Invtd(y): given td = (p, q) and on input y ∈ QRN , the inversion algorithm repeats the following process t times in order
to compute the 2t -th root of y. First, set z←y. Then use the factorization of N to compute the four square roots
x, −x, x′, −x′ ∈ Z∗

N of z, and then update z to be the only one of these roots which is in QRN (recall that since N
is a Blum integer exactly one of these roots is a quadratic residue). Repeat the above t times, and after t iterations
output the last value of z.

Eval(κ, �A, �W , �ω, �α): for j = 1 to m, compute ω(j) = 〈 �ω(j), �α〉 over the integers and write it as ω(j) = ω(j)′ + 2t · ω(j)′′ .
Finally, output

V =
∏�

i=1 W αi
i∏m

j=1 Aω(j)′′
j

mod N

The algebraic and homomorphic properties are easy to check. To see that the function is ring-homomorphic for Z2t ,
observe that its correctness can be checked similarly to the RSA case. We notice that this construction is an algebraic
trapdoor permutation.

The security of the function can be shown via the following Theorem:

Theorem 5. If Factoring holds for RSAGen, then the above function is flexibly one-way.

Proof. To prove the theorem, we first show that any adversary A who is able to break the flexible one-wayness of this
construction with probability ε can be used to build an adversary B that computes square roots with the same probability.
Then, by applying Lemma 2, we finally obtain an adversary who can factor N with probability ε/2.

Let (N, τ) be B’s input such that τ ∈ QRN . B sets κ = N and runs the adversary A(N, τ). Let us suppose that A
returns a pair (x, d) ∈ QRN × Z2t such that x2t = τ d . Since d ∈ Z2t , we can write d = 2� · u, for some 0 ≤ � < t and an
odd integer u. By applying Lemma 1 we can then compute a value v such that v2t = τ gcd(2t ,2�·u) = τ 2�

mod N . Since � < t
and the squaring function is a permutation over QRN (as N is a Blum integer), it holds v2t−� = τ mod N . Therefore, B
computes z = v2t−�−1

mod N and returns z. It is easy to see that under the assumption that A’s output is correct, it holds
z2 = τ mod N .

Finally, similarly to the RSA case, given y ∈ Yκ , in the special case when d = 0 mod 2t , finding a pre-image of yd can be
done efficiently by computing yd′

where d′ is the integer such that d = 2td′ . �
4. Our verifiable computation schemes

In this section we propose the construction of verifiable computation schemes for the delegation of multivariate polyno-
mials and matrix multiplications. Our constructions make generic use of our new notion of algebraic one-way functions.

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 155
An overview of our solutions. Our starting point is the protocol of [7]: assume the client has a polynomial F (·) of large
degree d, and it wants to compute the value F (x) for arbitrary inputs x. In [7] the client stores the polynomial in the clear
with the server as a vector of coefficients ci in Zp . The client also stores with the server a vector of group elements ti of
the form gaci+ri where g generates a cyclic group G of order p, a ∈R Zp , and ri is the ith-coefficient of a polynomial R(·) of
the same degree as F (·). When queried on input x, the server returns y = F (x) and t = gaF (x)+R(x) , and the client accepts y
iff t = gay+R(x) .

If R(·) was a random polynomial, then this is a secure way to authenticate y, however checking that t = gay+R(x) would
require the client to compute R(x)—the exact work that we set out to avoid! The crucial point, therefore, is how to perform
this verification fast, i.e., in o(d) time. The fundamental tool in [7] is the introduction of pseudo-random functions (PRFs)
with a special property called closed-form efficiency: if we define the coefficients ri of R(·) as PRF K (i) (which preserves the
security of the scheme), then for any input x the value g R(x) can be computed very efficiently (sub-linearly in d) by a party
who knows the secret key K for the PRF.

Our first observation was to point out that one of the PRFs proposed in [7] was basically a variant of the Naor–Reingold
PRF [36] which can be easily instantiated over RSA moduli assuming the DDH assumption holds over such groups (in
particular over the subgroup of quadratic residues).

Note, however, that this approach implies a private verification algorithm by the same client who outsourced the poly-
nomial in the first place, since it requires knowledge of the secret key K . To make verification public, Fiore and Gennaro
proposed the use of Bilinear Maps together with algebraic PRFs based on the decision linear problem [19].

Our second observation was to note that the scheme in [7] is really an information-theoretic authentication of the poly-
nomial “in the exponent”. Instead of using exponentiation, we observed that any “one-way function” with the appropriate
“homomorphic properties” would do. We teased out the relevant properties and defined the notion of an Algebraic One-Way
Function and showed that it is possible to instantiate it using the RSA/Rabin functions.

If we use our algebraic one-way functions based on RSA and factoring described in Section 3.1, then we obtain new ver-
ifiable computation schemes whose security relies on these assumptions and that support polynomials over a large variety
of finite rings: Ze for any prime e ≥ 3, Z2t for any integer t ≥ 1. Previously known solutions [37,19] could support only
polynomials over Zp where p must be a large prime whose size strictly depends on the security parameter 1λ (basically, p
must be such that the discrete logarithm problem is hard in a group of order p).

In contrast, our factoring and RSA solutions allow for much more flexibility. Precisely, using the RSA function allows us to
compute polynomials over Ze for any prime e ≥ 3, where e is the prime used by the RSA function. Using the Rabin function
allows us to handle polynomials over Z2t for any integer t ≥ 1.

4.1. Polynomials of degree d in each variable

In this section we propose the construction of a scheme for delegating the computation of m-variate polynomials of
degree at most d in each variable. These polynomials have up to l = (d + 1)m terms which we index by (i1, . . . , im), for
0 ≤ i j ≤ d. Similarly to [7,19], we define the function η : Km → Kl which expands the input �x to the vector (η1(�x), . . . , ηl(�x))
of all monomials as follows: for all 1 ≤ j ≤ l, use a canonical ordering to write j = (i1, . . . , im) with 0 ≤ ik ≤ d, and then
η j(�x) = (xi1

1 · · · xim
m). So, using this notation we can write the polynomial as f (�x) = 〈�f , η(�x)〉 = ∑l

j=1 f j ·η j(�x) where the f j ’s
are its coefficients.

Our scheme uses two main building blocks: an algebraic one-way function (see definition in Section 3) (Gen, F) and
a pseudorandom function (PRF.KG, PRF.F, PRF.CFEval) with closed form efficiency (see definition in Section 2.2). Our
verifiable computation scheme works generically for any family of functions F that is the set of m-variate polynomials of
degree d over a finite ring K such that: (1) the algebraic one-way function Fκ : Xκ → Yκ is ring-homomorphic for K, and
(2) there exists a PRF whose range is Xκ , and that has closed form efficiency relative to the computation of polynomials,
i.e., for the algorithm Poly(�R, �x) = ∏l

j=1 R
η j(�x)
j .

If we instantiate these primitives with the CDH-based algebraic OWF of Section 3.1 and the PRFs based on Decision Lin-
ear described in [19], then our generic construction captures the verifiable computation scheme of Fiore and Gennaro [19].
Otherwise we can obtain new schemes by using our algebraic OWFs based on RSA and Factoring described in Section 3.1.
They have input and output space Xκ = Yκ = QRN , the subgroup of quadratic residues in Z∗

N . So, to complete the instanti-
ation of the scheme VCPoly , we need a PRF with closed form efficiency whose range is QRN . For this purpose we can use
the PRF constructions described in [7] that are based on the Naor–Reingold PRF. The only difference is that in our case we
have to instantiate the PRFs in the group QRN , and thus claim their security under the hardness of DDH in the group QRN .

With these instantiations we obtain new verifiable computation schemes that support polynomials over a large variety
of finite rings: Ze for any prime e ≥ 3, Z2t for any integer t ≥ 1. Previously known solutions [37,19] could support only
polynomials over Zp where p must be a large prime whose size strictly depends on the security parameter 1λ . In contrast,
our factoring and RSA solutions allow for much more flexibility.

The description of our generic construction VCPoly follows.

