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Abstract. Behavioral contracts are abstract descriptions of the commu-
nications that clients and servers perform. Behavioral contracts come
naturally equipped with a notion of compliance: when a client and a server
follow compliant contracts, their interaction is guaranteed to progress
or successfully complete. We study two extensions of contracts, dealing
respectively with backtracking and with speculative execution. We show
that the two extensions give rise to the same notion of compliance. As a
consequence, they also give rise to the same subcontract relation, which
determines when one server can be replaced by another preserving compli-
ance. Moreover, compliance and subcontract relation are both decidable
in polynomial time.

1 Introduction

Binary behavioral contracts [13,26,14] and binary session types [21] are abstrac-
tions of programs used to statically ensure that a client and a server interact
successfully (see the survey in [23]). Along the years, the basic theory has been
extended to deal with many features of clients and servers, such as exceptions [11],
time [8], and so on. We consider here two new features: backtracking, allowing one
to go back to previous stages of the interaction, and speculative execution [29],
allowing one to try different alternatives concurrently. These two features have
quite different origin and aims. Backtracking is used to avoid failures due to wrong
past decisions in a wide range of settings, from the undo button in web browsers,
to the execution model of Prolog, to techniques for rollback-recovery [1]. Specula-
tive execution is used for efficiency reasons in different areas, from simulation [12],
to thread-level optimization [30], to web services [15].

We present two extensions of binary contracts (Section 2): retractable contracts
capturing backtracking, and speculative contracts capturing speculative execution.
The two extensions are based on the same syntax, but naturally have different
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semantics. Essentially, they add to the session contracts of [3,9] (called first-order
session behaviors in [3]) an operator of external choice among output operations.
The most interesting case is when an external choice among outputs and an
external choice among inputs interact. In the retractable semantics, the client
and the server agree on which option to explore, but they rollback and try a
different possibility if the computation gets stuck. In the speculative semantics
all the possibilities are explored concurrently, and it is enough for one of them to
succeed to guarentee the success of the whole computation.

This paper defines retractable and speculative contracts, and studies the
related theory, considering the notions of compliance (Section 3), guaranteeing
that the interaction progresses or successfully completes, subcontract relation
(Section 4), determining when a server (resp. client) can be replaced by another
server (resp. client) preserving compliance, and dual contract (Section 4), that is
the most general contract (in terms of the subcontract relation) compliant with
a given contract. Our analysis provides two main insights:

– Even if retractable contracts and speculative contracts have different se-
mantics and give rise to different client-server interactions, the relations of
compliance, subcontract and duality in the two settings do coincide. While
surprising at first sight, this can be explained by noticing that in both the
cases different alternatives are explored (sequentially for retractable contracts,
in parallel for speculative contracts) and the success of one of them guarantees
the success of the whole computation. In other terms, the two semantics
provide different implementations of angelic nondeterminism, first described
by Hoare [20].

– While retractable/speculative contracts are strictly more expressive than
session contracts (indeed they are a conservative extension, see Section 3.1),
their theory preserves the main good properties of the theory of session con-
tracts. In particular, compliance and subcontract relations are both decidable
(Section 3) in polynomial time (Section 5), and the dual of a contract always
exists and has a simple syntactic characterization (Section 4).

A natural way to ensure the existence of the dual contract is to introduce an
operator of internal choice among inputs. While this operator has limited practical
impact, it makes the model more symmetric and the mathematical treatment
simpler.

The results above make us confident in the fact that our semantics correctly
captures the interaction patterns we are interested in. As further element sup-
porting this, we show (Section 6) that the backtracking mechanism of retractable
contracts can be seen as an application to behavioral contracts of the general
theory proposed in [28] to define reversible extensions of process calculi.

A few preliminary results on the topic of this paper have been presented in a
workshop paper [7], which considers retractable session contracts, i.e., retractable
contracts without internal choice among inputs. The main result of [7] is the
decidability of the compliance relation (while we study here also the complexity),
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which was obtained via an algorithm that we now know to be exponential. Here
we present a more refined, polynomial one (Figure 10). In [7] the subcontract
relation and the dual contract were not studied, and indeed the dual contract
did not exist due to the absence of internal choice among inputs.

Proofs missing from the main part are collected in Appendix A.