KeyGen(1λ, f). Run κ $← Gen(1λ) to obtain a one-way function Fκ : Xκ → Yκ that is ring-homomorphic for K. Let f be
encoded as the set of its coefficients (f1, . . . , fl) ∈Kl .

156 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Generate the seed of a PRF, K
$← PRF.KG(1λ, �log d�, m), whose output space is Xκ , the input of the one-way

function. Choose a random generator h $← Xκ , and compute A = Fκ (h).
For i = 1 to l, compute W i = h fi · PRF.FK (i). Let W = (W1, . . . , Wl) ∈ (Xκ)l .
Output EK f = (f , W , A), PK f = A, SK f = K .

ProbGen(PK f ,SK f , �x). Output σx = �x and VKx = Fκ (PRF.CFEvalPoly(K , η(�x))).

Compute(EK f , σx). Let EK f = (f , W , A) and σx = �x. Compute y = f (�x) = ∑l
i=1 f i · ηi(�x) (over K) and

V = Eval(κ, A, W , f , η(�x))
and return σy = (y, V). x

Verify(PK f ,VKx, σy). Parse σy as (y, V). If y ∈K and Fκ (V) = A y · VKx , then output y, otherwise output ⊥.

The correctness of the scheme follows from the properties of the algebraic one-way function and the correctness
of PRF.CFEval.

Theorem 6. If (Gen, F) is a family of algebraic one-way functions and PRF.F is a family of pseudo-random functions then any PPT
adversary A making at most q = poly(λ) queries has negligible advantage AdvPubVer

A (VCPoly,F ,q, λ).

To prove the theorem, we define the following games, where Gi(A) denotes the output of Game i run with adversary A:

Game 0: it is ExpPubVer
A (VCPoly, F , q, λ).

Game 1: this is the same as Game 0 except that the challenger performs a different evaluation of the algorithm ProbGen.
Let �x be the input asked by the adversary. The challenger computes VKx = ∏l

i=1 PRF.FK (i)ηi(�x) .
Game 2: this game proceeds as Game 1, except that the function PRF.Fk(i) is replaced by a truly random function that on

every i lazily samples a value Ri
$←Xκ uniformly at random.

The proof of the theorem is obtained by the proofs of the following claims.

Claim 1. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. By correctness of PRF.CFEval, these two games produce the same distribution. In particular, the distribution of the
values VKx does not change. Therefore, the probability of the adversary winning in Game 1, i.e., Pr[G1(A) = 1], remains the
same. �
Claim 2. | Pr[G1(A) = 1] − Pr[G2(A) = 1]| is negligible.

Proof. The difference between Game 2 and Game 1 is that the output of the pseudorandom function PRF.FK is replaced
by values chosen at random in Xκ . If there exists an adversary A such its success probability in Game 2 decreases by more
than a non-negligible quantity, then A can be used to build an efficient distinguisher that breaks the security of the PRF
with such non-negligible probability. �
Claim 3. Pr[G2(A) = 1] is negligible.

Proof. Assume by contradiction there exists a PPT adversary A such that Pr[G2(A) = 1] is a non-negligible ε .
We show that from such A it is possible to construct an efficient algorithm B that breaks the flexible one-wayness of

the algebraic one-way function with the same probability ε .

B receives the pair (κ, A) as its input, where A ∈ Yκ . It proceeds as follows. It chooses l random values W1, . . . , Wl
$←

Xκ , and it sets EK f = (f , W , A) and PK f = A. Notice that the public and evaluation keys are perfectly distributed as in
Game 2. Indeed both in here and in the real key generation the elements W1, . . . , Wl and A are uniformly distributed
in Xκ .

Next, for i = 1 to l, B computes Zi = Fκ (W i) · A− f i . B runs A(PK f , EK f) and answers its queries as follows. Let �x be the
queried value. B computes VKx = ∏l

i=1 Zηi(�x)
i , and returns VKx to A. By the homomorphic property of Fκ this computation

of VKx is equivalent to the one made by the challenger in Game 2.
Finally, let σ̂y = (ŷ, V̂) be the output of A at the end of the game, such that for some input value �x∗ chosen by A it

holds: Verify(PK f , VKx∗ , σ̂y) = ŷ, ŷ �= ⊥ and ŷ �= f (�x∗). By verification, this means that

Fκ (V̂) = A ŷ · VKx∗

Let y = f (�x∗) ∈ K be the correct output of the computation, and let V = Eval(κ, A, W , f , η(�x)) be the proof as obtained by
honestly running Compute. By correctness of the scheme it holds:

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 157
Fκ (V) = A y · VKx∗

Hence, we can divide the two verification equations and by the homomorphic property of Fκ , we obtain Fκ (V̂ /V) = Aδ

where δ = ŷ − y �= 0. B outputs U = V̂ /V and δ as a solution for the flexible one-wayness of Fκ (A). As one can see, if A
wins in Game 2 with probability ε , then B breaks the one-wayness of Fκ with the same probability. �
4.2. m-Variate polynomials of total degree d

We observe that it is possible to change the protocol VCPoly described in the previous section in order to support the
class of polynomials in m variables and maximum degree d in each monomial. As hinted in [19], this can be done as follows:
(i) adjust the number of monomials to l = (m + 1)d; (ii) use a PRF with closed-form efficiency for polynomials of this form
(such as the DDH-based one given in [7]).

4.3. Matrix multiplication

We show that the same techniques used to construct a verifiable computation scheme for the delegation of multivariate
polynomials can be adapted for the case of matrix multiplications. Again, the building blocks are an algebraic one-way
function and a PRF with closed form efficiency for this type of computations.

By using our constructions of algebraic OWFs based on RSA and factoring we obtain schemes that can support delegation
of matrix computations over arbitrary finite rings of the form Ke for any prime e > 1 and Z2t for any integer t ≥ 1. As for
the algebraic PRF, we can use the DDH-based construction (instantiated over QRN) proposed in [19] that is closed-form
efficient for matrix multiplication.

KeyGen(1λ, M). Run κ $← Gen(1λ) to obtain a one-way function Fκ : Xκ → Yκ that is field-homomorphic for K. Let M ∈
Kn×d be a matrix.

Generate a seed K for an algebraic PRF with domain [1..n] × [1..d] and range Xκ . Sample a random generator
h $←Xκ , and compute A = Fκ (h).

For 1 ≤ i ≤ d, 1 ≤ j ≤ n, compute W i, j = hMi, j · PRF.FK (i, j), and let W = (W i, j) ∈X n×d
κ .

Output SKM = K , EKM = (M, W , A), and VKM = A.
ProbGen(SKM , �x). Let �x = (x1, . . . , xd) ∈ Kd be the input. Let R be the matrix defined by R = [PRF.FK (i, j)]. Compute

�ρx = PRF.CFEvalMatrix(K , x) in O (n + d) using the closed form efficiency.
Recall that ρx,i = ∏d

j=1 PRF.FK (i, j)x j , and define τx,i = Fκ (ρx,i). Finally, output the encoding σ�x = �x, and the
verification key VK�x = (τx,1, . . . , τx,n).

Compute(EKM , σ�x). Let EKM = (M, W , A) and σ�x = �x. Compute �y = M · �x over the field K, and the vector �V = (V 1, . . . , Vn)

as V j = Eval(κ, A, (W i, j)i, (Mi, j)i, �x), ∀ j = 1 to n.
Output σy = (�y, �V).

Verify(VKM ,VK�x, σy). Parse σy as (�y, �V). If �y ∈ Kn and Fκ (V i) = A yi · τx,i , ∀i = 1, . . . , n, then output �y, otherwise output ⊥.

The security of the scheme is proven via the following theorem.

Theorem 7. If (Gen, F) is a secure family of algebraic one-way functions and PRF.F is a secure PRF family, then any PPT adversary A
making at most q = poly(λ) queries has negligible advantage AdvPubVer

A (VCMatrix,F ,q, λ).

The proof proceeds in a way very similar to that of Theorem 6. Consider the following games, where Gi(A) denotes the
output of Game i with adversary A:

Game 0: it is ExpPubVer
A (VCMatrix, F , q, λ).