2 Contracts for Retractable and Speculative Interactions

We present below a uniform syntax for retractable and speculative contracts, with
two semantics. It can be obtained from the syntax of session contracts of [3,9]
(called first-order session behaviors in [3]), that we dub here SC, just adding
external retractable/speculative choice among outputs and internal choice among
inputs. As a matter of fact our contracts can also be seen as an extension of the
retractable session contracts of [7], that we dub here rC, simply adding internal
choice among inputs. As a reference, session contracts and retractable session
contracts are recalled in Appendix A.1.

Definition 1 (Retractable/Speculative Contracts). Let N (set of names)
be some countable set of symbols and let N (set of conames) be {a | a ∈ N}, with
N ∩N = ∅. The set rsC of retractable/speculative contracts is defined as the
set of the closed expressions generated by the following grammar,

σ, ρ := | 1 success

|
∑
i∈I ai.σi external input choice

|
∑
i∈I ai.σi external output choice

|
⊕

i∈I ai.σi internal input choice

|
⊕

i∈I ai.σi internal output choice

| x variable

| recx.σ recursion

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and σ is not a variable in recx.σ.

Recursion in rsC is guarded and hence contractive in the usual sense. We take an
equi-recursive view of recursion by equating recx.σ with σ[recx.σ/x]. We use α
to range over N ∪N , with the convention α = a if α = a, and α = a if α = a. We
write α1.σ1 +α2.σ2 for binary external input/output choice and α1.σ1⊕α2.σ2 for
binary internal input/output choice. They are both commutative by definition.
Also, α.σ denotes both internal and external unary choice. This is not a source
of confusion since internal and external choices do coincide in the unary case.
We also write αk.σk + σ′ for

∑
i∈I αi.σi where k ∈ I and σ′ =

∑
i∈(I\{k}) αi.σi

(and similarly for internal choices). When no ambiguity can arise, we call just
contracts the expressions in rsC. They are written by omitting all trailing 1’s.

We discuss below the two interpretations and the two semantics for our
contracts: the retractable one, and the speculative one.
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2.1 Retractable semantics

The main novelty of the retractable semantics is that when an external choice
among outputs and an external choice among inputs interact, the client and the
server agree on which option to explore, but they rollback and try a different
possibility if the computation gets stuck.

In order to deal with rollbacks, we decorate contracts with their history, which
memorizes, for past choices, the alternatives that have been discharged and that
can be tried upon rollback. We use ‘◦’ to stand for no-remaining-alternatives.

Definition 2 (Contracts with History). Let Histories be the expressions gen-
erated by the grammar H ::= 〈 〉 | H :σ, where σ ∈ rsC∪{◦} and ◦ 6∈ rsC. Histories
are hence stacks of contracts and ◦. Then the set of contracts with history is
defined by: rsCH = {Hnσ | H ∈ Histories, σ ∈ rsC ∪ {◦} }.

We write just σ1 : · · · :σk for the stack (· · · (〈 〉 :σ1) : · · · ) :σk.

As standard for contracts, the definition of the retractable semantics is in
two stages: we first define a labeled transition system (LTS) for contracts with
history (Definition 3), and then we use it to define a reduction semantics for
pairs of contracts representing one client and one server (Definition 4).

Definition 3 (Semantics of Contracts with History).

(+) Hnα.σ + σ′
α−→ H :σ′nσ (⊕) Hnα.σ ⊕ σ′ τ−→ Hnα.σ

(α) Hnα.σ
α−→ H :◦nσ (rb) H :σ′nσ rb−→ Hnσ′

In the transition rule for external choice (+), the action α is executed, and the
discharged branches in σ′ are memorized. In internal choice (⊕), instead, the
selection of one branch is represented by a label τ , and the history H is unchanged.
When a single action is executed (α), a ‘◦’ is added to the history, meaning that
the only possible branch has been tried and no alternative is left. Rule (rb) pops
the contract at the top of the stack, replacing the current one with it.

The client/server interaction is modeled by the reduction of their parallel
composition, that can be either forward, consisting of CCS-style synchronizations
and single internal choices, or backward, only when there is no possible forward
reduction, and the client is not satisfied, i.e., it is different from 1.

Definition 4 (Semantics of Retractable Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with history:
(comm)

H1nρ
α−→ H′1nρ′ H2nσ

α−→ H′2nσ′

H1nρ ‖ H2nσ −→ H′1nρ′ ‖ H′2nσ′

(τ)

H1nρ
τ−→ H1nρ′

H1nρ ‖ H2nσ −→ H1nρ′ ‖ H2nσ
(rbk)

H1nρ
rb−→ H′1nρ′ H2nσ

rb−→ H′2nσ′ ρ 6= 1

H1nρ ‖ H2nσ −→ H′1nρ′ ‖ H′2nσ′

Rule (rbk) applies only if neither (comm) nor (τ) do.
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H1na.c+ b.d ‖ H2na.c+ b.e agreement point

−→ H1:a.cnd ‖ H2:a.cne synchr. and state memorizations

−→ H1na.c ‖ H2na.c synchr. failure and
rollback to the last agreement point

−→ . . . etc.

H1na.c+ b.d ‖ H2na.c⊕ b.e normal interaction point

−→ H1na.c+ b.d ‖ H2nb.e internal choice

−→ H1:a.cnd ‖ H2: ◦ne synchr. and client-state memorization

−→ H1na.c ‖ H2n◦ synchr. failure and rollback

−→ . . . synchr. failure due to ◦, rollback continues
to the previous agreement point

Fig. 1. Role of ◦ during rollbacks

The forward reduction −→f is the relation generated by rules (τ) and (comm).

Example 1. In order to get a better insight on the role of ‘◦’ in the rollback
mechanism, observe that, for a client like a.c+ b.d, rule (+) in Definition 3 forces
the memorization of a “rollback state” independently from the shape of the
server, which could be, for instance, a.c + b.e or a.c ⊕ b.e. In the first case we
are in presence of an agreement point, hence the memorized state is the one the
client has to rollback to in case of a synchronization failure. In the second case,
instead, we are not in presence of an agreement point, since the server decides in
isolation which alternative to select, so a future synchronization failure must not
make the client roll back to this point. One could hence wonder whether rule (+)
could produce some rollback to states which are not agreement points. Indeed,
what happens is that, when such a state is reached, at least one of the partners
has ‘◦’ as contract. Since ‘◦’ cannot synchronize with anything, the client/server
pair is forced to recover an older past (if any). This is exemplified in Figure 1.

Remark 1. The semantics defined above for retractable client/server pairs can
be seen as an instantiation on contracts of the standard reversible semantics
for process calculi, see, e.g., [16,28,24,25]. In particular, the semantics would
become a classic uncontrolled semantics (according to the terminology in [25])
by removing the four control mechanisms below:

1. the fact that only external choices are retractable;
2. the side condition ρ 6= 1 in rule (rbk), which disallows backtrack after success;
3. the fact that rule (rbk) can be applied only if no other rule applies, ensuring

that backtrack is enabled only when no forward reduction is possible;
4. the fact that in external choices the selected path is not stored in the history,

so that each path can be tried at most once.
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〈 〉n
QoSday.(priceMed.ok

+ priceLow.ok)
+ QoSnight.priceLow.ok

‖ 〈 〉n
∑

QoS QoS.priceQoS.ok

−→ 〈 〉 : QoSnight.priceLow.ok
npriceMed.ok + priceLow.ok

‖ 〈 〉 :
∑

QoS6=QoSday QoS.priceQoS.ok

n priceHigh.ok

−→ 〈 〉n QoSnight.priceLow.ok ‖ 〈 〉n
∑

QoS6=QoSday QoS.priceQoS.ok

−→ 〈 〉 : ◦n priceLow.ok ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok

n priceLow.ok

−→ 〈 〉: ◦ : ◦nok ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok : ◦
n ok

−→ 〈 〉: ◦ : ◦ : ◦n1 ‖ 〈 〉 :
∑

QoS6=QoSday,QoSnight QoS.priceQoS.ok: ◦ :◦
n 1

Fig. 2. An example of retractable interaction

These mechanisms provide a semantic control of reversibility [25], specifying
which rollback steps are allowed, and when. We discuss in Remark 2 the impact
that removing the above control mechanisms would have on retractable contracts
and on their theory.

Example 2. Retractable contracts allow one to first try a preferred alternative,
but to accept also another alternative if the first one proves to be impossible to
obtain. In cloud computing settings, companies may hire virtual machines and
storing facilities from cloud providers with some agreed Quality of Service (QoS).
A company is willing to hire at some medium or low price a certain amount of
machines for online elaboration during day time, but, if the price is too high, it
is also willing to switch to offline night elaboration. In this last case it is only
willing to pay a low price.