Game 1: this is the same as Game 0, except that the challenger performs a different computation of the algorithm ProbGen.
Let �x be the input asked by the adversary. The challenger computes VKx = �ρx as ρx,i = ∏d

j=1 PRF.FK (i, j)x j .

Game 2: this game proceeds as Game 1, except that the matrix W is computed as W i, j = hMi, j · Ri, j where for all i, j
Ri, j

$←Xκ is chosen uniformly at random, instead of being the output of PRF.FK (i, j).

By the same ideas used in the proof of Theorem 6, it is not hard to see that the following two claims hold.

Claim 4. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Claim 5. | Pr[G1(A) = 1] − Pr[G2(A) = 1]| is negligible.

The proof of the following claim is a simple extension of the proof of Claim 3. We describe it below for completeness.

158 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Claim 6. Pr[G2(A) = 1] is negligible.

Proof. Assume by contradiction that there exists a PPT adversary A such that the probability of A winning in Game 2 is
a non-negligible function ε , then we show that we can build an efficient algorithm B which uses A to break the security
of the algebraic one-way function with probability ε . B takes as input a pair (κ, A) where A ∈ Yκ and proceeds as follows.
For i = 1, . . . , d and j = 1, . . . , n, B chooses W i, j

$← Xκ , sets EKM = (M, W , A), and PKM = A. It is easy to check that the
public and evaluation keys are perfectly distributed as in Game 2. Indeed both in here and in the real key generation all the
elements W i, j and A are uniformly distributed in Xκ .

Next, for i = 1, . . . , d and j = 1, . . . , n, it computes Zi, j = Fκ (W i, j) · A−Mi, j . Then B runs A(PKM , EKM) and answers its
queries as follows. Let �x be the queried vector. B computes τx, j = ∏d

i=1 Z xi
i, j for j = 1 to n, and returns VKx = (τx,1, . . . , τx,n)

to A. By the homomorphic property of Fκ this computation of VKx is equivalent to the one done in Game 2.

Finally, let σ̂y = (�̂y, �̂V) be the output of A at the end of the game, such that for some �x∗ chosen by A it holds
Verify(PK f , VK�x∗ , σ̂y) = �̂y, �̂y �= ⊥ and �̂y �= M · �x∗ . Let �y = M · �x∗ be the correct output of the multiplication. Since �̂y �= �y
there must exist an index j ∈ {1, . . . , n} such that ŷ j �= y j . However, if we let V j = Eval(κ, A, (W i, j)i, (Mi, j)i, �x) be the
honest computation for the j-th vector entry, then by correctness we have:

Fκ (V j) = A y j · τ�x∗, j

Hence, if we divide the two verification equations, we obtain Fκ (V̂ j/V j) = Aδ where δ = ŷ j − y j �= 0. Therefore, B can
output U = V̂ j/V j and δ. It is easy to see that if A wins in Game 2 with probability ε , then B breaks the one-wayness of
Fκ with the same probability. �
5. Linearly-homomorphic FDH signatures

In this section we show a direct application of Algebraic Trapdoor One Way Permutations (TDP) to build linearly-
homomorphic signatures.

An intuitive overview of our solution. Our construction can be seen as a linearly-homomorphic version of Full-Domain-Hash
(FDH) signatures. Recall that a FDH signature on a message m is F −1(H(m)) where F is any TDP and H is a hash function
modeled as a random oracle. Starting from this basic scheme, we build our linearly homomorphic signatures by defining a
signature on a message m, tag τ and index i as σ = F −1(H(τ , i) · G(m)) where F is now an algebraic TDP, H is a classical
hash function that will be modeled as a random oracle and G is a homomorphic hash function (i.e, such that G(x) · G(y) =
G(x + y)). Then, we will show that by using the special properties of algebraic TDPs (in particular, ring-homomorphicity and
flexible one-wayness) both the security and the homomorphic property of the signature scheme follow immediately.

Precisely, if the algebraic TDP used in the construction is ring-homomorphic for a ring K, then our signature scheme
supports the message space Kn (for some integer n ≥ 1) and all linear functions over this ring. Interestingly, by instantiating
our generic construction with our two algebraic TDPs based on Factoring and RSA (see Section 3.1), we obtain schemes
that are linearly-homomorphic for arbitrary finite rings, i.e., Z2t or Ze , for any t ≥ 1 and any prime e. As we will detail at
the end of this section, previous solutions (e.g., [9,22,3,11,10,15,16,20]) could support only large fields whose size strictly
depends on the security parameter. The only exception are the lattice-based schemes of Boneh and Freeman [11,10] that
work for small fields, but are less efficient than our solution. In this sense, one of our main contributions is to propose a
solution that offers a great flexibility as it can support arbitrary finite rings, both small and large, whose characteristic can
be basically chosen ad-hoc (e.g., according to the desired application) at the moment of instantiating the scheme.

Our scheme. The scheme is defined by the following algorithms.

Hom.KG(1λ,m,n) On input the security parameter λ, the maximum data set size m, and an integer n ≥ 1 used to determine
the message space M as we specify below, the key generation algorithm proceeds as follows.

Run (κ, td) $← Gen(1λ) to obtain an algebraic TDP, Fκ : Xκ → Xκ that is ring-homomorphic for the field K.
Next, sample n + 1 group elements u, g1, . . . , gn

$←Xκ and choose a hash function H : {0, 1}∗ →Xκ .
The public key is set as VK = (κ, u, g1, . . . , gn, H), while the secret key is the trapdoor SK = td.
The message space M = (K)n is the set of n-dimensional vectors whose components are elements of K, while

the set of admissible functions F is all degree-1 polynomials over K with m variables and constant-term zero.
Hom.Sign(SK, τ , M, i) The signing algorithm takes as input the secret key SK, a tag τ ∈ {0, 1}λ , a message M =

(M1, . . . , Mn) ∈ Kn and an index i ∈ {1, . . . , m}. To sign, choose s $← K uniformly at random and use the trap-
door td to compute

x = F −1
κ (H(τ , i) · us ·

n∏
j=1

g
M j

j)

and output σ = (x, s).

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 159
Hom.Ver(VK, τ , M, σ , f) To verify a signature σ = (x, s) on a message M ∈ M, w.r.t. tag τ and the function f , the veri-
fication algorithm proceeds as follows. Let f be encoded as its set of coefficients (f1, f2, . . . , fm). Check that all
values f i and M j are in K and then check that the following equation holds

Fκ (x) =
m∏

i=1

H(τ , i) f i · us ·
n∏

j=1

g
M j

j

If both checks are satisfied, then output 1 (accept), otherwise output 0 (reject).
Hom.Eval(VK, τ , f , �σ , �M, �f) The public evaluation algorithm takes as input the public key VK, a tag τ , a function f ∈ F

encoded as (f1, . . . , fm) ∈ Km , a vector of signatures �σ = (σ1, . . . , σm) where σi = (xi, si), a vector of messages
�M = (M(1), . . . , M(m)) and a vector of functions �f = (f (1), . . . , f (m)). If each signature σi is valid for the tag τ ,

the message M(i) and the function f (i) , then the signature σ output by Hom.Eval is valid for the message M =
f (M(1), . . . , M(m)). In order to do this, our algorithm first computes s = f (s1, . . . , sm) = ∑m

i=1 f i · si (over K). Next,
it defines:

�A = (H(τ ,1), . . . , H(τ ,m), u, g1, . . . , gn) ∈ Xm+n+1
κ ,

� =

⎡
⎢⎢⎣

f (1)
1 · · · f (1)

m s1 M(1)
1 · · · M(1)

n
...

...
...

...

f (m)
1 · · · f (m)

m sm M(m)
1 · · · M(m)

n

⎤
⎥⎥⎦ ∈ Zm×m+n+1

and uses the Eval algorithm of the algebraic TDP to compute x = Eval(κ, �A, �x, �, f). Finally, it outputs σ = (x, s).
We remark that our construction requires the Hom.Eval algorithm to know the messages M(i) for which the

signatures σi are supposed to verify correctly. Moreover we stress that Hom.Eval needs to receive both f and �f as
otherwise it would not be able to correctly perform the homomorphic operations. Notice, however, that the value
of the produced message does not depend on �f (this is needed essentially to run the Eval algorithm correctly).

Since our scheme follows the FDH paradigm, its security holds in the random oracle model, and it follows from the
following theorem.

Theorem 8. If (Gen, F , Inv) is a family of algebraic trapdoor permutations and H is modeled as a random oracle, then the linearly-
homomorphic signature scheme described above is secure.

Proof. As usual, the proof proceeds by contradiction. Assume there exists an efficient adversary A that has non-negligible
probability ε of winning the unforgeability game. Let (τ ∗, M∗, σ ∗, f ∗) be the valid forgery returned by the adversary, i.e.,
such that Verify(VK, τ ∗, M∗, σ ∗, f ∗) = 1. According to whether the forgery is of Type 1 or Type 2, we distinguish two types
of adversaries. For every such adversary A we describe a simulation in which we reduce A to an algorithm B that breaks
the flexible one-wayness of the algebraic TDP with non-negligible probability.

Type 1. B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ and ρ ∈ Xκ . The goal of B is
to find values (x, d) ∈Xκ ×K such that Fκ (x) = ρd and d �= 0. Our simulator B proceeds as follows.

Key Generation. Let Q = poly(λ) be an upper bound on the number of data sets for which the adversary asks signatures. B
chooses in advance all tags τ1, . . . , τQ

$← {0, 1}λ that it will use in the signing queries. Let T be the set of all such
tags. B chooses an index μ $← {1, . . . , m} and group elements y0, y1, . . . , yn

$←Xκ uniformly at random. For j = 1
to n, it sets g j = Fκ (y j), and u = Fκ (y0). It gives the public key VK = (κ, u, g1, . . . , gn, H) to the adversary where
H is a random oracle whose queries are answered as described below. We notice that since Fκ is a permutation
over Xκ , the public key VK is distributed as in the real case.

Hash queries. The simulator maintains a table H̄ whose entries, indexed by pairs (τ , i), are tuples of the form (δ, h). If
an entry H̄[τ , i] is empty we denote it by H̄[τ , i] = ⊥. When the adversary makes an oracle query H(τ , i) the
simulator looks in the table the entry H̄[τ , i]. If H̄[τ , i] = (δ, h), then B returns h. Otherwise, if H̄[τ , i] = ⊥, B
picks a random δτ ,i

$←Xκ , and it proceeds as follows. If τ /∈ T ∧ i = μ, then it sets hτ ,i = Fκ (δτ ,i) ·ρ . Otherwise B
sets hτ ,i = Fκ (δτ ,i). Finally, it returns hτ ,i to A and stores H[τ , i] = (δτ ,i, hτ ,i). Notice that regardless of whether
τ ∈ T and i = μ, all answers have the same distribution, that is uniform over Xκ (as the group is cyclic).

Signing queries. Let (F , i, M) be a signing query. If this is the first query with filename F , then B takes the next unused
tag τ from T . Otherwise, let τ be the tag already chosen for F . Let H̄[τ , i] = (δτ ,i, hτ ,i) (if H̄[τ , i] = ⊥, then B
proceeds as above to generate it). Since τ ∈ T we have hτ ,i = Fκ (δτ ,i). Thus, B simulates a signature by choosing
s $← K at random, computing x = δτ ,i ys

0

∏n
j=1 y

M j

j , and returning σ = (x, s) to the adversary. It is easy to see that
σ is correctly distributed.

160 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Forgery. Let (τ ∗, M∗, σ ∗, f ∗) be the forgery returned by A, and let T ′ = {τ1, . . . , τQ ′ } be the set of all tags used in the
signing queries. Notice that T ′ ⊆ T , |T \ T ′| ≤ Q and that all unrevealed tags are completely unpredictable. By our
assumption in this case of the proof, this is a Type 1 forgery, i.e., τ ∗ /∈ T ′ . Moreover, it must also be f ∗ �= 0m , i.e.,
there must exist an index μ∗ ∈ {1, . . . , m} such that f ∗

μ∗ �= 0.
If f ∗

μ = 0 or τ ∗ ∈ T \ T ′ , then B aborts the simulation and fails. Otherwise, it continues the simulation. Notice
though that Pr[μ = μ∗] = 1/m (as μ is perfectly hidden), and that Pr[τ ∗ ∈ T \ T ′] ≤ Q /2λ . Therefore, B does not
abort with probability at least 1/m(1 − Q /2λ).

By the validity of the forgery we have:

Fκ (x∗) =
m∏

i=1

H(τ ∗, i) f ∗
i · us∗

n∏
j=1

g
M∗

j

j =
m∏

i=1

Fκ (δτ ∗,i)
f ∗
i · ρ f ∗

μ · Fκ (y0)
s∗

n∏
j=1

Fκ (y j)
M∗

j

Thus, by the homomorphic property of F we obtain:

Fκ

⎛
⎝ x∗

∏m
i=1 δ

f ∗
i

τ ∗,i ys∗
0

∏n
j=1 y

M∗
j

j

⎞
⎠ = ρ f ∗

μ

Therefore, B can output U = x∗
∏m

i=1 δ
f ∗i
τ∗,i ys∗

0

∏n
j=1 y

M∗
j

j

and d = f ∗
μ . If A outputs a Type 1 forgery with non-negligible

probability ε , then B breaks the security of the algebraic TDP with non-negligible probability ε
m (1 − Q /2λ).

Type 2. Let τ1, . . . , τQ be the tags of all the datasets queried by the adversary in the signing phase. For a Type 2 adversary
we have that τ ∗ = τ j for some j ∈ {1, . . . , Q }, and M∗ �= M̂ = f ∗(M(1), . . . , M(m)) where (M(1), . . . , M(m)) are the messages
of the dataset with tag τ j . Let σ̂ = (x̂, ̂s) = Hom.Eval(VK, τ j, f ∗, �σ , �M, I) (where I is the identity matrix) be the signature
obtained by correctly applying the Hom.Eval algorithm on the messages (and signatures) of the dataset τ j with the function
f ∗ . Since M∗ �= M̂ , there must exists an index ν ∈ {1, . . . , n} such that M∗

ν �= M̂ν . We distinguish the following two mutually
exclusive cases:

(a) s∗ − ŝ + M∗
ν − M̂ν �= 0

(b) s∗ − ŝ + M∗
ν − M̂ν = 0, i.e., s∗ − ŝ �= 0

where all inequalities are intended over the finite field K.
We provide different simulations for the two cases.

Type 2.a. B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ and ρ ∈ Xκ . The goal of B
is to find values (x, d) ∈Xκ ×K such that Fκ (x) = ρd and d �= 0. Our simulator B proceeds as follows.

Key Generation. B chooses the index ν $← {1, . . . , n} and group elements y1, . . . , yn
$← Xκ uniformly at random. For j = 1

to n, j �= ν , it sets g j = Fκ (y j), gν = Fκ (yν) ·ρ , and u = ρ . It returns the public key VK = (κ, u, g1, . . . , gn, H) and
it answers random oracle queries to H as described below. We notice that all the group elements are randomly
distributed (also because Fκ is a permutation). Thus the simulated public key has the same distribution as the real
one.

Hash queries. The simulator maintains a table H̄ whose entries, indexed by pairs (τ , i), are triples of the form (δ, β, h). If
an entry H̄[τ , i] is empty we denote it by H̄[τ , i] = ⊥. When the adversary makes a query H(τ , i) the simulator
looks for H̄[τ , i]. If H̄[τ , i] = (δ, β, h), then it returns h. Otherwise, if H̄[τ , i] = ⊥, B chooses δτ ,i

$← Xκ , βτ,i
$← K

and computes hτ ,i = Fκ (δτ ,i) · ρβτ,i . Finally, it returns hτ ,i to A and stores H̄[τ , i] = (δτ ,i, βτ,i, hτ ,i). Notice that
since δτ ,i is “fresh” (i.e., chosen independently at random) for every query, all answers are uniformly distributed
over Xκ , and thus the value βτ,i is perfectly hidden.