A retractable contract with this behavior may be written as:

cloudClient = QoSday.(priceMed.ok + priceLow.ok) + QoSnight.priceLow.ok

Notice that the contract does not specify which alternative the client prefers: this
aspect of the client behavior is abstracted away. A sample server is:

cloudServer =
∑

QoS∈{QoSday,QoSnight,... }QoS.priceQoS.ok

A sample interaction is described in Figure 2, where we assume that

priceQoSday = priceHigh and priceQoSnight = priceLow.

2.2 Speculative semantics

The main idea of the speculative semantics is that in an external output choice
all the options are tried concurrently: if at least one of them succeeds, then the
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whole computation succeeds. In order to represent concurrent trials we need
runtime contracts featuring multiple threads.

Definition 5 (Contracts with Threads). Contracts with threads C, used
as runtime syntax for contracts, are parallel compositions of threads T. Each
thread is a contract prefixed by a sequence (possibly empty) of actions uniquely
identifying it.

C ::= T | (C | T) | (T | C) T ::= σ | α@T
We assume the operator ‘ |’ to be associative and commutative.

As for the retractable semantics, the definition of the speculative semantics is in
two stages: we first define an LTS for contracts with threads (Definition 6), and
then we use it to define a reduction semantics for pairs of contracts with threads
representing one client and one server (Definition 7).

Definition 6 (Semantics of Contracts with Threads).
In the LTS below, we use as labels actions α ::= a | a, sequences of actions
β ::= α | αβ, and complex labels βτ ::= τ | β | β,T.

(Fork)

α.σ + σ′
α,σ′

−−−→ α@σ
(⊕)
α.σ ⊕ σ′ τ−→ α.σ

(α)

α.σ
α−→ α@σ

(@-α)

T
β−→ T′

α@T
αβ−−→ α@T′

(@-α-T)

T
β,T′′

−−−→ T′

α@T
αβ,α@T′′

−−−−−−→ α@T′

(@-τ)

T
τ−→ T′

α@T
τ−→ α@T′

(ParL)

T
βτ−→ T′

T | C βτ−→ T′ | C

In the rule for external choice (Fork), when an action α is executed, its continu-
ation σ is prefixed by it. The other branches σ′ need to be executed in a freshly
spawned thread. Since such thread needs to be installed at top level, σ′ is added
to the label, and the actual installation is performed at the level of speculative
client/server pairs (see rule (comm) in Definition 7). The rule for internal choice
(⊕) simply selects one of the available options. A unary choice (α) executes the
action α and prefixes with it the continuation σ.

Because of rules (@-α), (@-α-T ), and (@-τ), execution is allowed below an @
prefix. In rule (@-α), the prefix itself is added to the label β. Prefixes uniquely
identify threads, and ensure that each thread interacts only with the one with
dual prefix which is running on the communication partner. This is specified in
Definition 7 below. Rule (@-α-T ) is analogous to rule (@-α), but the label also
contains a thread T′′, and the prefix α is added to both β and T′′. No prefix
is added to τ actions, propagated by rule (@-τ). Rule (ParL) simply allows
components of a parallel composition to execute (a symmetric rule is not needed
thanks to the commutativity of |).

The interaction of a client with a server is modeled by the reduction of their
parallel composition.
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Definition 7 (Semantics of Speculative Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with threads. In the LTS below, ?T denotes either the
thread T or nothing. Hence, β, ?T and C |?T are respectively β and C if ?T is
nothing, and β,T and C | T otherwise. Also, the duality operator extends from
actions to sequences: αβ = αβ.

(comm)

C
β,?T−−−→ C′ C′′

β,?T′′

−−−−→ C′′′

C ‖ C′′ −→ C′ |?T ‖ C′′′ |?T′′

(τ)

C
τ−→ C′

C ‖ C′′ −→ C′ ‖ C′′

Rule (comm) allows threads performing dual sequences of actions to interact. This
implies that both the actual actions and the prefixes of the threads performing
them should be dual. Threads in the labels, if present, are installed in parallel.
Rule (τ) simply propagates the τ action.

Example 3. A server provides access to multiple algorithms for SAT solving [34].
A client first sends the problem instance to be solved, then selects the algorithm,
and finally sends the relevant parameters. The server computes the solution
according to the received commands, and sends it back. Since the most efficient
technique depends on the problem instance [33], the server supports speculative
execution, to allow one to try different algorithms at the same time (this is called
the portfolio approach). The server contract is described by:

SATserver = inst.
∑
i algi.