Signing queries. Let (F , i, M) be a signing query. If this is the first query with filename F , then B chooses a new tag
τ

$← {0, 1}λ . Otherwise, let τ be the tag already chosen for F , and let H̄[τ , i] = (δτ ,i, βτ,i, hτ ,i). The simulator sets
s = −(βτ,i + Mν) ∈ K, and uses the flexible one-wayness property of the algebraic TDP to compute the preimage
ρ̃ = F −1

κ (ρs+βτ,i+Mν) (this can be done efficiently as s + βτ,i + Mν is 0 over K). Then it sets x = δτ ,i
∏n

j=1 y
M j

j ρ̃

and returns σ = (x, s). It is not hard to check that the signature is distributed correctly. In particular, it holds
Fκ (x) = H(τ , i) · us ∏n

j=1 g
M j

j and s is uniform in K as so is βτ,i .

Forgery. Let (τ ∗, M∗, σ ∗, f ∗) be the forgery returned by A, and let σ̂ = (x̂, ̂s) = Hom.Eval(VK, τ j, f ∗, �σ , �M, I) (where I is
the identity matrix) be the signature obtained by applying the correct evaluation algorithm with function f ∗ to the
messages of the dataset with tag τ ∗ (that by definition of Type 2 was asked in the signing phase). If M∗

ν − M̂ν = 0,

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 161
then B aborts and stops running. Otherwise it continues the simulation. Notice though that since an index ν∗
such that M∗

ν∗ − M̂ν∗ �= 0 must exist, and the ν chosen by B is perfectly hidden, then Pr[M∗
ν − M̂ν �= 0] = Pr[ν =

ν∗] = 1/n.
By the validity of the forgery we have:

Fκ (x∗) =
m∏

i=1

H(τ ∗, i) f ∗
i · us∗

n∏
j=1

g
M∗

j

j

while by the correctness of Hom.Eval it holds

Fκ (x̂) =
m∏

i=1

H(τ ∗, i) f ∗
i · uŝ

n∏
j=1

g
M̂ j

j

So, we can divide the two equations and obtain:

Fκ (x∗/x̂) = us∗−ŝ
n∏

j=1

g
M∗

j −M̂ j

j = ρs∗−ŝ+M∗
ν−M̂ν

n∏
j=1

Fκ (y j)
M∗

j −M̂ j

and thus

Fκ

⎛
⎝ x∗

x̂
∏n

j=1 Fκ (y j)
M∗

j −M̂ j

⎞
⎠ = ρs∗−ŝ+M∗

ν−M̂ν

Therefore, since s∗ − ŝ + M∗
ν − M̂ν �= 0 over K by definition of Type 2.a forgery, B can output U = x∗

x̂
∏n

j=1 Fκ (y j)
M∗

j −M̂ j

and d = s∗ − ŝ + M∗
ν − M̂ν .

If A outputs a Type 2 forgery with non-negligible probability ε , then B breaks the security of the algebraic TDP with
non-negligible probability ε/n.

Type 2.b. The proof for this case is almost identical to that of Type 2.a except for the following changes. In the Key Gener-
ation there is no guess about the index ν , and all values g j are simulated as g j = Fκ (y j) for random y j ∈ Xκ . To answer
signing queries, B sets s = −βτ,i . Finally, given the adversary’s forgery, it holds

Fκ

⎛
⎝ x∗

x̂
∏n

j=1 Fκ (y j)
M∗

j −M̂ j

⎞
⎠ = ρs∗−ŝ

Hence, U = x∗

x̂
∏n

j=1 Fκ (y j)
M∗

j −M̂ j
and d = s∗ − ŝ form a valid solution for breaking the flexible one-wayness of the alge-

braic TDP. �

Efficiency and comparisons. The most attractive feature of our proposal is that it allows for great variability of the under-
lying message space. In particular our scheme allows to consider finite rings of arbitrary size without sacrificing efficiency.3

This is in sharp contrast with previous solutions which can either support only large fields (whose size directly depends on
the security parameter e.g., [9,22,3,11,10,15,16,20]) or are much less efficient in practice [11,10].

Here we discuss in more details the efficiency of our scheme when instantiated with our RSA and Factoring based
Algebraic TDP. Since each signature σ = (x, s) consists of an element x ∈ Z∗

N and a value s in the field K, i.e., its size is
|σ | = |N| + |S| where |N| is the bit size of the RSA modulus and |S| is the bit size of the cardinality S of K. Ignoring the
cost of hashing, both signing and verifying require one single multi-exponentiation (where all exponents have size |S|) and
one additional exponentiation. Thus the actual efficiency of the scheme heavily depends on the size of |S|. For large values
of |S| our scheme is no better than previous schemes (such as the RSA schemes by Gennaro et al. [22] and by Catalano,
Fiore and Warinschi [16]). For smaller |S|, however, our schemes allow for extremely efficient instantiations. If we consider
for instance the binary field F2, then generating a signature costs only (again ignoring the cost of hashing) one square root
extraction and a bunch of multiplications. Notice however that for the specific N (i.e. N = pq where p = 2p′ + 1, q = 2q′ + 1
and p′, q′ are both primes) considered in our instantiations, extracting square root costs one single exponentiation (i.e., one
just exponentiates to the power z = 2−1 mod p′q′). Verification is even cheaper as it requires (roughly) m +n multiplications.

3 In fact, the exact size of the ring can be chosen ad-hoc (e.g., according to the desired application) at the moment of instantiating the scheme.

162 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
As mentioned above, the only known schemes supporting small fields are those by Boneh and Freeman [11,10]. Such
schemes are also secure in the random oracle model, but rely on the hardness of SIS-related problems over lattices. There,
a signature is a short vector σ in the lattice, whereas the basic signing operation is computing a short vector in the
intersection of two integer lattices. This is done by using techniques from [25,13]. Even though the algebraic tools underlying
our scheme are significantly different with respect to those used in [11,10] and it is not easy to make exact comparisons,
it is reasonable to expect that taking a square root in Z∗

N is faster than state-of-the-art pre-image sampling for comparable
security levels.

6. An efficient � protocol for algebraic one-way permutations

Here we propose an efficient
 protocol for any Algebraic One-Way Permutation (OWP). Let Fκ : Xκ → Xκ be an
algebraic one-way permutation. We let RndSp coincide with Xκ and ChSp = K. Let L be the language {〈y, Fκ 〉 : ∃z ∈
Xκ s.t. Fκ (z) = y} and R be the corresponding relation (i.e. (x = 〈y, Fκ 〉, z) ∈R iff Fκ (z) = y).

•
.Setup(1λ, R) It runs κ ← Gen(1λ). Next it chooses at random z ∈ Xκ and computes Fκ (z) = y. The statement is set
as x ← 〈y, Fκ 〉, while the witness is z.

•
.Com(x; r) → R On input x = 〈y, Fκ 〉 and random coins r in RndSp, outputs the first message R ← Fκ (r).
•
.Resp(x, w, r, c) → s Given statement x = 〈y, Fκ 〉, witness w = z, randomness r ∈ RndSp and challenge c ∈ ChSp = K,

output s ← r · zc ∈Xκ .
•
.Ver(x, R, c, s) → 0/1 On input R ∈ Yκ , c ∈ ChSp and s ∈Xκ , outputs 1 if Fκ (s) = R · yc or 0 otherwise.

Correctness is obvious by inspection. Special soundness comes from the fact that the function is flexibly one-way. Indeed,
the extractor
.Ext, on input x, R, c, s, c′, s′ , works as follows. It sets x′ ← s ·(s′)−1(= zc−c′

). Next, it sets d ← c−c′ ∈ K where
(c − c′) �= 0 in K. The extractor outputs (x′, d). Clearly such a couple contradicts the flexible one wayness of the function
as Fκ (x′) = Fκ (zd) = yd . Honest verifier zero knowledge can be proved as follows. The simulator, on input (x = 〈y, Fκ 〉, c),
chooses a random s ∈ Xκ and sets R ← Fκ (s)y−c . The output is (R, s). Clearly
.Ver(x, R, c, s) = 1 and the probability
distribution of (R, c, s) is identical to that obtained by running the real algorithms.

6.1. Efficient batch execution of sigma protocols

In this section we present a generalization of the above Sigma protocol to the case in which the statement being proven
consists of multiple values x ← 〈y1, . . . , y�, Fκ 〉, while the witness is the corresponding zi such that Fκ (zi) = yi for i =
1, . . . , �.

A naive approach would be to compose the original Sigma protocol in parallel � times. In other words the prover would
send over � commitments and the verifier would reply with � challenges - one per identity. Note that this scheme has
a communication and computation cost that is � times the cost of the original protocol. A possible improvement would
be to use the same challenge for all rounds, and apply batch verification techniques (such as the ones in [6]) to the last
verification step. Even with these improvements, the communication and computation cost of the whole scheme would still
be higher by a factor of � (the prover would still have to send and compute � commitments).

Following [23] we propose a more efficient scheme where the prover sends one commitment and the verifier sends one
challenge across all identities. The prover’s response is generalized from a degree one polynomial to a degree � polynomial
formed from the � secret keys. In [23] this approach was applied to Schnorr’s protocol [41]. Using our abstraction of
algebraic OWFs, we generalize this approach to the entire family of Sigma protocols described above. In particular for the
instantiation of Algebraic OWP based on Factoring/RSA, we obtain an efficient batch execution of the Guillou–Quisquater
protocol [28], which was left as an open problem in [23].

We now describe our protocol Batch-Sigma:

•
.Setup(1λ, R) It runs κ ← Gen(1λ). Next it chooses at random � values zi ∈ Xκ and computes Fκ (zi) = yi . The
statement is set as x ← 〈y1, . . . , y�, Fκ 〉, while the witness is 〈z1, . . . , z�〉.

•
.Com(x; r) → R On input x and random coins r in RndSp, outputs the first message R ← Fκ (r).
•
.Resp(x, w, r, c) → s Output s ← r · ∏�

i=1 zci

i ∈Xκ where ci is computed over the ring K defined by (Gen, F).

•
.Ver(x, R, c, s) → 0/1 On input R ∈ Yκ , c ∈ ChSp and s ∈Xκ , outputs 1 if Fκ (s) = R · ∏�
i=1 yci

i or 0 otherwise.

Concretely, to support the batch verification of � statements, we need an algebraic OWP with a ring K of size at least � +1.4

Correctness and Honest verifier zero knowledge can be proven as for the single-statement case. Special soundness clearly
does not hold, as two transcripts with the same commitment and two distinct challenges do not yield a sufficient number
of equations from which to extract the � witnesses. What we are able to prove, however, is that Batch-Sigma is a proof of
knowledge, i.e. it is possible to extract the witness from a prover that succeeds with a sufficiently high probability.

4 This is due to the fact that we need at least � + 1 distinct values c j ∈K in order for our Proposition 1 to hold.

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 163
Theorem 9. Batch-Sigma is a proof of knowledge of 〈z1, . . . , z�〉.

Proof. A fraudulent prover can cheat by guessing the correct challenge c ahead of time and sending the commitment R
such that the verification equation is satisfied for a randomly chosen s. The probability of success for this attack is at most
2−t where t = |ChSp|.

In the proposition to follow we show that if a prover has probability of success significantly larger than 2−t , then all
the witnesses can be “extracted” from such a prover. The basic idea of the proof is that if we can generate � + 1 transcripts
with the same commitment R , then we have enough relationships to compute all the witnesses.

In [23] these relationships were simple linear equations and the witnesses could be easily computed by inverting the
matrix of such a system of equations (which is invertible being a Van der Monde matrix). In our case the proof is compli-
cated by the fact that the inverse matrix may not be efficiently computable, yet using the ring-homomorphism property of
the underlying algebraic one-way function we will be able to extract the witnesses.

Let us introduce some notation. Let P’ (the fraudulent prover) be any PPT Turing machine that runs on the common input
of Batch-Sigma. Let RP denote the random string of P’. Let success bit S(RP, c) be 1 if P’ succeeds with RP on challenge c
and 0 otherwise. The success rate S is defined to be the average over S(RP, c) where RP and c are chosen uniformly at
random. Let T be the running time of P’, note that we may assume T to be independent of RP and c since limiting the time
to twice the average running time for successful pairs RP and c decreases the success rate by at most a factor of 2. �

We postpone the proof of the following proposition.

Proposition 1. If the success rate S of P’ is greater than 2−t+1 then there exists a PPT Turing machine TE (transcript extractor) which,
given black box access to P’, runs in expected time O (d logd · T /S) and computes � + 1 transcripts of the form R, c j, s j where all the
c j ’s are distinct and the transcripts satisfy the verification equation

Fκ (s j) = R ·
�∏

i=1

y
ci

j

i

Note that if S is non-negligible and T is polynomial, the running time of TE is polynomial.
Therefore we run TE to obtain the above � + 1 transcripts. Consider the Van der Monde matrix C = (ci

j) and let � be
an integer such that � · det(C) is also an integer. By using simple linear algebra “in the exponent” we can then recover the
values z�

i .
We now continue as in the case of the basic Sigma protocol. Compute d ∈ K such that d� = 1K (remember that the

challenge space ChSp from where the ci are chosen is set to K). Of course such a value is guaranteed to exist as long as
� �= 0, moreover it can be computed efficiently using the extended euclidean algorithm. Finally, for all i, it runs Eval on
input (κ, yi, z�

i , �, d), thus getting z�d
i = zi which is the required witness. �

To finish the proof of Theorem 9 we need to prove Proposition 1.

Proof. Algorithm TE runs as follows:

1. It picks an RP at random and simulates P’ using a random challenge, say c1. If P’ fails then it repeats step 1 with a
new RP. Otherwise it goes to step 2.

2. Let u be the number of iterations of Step 1. Now hold RP fixed and probe up to (8u)(� + 1) · log(� + 1) random c’s while
rewinding P’ each time to the point after which he sent the initial commitment R . The goal is to find a total of � + 1
distinct c’s, c1, c2 . . . c�+1 on which P’ succeeds. If it fails in this attempt to find � + 1 c’s it then goes back to step 1.

To analyze the running time of TE, we need some additional definitions and two auxiliary results. Define S(RP) to be
the fraction of c for which S(RP, c) is 1. Define RP to be “good” if S(RP) is at least S/2. Let #RP denote the size of the set
of all RP and #c the size of the set of all c. Note that #c = 2t+log � .

Lemma 10. With probability at least 1/2, TE picks a good RP in step 1.

Proof. Note that the mean of S(RP), over all RP chosen uniformly at random, is S . Now
RP S(RP) = #RP · S . But since

not-goodRP S(RP) ≤ #RP · S/2 it follows that
goodRP S(RP) > #RP · S/2. In other words the set of RP, c for which S(RP, c)
is 1 and RP is good is at least half the entire set for which S(RP, c) is 1. Hence, with probability at least 1/2, RP is good. �
Lemma 11 (Coupon collector lemma). With probability at least 1/2, for a good RP, KE will succeed in finding a total of � + 1 c’s,
c1, c2 . . . c�+1 on which P’ succeeds, using up to (4/S)(� + 1) · log(� + 1) random probes.

164 D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165
Proof. Fix the good RP. Observe that since RP is good there must be greater than S/2 c’s such that S(RP, c) is 1, i.e. there
must be greater than 2−t · 2t+log � = � successful c’s. Let there be k ≥ S/2 · 2t+log � ≥ � + 1 successful c’s (i.e. c’s for which
S(RP, c) is 1). Then the expected number of probes to find � + 1 distinct successful c’s is

2t+log �

(
1

k
+ 1

k − 1
+ . . . + 1

k − �

)
.