∑
j parj .sol

A simple client that tries both the DPLL approach and the walksat approach
can be modeled as follows:

SATclient = inst.(DPLL.par.sol + walksat.par.sol)
A sample computation proceeds as described in Figure 3, assuming that the
server supports both DPLL and walksat. To keep the example simple we drop
the choice of parameters. Let us see in more details how the creation of threads
is managed. The first reduction in Figure 3 is due to rule (comm), since

inst.(DPLL.sol + walksat.sol)
inst−−→ inst@(DPLL.sol + walksat.sol)

and
inst.

∑
i algi.sol

inst−−→ inst@
∑

i algi.sol.

The second reduction is also due to rule (comm), since, on the client side
(Fork)

DPLL.sol + walksat.sol
DPLL, walksat.sol−−−−−−−−−−→ DPLL@sol

(@-α-T )

inst@(DPLL.sol + walksat.sol)
inst DPLL, inst@walksat.sol−−−−−−−−−−−−−−−−→ inst@DPLL@sol

whereas, on the server side,
(Fork)∑

i algi.sol
DPLL,

∑
{i|Ai 6=DPLL} algi.sol

−−−−−−−−−−−−−−−−→ DPLL@sol
(@-α-T )

inst@
∑

i algi.sol
inst DPLL, inst@

∑
{i|Ai 6=DPLL} algi.sol

−−−−−−−−−−−−−−−−−−−−−−−→ inst@DPLL@sol
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inst.(DPLL.sol + walksat.sol) ‖ inst.
∑

i algi.sol

−→ inst@(DPLL.sol + walksat.sol) ‖ inst@
∑

i algi.sol

−→ inst@DPLL@sol

| inst@walksat.sol
‖ inst@DPLL@sol

| inst@
∑
{i|Ai 6=DPLL} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol
‖

inst@DPLL@sol

| inst@walksat@sol

| inst@
∑
{i|Ai 6=DPLL,walksat} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol@1
‖

inst@DPLL@sol

| inst@walksat@sol@1
| inst@

∑
{i|Ai 6=DPLL,walksat} algi.sol

Fig. 3. An example of speculative interaction

3 Compliance

The compliance relation for session contracts [3,9] consists in requiring that,
whenever no reduction is possible, all client’s requests and offers have been
satisfied, i.e. the client is in the success state 1. For retractable contracts, thanks
to the retractable operational semantics taking care of forward and backward
reductions, we can adopt the same definition. We use

∗−→ to denote the reflexive
and transitive closure of −→, and 6−→ to specify that no −→ reduction exists.

Definition 8 (Retractable Compliance Relation



R ).

i) The relation



R on contracts with history is defined by:
H1nρ



R H2nσ if, for each H′1,H
′
2, ρ
′, σ′ such that

H1nρ ‖ H2nσ
∗−→ H′1nρ′ ‖ H′2nσ′ 6−→, we have ρ′ = 1

ii) The relation



R on contracts is defined by: ρ



R σ if 〈 〉nρ



R 〈 〉nσ.

For speculative contracts we need to take into account the fact that the whole
computation succeeds if at least one of its branches succeeds.

Definition 9 (Speculative Compliance Relation



S ).
The relation



S on contracts is defined by:

ρ



S σ if for each Cρ,Cσ such that ρ ‖ σ ∗−→ Cρ ‖ Cσ 6−→
there exist C, n, α1, . . . , αn such that Cρ = C | α1@...@αn@1

We now provide a formal system characterizing compliance on both retractable
and speculative contracts.

Definition 10 (Formal System for Compliance B ).
Judgments in the formal system B are expressions of the form Γ B ρv|σ,
where the environment Γ is a finite set of expressions of the form δ v| γ, with
ρ, σ, δ, γ ∈ rsC. Axioms and rules are as in Figure 4.
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(Ax)
Γ B 1v|σ

(Hyp)
Γ, ρv|σ B ρv|σ

(+ ·+)

Γ, α.ρ+ ρ′ v|α.σ + σ′ B ρv|σ

Γ B α.ρ+ ρ′ v|α.σ + σ′

(⊕ ·+)