Since k ≥ S/2 · 2t+log � the expected number of probes is at most

2k

S

(
1

k
+ 1

k − 1
+ . . . + 1

k − �

)

which is at most (2/S)(� + 1) log(� + 1). Hence with probability at least 1/2, TE will succeed using at most twice the
expected number of probes. �

We now return to the proof of Proposition 1. First observe that the expected number of probes in step 1 is 1/S . Next,
observe that, since the expectation of u is 1/S , with probability at least 1/2, u ≥ (1/2)(1/S). By Lemma 10 RP is good
with probability 1/2. Hence with probability at least 1/4, we have that both u ≥ (1/2)(1/S) and RP is good. Then by
Lemma 11, TE will succeed in step 2 with probability at least 1/2. Since each probe takes O (T) steps it follows that with
probability at least 1/8, TE succeeds in O (� log � · T /S) steps. Hence the expected time is bounded by ((1/8) + (7/8)(1/8) +
(7/8)(7/8)(1/8) + . . .) · O (� log � · T /S) = O (� log � · T /S) steps. �
Acknowledgements

The second author did most of the present work while at NYU supported by NSF grant CNS-1017471. The research of
the third author was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

References

[1] R. Ahlswede, S. Li Ning-Cai, R. Yeung, Network information flow, IEEE Trans. Inform. Theory 46 (4) (2000) 1204–1216.
[2] B. Applebaum, Y. Ishai, E. Kushilevitz, From secrecy to soundness: efficient verification via secure computation, in: S. Abramsky, C. Gavoille, C. Kirchner,

F. Meyer auf der Heide, P.G. Spirakis (Eds.), 37th International Colloquium on Automata, Languages and Programming, Part I, ICALP 2010, Jul. 2010, in:
Lecture Notes in Computer Science, vol. 6198, Springer, 2010, pp. 152–163.

[3] N. Attrapadung, B. Libert, Homomorphic network coding signatures in the standard model, in: D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi (Eds.), 14th
International Workshop on Theory and Practice in Public Key Cryptography, PKC 2011, Mar. 2011, in: Lecture Notes in Computer Science, vol. 6571,
Springer, 2011, pp. 17–34.

[4] L. Babai, Trading group theory for randomness, in: 17th Annual ACM Symposium on Theory of Computing, ACM Press, May 1985, 421–429.
[5] M. Belenkiy, M. Chase, C.C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, Incentivizing outsourced computation, in: Workshop on Economics of Net-

worked Systems, NetEcon, 2008, pp. 85–90.
[6] M. Bellare, J.A. Garay, T. Rabin, Fast batch verification for modular exponentiation and digital signatures, in: K. Nyberg (Ed.), Advances in Cryptology,

EUROCRYPT’98, May/Jun. 1998, in: Lecture Notes in Computer Science, vol. 1403, Springer, 1998, pp. 236–250.
[7] S. Benabbas, R. Gennaro, Y. Vahlis, Verifiable delegation of computation over large datasets, in: P. Rogaway (Ed.), Advances in Cryptology, CRYPTO 2011,

Aug. 2011, in: Lecture Notes in Computer Science, vol. 6841, Springer, 2011, pp. 111–131.
[8] D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing, in: J. Kilian (Ed.), Advances in Cryptology, CRYPTO 2001, Aug. 2001, in: Lecture

Notes in Computer Science, vol. 2139, Springer, 2001, pp. 213–229.
[9] D. Boneh, D. Freeman, J. Katz, B. Waters, Signing a linear subspace: signature schemes for network coding, in: S. Jarecki, G. Tsudik (Eds.), 12th Interna-

tional Conference on Theory and Practice of Public Key Cryptography, PKC 2009, Mar. 2009, in: Lecture Notes in Computer Science, vol. 5443, Springer,
2009, pp. 68–87.

[10] D. Boneh, D.M. Freeman, Homomorphic signatures for polynomial functions, in: K.G. Paterson (Ed.), Advances in Cryptology, EUROCRYPT 2011, May
2011, in: Lecture Notes in Computer Science., vol. 6632, Springer, 2011, pp. 149–168.

[11] D. Boneh, D.M. Freeman, Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures, in: D. Catalano, N. Fazio,
R. Gennaro, A. Nicolosi (Eds.), 14th International Workshop on Theory and Practice in Public Key Cryptography, PKC 2011, in: Lecture Notes in Computer
Science, vol. 6571, Springer, 2011, pp. 1–16.

[12] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in: C. Boyd (Ed.), Advances in Cryptology, ASIACRYPT 2001, Dec. 2001, in:
Lecture Notes in Computer Science, vol. 2248, Springer, 2001, pp. 514–532.

[13] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, Bonsai trees, or how to delegate a lattice basis, in: H. Gilbert (Ed.), Advances in Cryptology, EUROCRYPT 2010,
May 2010, in: Lecture Notes in Computer Science, vol. 6110, Springer, 2010, pp. 523–552.

[14] D. Catalano, D. Fiore, R. Gennaro, K. Vamvourellis, Algebraic (trapdoor) one-way functions and their applications, in: A. Sahai (Ed.), 10th Theory of
Cryptography Conference, TCC 2013, Mar. 2013, in: Lecture Notes in Computer Science, vol. 7785, Springer, 2013, pp. 680–699.

[15] D. Catalano, D. Fiore, B. Warinschi, Adaptive pseudo-free groups and applications, in: K.G. Paterson (Ed.), Advances in Cryptology, EUROCRYPT 2011,
May 2011, in: Lecture Notes in Computer Science, vol. 6632, Springer, 2011, pp. 207–223.

[16] D. Catalano, D. Fiore, B. Warinschi, Efficient network coding signatures in the standard model, in: M. Fischlin, J. Buchmann, M. Manulis (Eds.), 15th
International Workshop on Theory and Practice in Public Key Cryptography, PKC 2012, May 2012, in: Lecture Notes in Computer Science, vol. 7293,
Springer, 2012, pp. 680–696.

http://refhub.elsevier.com/S0304-3975(15)00470-3/bib495449543A41434C593030s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4943414C503A4170704973684B75733130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4943414C503A4170704973684B75733130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4943414C503A4170704973684B75733130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A4174744C69623131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A4174744C69623131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A4174744C69623131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4E455445434F4E3A4243454A4B4C3038s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4E455445434F4E3A4243454A4B4C3038s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A42656C4761725261623938s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A42656C4761725261623938s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A42656E47656E5661683131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A42656E47656E5661683131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A426F6E4672613031s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A426F6E4672613031s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A42464B573039s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A42464B573039s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A42464B573039s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A426F6E4672653131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A426F6E4672653131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A426F6E4672653131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A426F6E4672653131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A426F6E4672653131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib41433A426F6E4C796E5368613031s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib41433A426F6E4C796E5368613031s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A43484B503130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A43484B503130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A434647563133s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A434647563133s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A43617446696F5761723131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A43617446696F5761723131s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A43617446696F5761723132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A43617446696F5761723132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A43617446696F5761723132s1

D. Catalano et al. / Theoretical Computer Science 592 (2015) 143–165 165
[17] K.-M. Chung, Y. Kalai, S.P. Vadhan, Improved delegation of computation using fully homomorphic encryption, in: T. Rabin (Ed.), Advances in Cryptology,
CRYPTO 2010, Aug. 2010, in: Lecture Notes in Computer Science, vol. 6223, Springer, 2010, pp. 483–501.

[18] R. Cramer, I. Damgård, Zero-knowledge proofs for finite field arithmetic; or: can zero-knowledge be for free?, in: H. Krawczyk (Ed.), Advances in
Cryptology, CRYPTO’98, Aug. 1998, in: Lecture Notes in Computer Science, vol. 1462, Springer, 1998, pp. 424–441.

[19] D. Fiore, R. Gennaro, Publicly verifiable delegation of large polynomials and matrix computations, with applications, in: T. Yu, G. Danezis, V.D. Gligor
(Eds.), 19th Conference on Computer and Communications Security, ACM CCS ’12, Oct. 2012, ACM Press, 2012, pp. 501–512.

[20] D.M. Freeman, Improved security for linearly homomorphic signatures: a generic framework, in: M. Fischlin, J. Buchmann, M. Manulis (Eds.), 15th
International Workshop on Theory and Practice in Public Key Cryptography, PKC 2012, May 2012, in: Lecture Notes in Computer Science, vol. 7293,
Springer, 2012, pp. 697–714.

[21] R. Gennaro, C. Gentry, B. Parno, Non-interactive verifiable computing: outsourcing computation to untrusted workers, in: T. Rabin (Ed.), Advances in
Cryptology, CRYPTO 2010, Aug. 2010, in: Lecture Notes in Computer Science, vol. 6223, Springer, 2010, pp. 465–482.

[22] R. Gennaro, J. Katz, H. Krawczyk, T. Rabin, Secure network coding over the integers, in: P.Q. Nguyen, D. Pointcheval (Eds.), 13th International Conference
on Theory and Practice of Public Key Cryptography, PKC 2010, May 2010, in: Lecture Notes in Computer Science, vol. 6056, Springer, 2010, pp. 142–160.

[23] R. Gennaro, D. Leigh, R. Sundaram, W.S. Yerazunis, Batching Schnorr identification scheme with applications to privacy-preserving authorization and
low-bandwidth communication devices, in: P.J. Lee (Ed.), Advances in Cryptology, ASIACRYPT 2004, Dec. 2004, in: Lecture Notes in Computer Science,
vol. 3329, Springer, 2004, pp. 276–292.

[24] C. Gentry, Fully homomorphic encryption using ideal lattices, in: M. Mitzenmacher (Ed.), 41st Annual ACM Symposium on Theory of Computing,
May/Jun. 2009, ACM Press, 2009, pp. 169–178.

[25] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, in: R.E. Ladner, C. Dwork (Eds.), 40th Annual
ACM Symposium on Theory of Computing, ACM Press, May 2008, pp. 197–206.

[26] S. Goldwasser, Y.T. Kalai, G.N. Rothblum, Delegating computation: interactive proofs for muggles, in: R.E. Ladner, C. Dwork (Eds.), 40th Annual ACM
Symposium on Theory of Computing, ACM Press, May 2008, pp. 113–122.

[27] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems, SIAM J. Comput. 18 (1) (1989) 186–208.
[28] L.C. Guillou, J.-J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory, in: C.G.

Günther (Ed.), Advances in Cryptology, EUROCRYPT’88, May 1988, in: Lecture Notes in Computer Science, vol. 330, Springer, 1988, pp. 123–128.
[29] R. Johnson, D. Molnar, D.X. Song, D. Wagner, Homomorphic signature schemes, in: B. Preneel (Ed.), Topics in Cryptology, CT-RSA, in: Lecture Notes in

Computer Science, vol. 2271, Springer, 2002, pp. 244–262.
[30] A. Kiayias, M. Yung, Group signatures: provable security, efficient constructions and anonymity from trapdoor-holders, Cryptology ePrint Archive, Report

2004/076, http://eprint.iacr.org/2004/076, 2004.
[31] J. Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), in: 24th Annual ACM Symposium on Theory of Computing,

ACM Press, May 1992, pp. 723–732.
[32] A.B. Lewko, B. Waters, New proof methods for attribute-based encryption: achieving full security through selective techniques, in: R. Safavi-Naini, R.

Canetti (Eds.), Advances in Cryptology, CRYPTO 2012, Aug. 2012, in: Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 180–198.
[33] S. Micali, CS proofs (extended abstracts), in: 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Nov. 1994,

pp. 436–453.
[34] P. Mohassel, Efficient and secure delegation of linear algebra, Cryptology ePrint Archive, Report 2011/605, http://eprint.iacr.org/2011/605, 2011.
[35] F. Monrose, P. Wyckoff, A.D. Rubin, Distributed execution with remote audit, in: ISOC Network and Distributed System Security Symposium, NDSS’99,

Feb. 1999, The Internet Society, 1999.
[36] M. Naor, O. Reingold, Number-theoretic constructions of efficient pseudo-random functions, in: 38th Annual Symposium on Foundations of Computer

Science, IEEE Computer Society Press, Oct. 1997, pp. 458–467.
[37] C. Papamanthou, E. Shi, R. Tamassia, Signatures of correct computation, in: A. Sahai (Ed.), 10th Theory of Cryptography Conference, TCC 2013, Mar.

2013, in: Lecture Notes in Computer Science, vol. 7785, Springer, 2013, pp. 222–242.
[38] B. Parno, M. Raykova, V. Vaikuntanathan, How to delegate and verify in public: verifiable computation from attribute-based encryption, in: R. Cramer

(Ed.), 9th Theory of Cryptography Conference, TCC 2012, Mar. 2012, in: Lecture Notes in Computer Science, vol. 7194, Springer, 2012, pp. 422–439.
[39] M.O. Rabin, Digital signatures and public key functions as intractable as factorization, Technical report MIT/LCS/TR-212, Massachusetts Institute of

Technology, Jan. 1979.
[40] S.-Y. Robert-Li, R.Y. Yeung, N. Cai, Linear network coding, IEEE Trans. Inform. Theory 49 (2) (2003) 371–381.
[41] C.-P. Schnorr, Efficient identification and signatures for smart cards, in: G. Brassard (Ed.), Advances in Cryptology, CRYPTO’89, Aug. 1989, in: Lecture

Notes in Computer Science, vol. 435, Springer, 1989, pp. 239–252.
[42] A. Shamir, On the generation of cryptographically strong pseudorandom sequences, ACM Trans. Comput. Syst. 1 (1) (1983) 38–44.
[43] S.W. Smith, S. Weingart, Building a high-performance, programmable secure coprocessor, Computer Networks 31 (1999) 831–860.
[44] B. Yee, Using secure coprocessors, Ph.D. thesis, Carnegie Mellon University, 1994.

http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A4368754B616C5661643130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A4368754B616C5661643130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A43726144616D3938s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A43726144616D3938s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4343533A46696F47656E3132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4343533A46696F47656E3132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A467265656D616E3132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A467265656D616E3132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A467265656D616E3132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A47656E47656E5061723130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A47656E47656E5061723130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A474B4B523130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib504B433A474B4B523130s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib41433A474C53593034s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib41433A474C53593034s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib41433A474C53593034s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib53544F433A47656E7472793039s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib53544F433A47656E7472793039s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib476F6C4D69635261633839s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A4775695175693838s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib45433A4775695175693838s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5253413A4A4D58573032s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5253413A4A4D58573032s1
http://eprint.iacr.org/2004/076
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A4C65775761743132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A4C65775761743132s1
http://eprint.iacr.org/2011/605
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4E4453533A4D6F6E5779635275623939s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib4E4453533A4D6F6E5779635275623939s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A50617053686954616D3133s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A50617053686954616D3133s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A5061725261795661693132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5443433A5061725261795661693132s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib526162696E373961s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib526162696E373961s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib495449543A5368755965754361693033s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A5363686E6F72723839s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib433A5363686E6F72723839s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5368613833s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib536D695765693939s1
http://refhub.elsevier.com/S0304-3975(15)00470-3/bib5965653934s1

	Algebraic (trapdoor) one-way functions: Constructions and applications
	1 Introduction
	1.1 Secure outsourcing of polynomials
	1.2 Linearly homomorphic signatures
	1.3 Batch executions of sigma protocols
	1.4 Publication note and organization

	2 Background and deﬁnitions
	2.1 Algebraic tools and computational assumptions
	2.1.1 The RSA group

	2.2 Closed form efﬁcient PRFs
	2.3 Veriﬁable computation
	2.4 Linearly-homomorphic signatures
	2.4.1 Security of linearly-homomorphic signatures

	2.5 Σ-protocols

	3 Algebraic (trapdoor) one-way functions
	3.1 Instantiations
	3.1.1 CDH in bilinear groups
	3.1.2 RSA (over QRN)
	3.1.3 Factoring

	4 Our veriﬁable computation schemes
	4.1 Polynomials of degree d in each variable
	4.2 m-Variate polynomials of total degree d
	4.3 Matrix multiplication

	5 Linearly-homomorphic FDH signatures
	6 An efﬁcient Σ protocol for algebraic one-way permutations
	6.1 Efﬁcient batch execution of sigma protocols

	Acknowledgements
	References