∀h ∈ I. Γ,
⊕

i∈Iαi.ρi v|
∑

j∈I∪Jαj .σj B ρh v|σh

Γ B
⊕

i∈Iαi.ρi v|
∑

j∈I∪Jαj .σj

(+ · ⊕)
∀h ∈ I. Γ,

∑
j∈I∪J αj .ρj v|

⊕
i∈I αi.σi B ρh v|σh

Γ B
∑

j∈I∪Jαj .ρj v|
⊕

i∈I αi.σi

Fig. 4. System B

The only non standard rule of system B is (+ ·+), which ensures compliance
of two external choices when they contain respectively (at least) one α and the
corresponding α, followed by compliant contracts. This contrasts with the rules
(⊕ ·+) and (+ · ⊕), where each α in an internal choice must have a corresponding
α in the external choice, followed by compliant contracts. No rule is provided for
the case (⊕ · ⊕) since two internal choices are compliant only if both of them are
unary choices (otherwise they may always get stuck by choosing incompatible
actions). Since unary internal choice coincides with unary external choice, this
case is taken into account by the rules we already have. Notice that rule (+ ·+)
implicitly represents the fact that, in the decision procedure for two contracts
made of external choices, the possible synchronizing branches have to be tried,
until either a successful one is found or all fail. Looking at a derivation bottom-
up, at each application of a rule, the considered pair of contracts is added to
the environment Γ . In this way, if the same pair is reached again due to the
equi-recursive view of contracts, the derivation can be closed using rule (Hyp).
Rule (Ax) instead closes the derivation when the client reaches the success state
1. We write B ρv|σ instead of Γ B ρv|σ when Γ is empty.

Derivability in system B is decidable, since it is syntax-directed and proof
reconstruction does terminate. The procedure Prove in Figure 5 clearly imple-
ments the formal system, namely it is straightforward to check the following

Fact 1 i) Prove(Γ B ρv|σ) 6= fail iff Γ B ρv|σ.
ii) Prove(Γ B ρv|σ) = D 6= fail implies D :: Γ B ρv|σ.

Theorem 1. Derivability in the formal system B is decidable.

Proof. By Fact 1, we only need to show that the procedure Prove always
terminates. Note that, in all recursive calls Prove(Γ, ρv|σ B ρk v|σk) inside
Prove(Γ B ρv|σ), the expressions ρk and σk are subexpressions of, respectively,
ρ and σ (because of the equi-recursive view of recursion they can also be ρ and
σ). Since contract expressions generate regular trees, there are only finitely many
such subexpressions. This implies that the number of different calls of procedure
Prove is always finite. ut
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Prove(Γ B ρv|σ) =

if ρ = 1 then (Ax)
Γ B 1v|σ

else if ρv|σ ∈ Γ then (Hyp)
Γ, ρv|σ B ρv|σ

else if ρ =
∑

i∈I αi.ρi and σ =
∑

j∈J αj .σj

and exists k ∈ I ∩ J s.t. D = Prove(Γ, ρv|σ B ρk v|σk) 6= fail

then
D

(+ ·+)
Γ B ρv|σ

else fail

else if ρ =
⊕

i∈I αi.ρi and σ =
∑

j∈I∪J αj .σj

and for all k ∈ I Dk = Prove(Γ, ρv|σ B ρk v|σk) 6= fail

then
∀k∈I Dk

(⊕ ·+)
Γ B ρv|σ

else if ρ =
∑

j∈I∪J αj .ρj and σ =
⊕

i∈I αi.σi

and for all k ∈ I Dk = Prove(Γ, ρv|σ B ρk v|σk) 6= fail

then
∀k∈I Dk

(+ · ⊕)
Γ B ρv|σ

else fail

else fail

Fig. 5. The procedure Prove.

We can prove the soundness and the completeness of the formal system B
w.r.t. both the retractable and the speculative semantics (see Appendix A.3 for
the proofs).

Theorem 2 (Retractable Soundness and Completeness).

B ρv|σ iff ρ



R σ

Theorem 3 (Speculative Soundness and Completeness).

B ρv|σ iff ρ



S σ

We can now formally prove the client and server of Example 3 to be com-
pliant, i.e. inst.(DPLL.sol+ walksat.sol)



S inst.
∑
i algi.sol, by providing a

derivation for B inst.(DPLL.sol+ walksat.sol) v| inst.
∑
i algi.sol, as shown

in Figure 6.

By the soundness and completeness of system B w.r.t. both the relations
of retractable and speculative compliance, we immediately get that the two
compliance relations do coincide.

Corollary 1 (Retractable and Speculative Compliances Coincide).



R =



S
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(Ax)
γ1, γ2, γ3 B 1v|1

(+ · ⊕)
γ1, γ2 B solv| sol

(+ ·+)
γ1 B DPLL.sol + walksat.solv|

∑
i algi.sol

(⊕ ·+)
B inst.(DPLL.sol + walksat.sol) v| inst.

∑
i algi.sol

where γ1 = inst.(DPLL.sol + walksat.sol) v| inst.
∑

i algi.sol
γ2 = DPLL.sol + walksat.solv|

∑
i algi.sol

γ3 = solv| sol

and where, for some i, algi = walksat.

Fig. 6. A sample derivation in B

By the above, from now on we write



instead of



R or



S . So the following
also easily follows.

Corollary 2 (Compliance Decidability). The relation



is decidable.

Remark 2. We now discuss the impact on the compliance relation of the four mech-
anisms for controlling reversibility in the semantics of retractable client/server
pairs (see Remark 1). In particular, we analyze what would happen by dropping
each one of them in isolation:

Drop “Not all reductions are retractable”: each reduction could be un-
done. From the compliance point of view, all the choices would be retractable.
Hence, retractable contracts would not be a conservative extension (see Sub-
sect. 3.1) of session contracts any more. The case we consider is strictly more
general, since we allow for both retractable and unretractable choices.

Drop the side condition ρ 6= 1 in rule (rbk) of Definition 4: any forward
finite interaction would be followed by a rollback. In particular, most of
the client/server pairs without recursion (except a few trivial ones, like
〈 〉n1 ‖ 〈 〉nσ) would end into 〈 〉n ◦ ‖ 〈 〉n◦. Thus all these pairs of contracts
would not be compliant.

Drop “rule (rbk) can be applied only if no other rule applies”: interac-
tions could rollback before succeeding. As in the case above, most client/server
pairs (except a few trivial ones, but including recursive ones) could reduce to
〈 〉n ◦ ‖ 〈 〉n◦. Again all these pairs of contracts would not be compliant.

Drop “in choices the chosen path is not memorized”: any client/server
pair that would not normally succeed with at least one retractable choice could
diverge by undoing and redoing the choice forever, thus trivially ensuring
compliance.

None of the last three scenarios provides a reasonable setting. The first one would
be reasonable, but the case we consider is strictly more general.
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3.1 Conservativity Results

It is possible to show that all the relations on our retractable and speculative
contracts (rsC) are conservative extensions of corresponding notions on (first-
order) session contracts (SC) as defined in [3,9], and on the retractable session
contracts (rC) as defined in [7].

As previously said, it is not difficult to check that session contracts SC are
a subset of retractable session contracts rC, which, in turn, are a subset of the
contracts rsC we are presently investigating, namely: SC ( rC ( rsC. Obviously
the strict inclusion SC ( rsC is not enough, by itself, to guarantee the retractable
and speculative operational semantics for rsC to be conservative extensions of the
operational semantics of SC. We prove that it is so in the following Proposition
1. Informally, it states that both the forward retractable semantics −→f and the
speculative semantics −→ of pairs of contracts in SC are annotated versions of
their semantics in SC, which we recall in Appendix A.1.

Proposition 1 (Operational Semantics Conservativity). Let ρ, σ ∈ SC.

i) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff H1nρ ‖ H2nσ

∗−→f H′1nρ′ ‖ H′2nσ′
for some H1,H2,H

′
1 and H′2

ii) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff ρ ‖ σ ∗−→ α1@ . . . αn@ρ′ | Cρ ‖ α1@ . . . αn@σ′ | Cσ

for some n, α1, . . . , αn,Cρ and Cσ

where −→SC denotes the reduction relation on SC pairs in the theory of session
contracts.

Proof. See Appendix A.2. ut

We do not take into account conservativity of the retractable operational
semantics for rsC over the one for rC because it is quite trivial, since the rules
in the two semantics are essentially the same. A conservativity result of the
speculative operational semantics for rsC over the one for rC would instead
consist in a rather cumbersome and uninteresting statement.

The conservativity result for the operational semantics is not enough, in itself,
to guarantee the theory of retractable compliance for rsC to be a conservative
extension of both the theory of compliance for rC and for SC. Also in this case,
however, we can prove it to be so, that is, the compliance relation for session
contracts SC is the restriction of the compliance relation



for our contracts to
pairs of session contracts SC, and similarly for the restriction of



to retractable
session contracts rC.

To prove the results above, let



SC and



rC be the compliance relations
on, respectively, session contracts and retractable session contracts. Also, let
B SC and B rC be, respectively, the formal systems axiomatizing them (see
Appendix A.1). We first show that the logical theories of BSC and BrC are
conservative extensions of the logical theory B .

Proposition 2 (Formal Systems Conservativity).
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i) Let ρ, σ ∈ SC: BSC ρv|σ iff B ρv|σ
ii) Let ρ, σ ∈ rC: BrC ρv|σ iff B ρv|σ

Proof. See Appendix A.2. ut

From Proposition 2 and the soundness and completeness property of BSC

and BrC (Theorems 7 and 8 in Appendix A.1 ) we immediately get what follows.

Corollary 3 (Compliances Conservativity).

i) Let ρ, σ ∈ SC: ρ



SC σ iff ρ



σ
ii) Let ρ, σ ∈ rC: ρ



rC σ iff ρ



σ

A more direct proof of conservativity of



over



SC , enabling to get
a better insight of the differences of the compliance relations for the different
formalisms, can be obtained by an analysis of the behaviors of reductions. Some
care is however needed in such a case, since reductions can modify the stack even
when we restrict ourselves to session contracts. This implies that, in a sequence
of reductions out of a client/server system 〈 〉nρ ‖ 〈 〉nσ with ρ, σ ∈ SC, also
rollbacks can occur. In order to handle them, one has to show that, in a reduction
sequence like the above, only particular stacks are actually produced, such that
once a rollback procedure is started it necessarily goes on till a stuck state is
reached. Details can be found in Appendix A.2.

4 Duality and the Subcontract Relation

Unlike the retractable session contracts of [7], in the present setting it is possible
to get a natural notion of duality. The dual σ of an element σ of rsC is obtained,
as for session contracts, by interchanging any name a with a and + with ⊕.

Formally, we first define duality for (possibly open) contracts, that we dub
rsCo, and then we restrict such a definition to rsC (i.e., to closed expressions).

Definition 11 (Syntactic duality).

i) Let σ ∈ rsCo. The syntactic dual σ of σ is defined by the following clauses:
1 = 1 x = x recx.σ = recx.σ∑
i∈I αi.σi =

⊕
i∈I αi.σi

⊕
i∈I αi.σi =

∑
i∈I αi.σi

ii) We define (·) : rsC→ rsC as the restriction to rsC of the duality function
on rsCo, observing that σ ∈ rsC iff σ ∈ rsC.

From now on, in order to avoid too cumbersome definitions, any time an
inductive definition on elements of rsC is provided, it will be tacitly assumed to
be actually the restriction to rsC of the corresponding inductive definition on rsCo.

A first relevant property of duality is the following:

Proposition 3. For any σ ∈ rsC, σ



σ.
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Proof. Since σ is obtained from σ by exchanging each α with α and + with
⊕, it is easy to get a derivation of B σ v|σ. The thesis is then an immediate
consequence of soundness and completeness of B .

The notion of dual contract allows one to combine pairs of contracts in the
compliance relation, as follows:

Proposition 4. For any ρ, σ, σ′ ∈ rsC, ρ



σ and σ



σ′ imply ρ



σ′

Proof. See Appendix A.4. ut

We will provide further properties of duality using the notion of subcontract
relation. Indeed, the notion of compliance naturally induces a substitutability
relation on servers, denoted 4s, that we call subcontract relation for servers. Such
a relation may be used for implementing contract-based query engines (see [27]
for a detailed discussion). An analogous subcontract relation, denoted 4c, can
be defined for clients.

Definition 12 (Subcontract Relations for Servers and for Clients).
Let σ, σ′ ∈ rsC . We define

i) σ 4s σ′ , ∀ρ ∈ rsC [ ρ



σ implies ρ



σ′ ]
ii) σ 4c σ′ , ∀ρ ∈ rsC [σ



ρ implies σ′



ρ ]

Using Proposition 4 we can characterize both 4s and 4c in terms of duality
and compliance, relate them and get their decidability.

Theorem 4. For any σ, σ′ ∈ rsC:

i) σ 4s σ′ iff σ



σ′

ii) σ 4c σ′ iff σ′



σ
iii) σ 4s σ′ iff σ′ 4c σ
iv) σ 4s σ′ and σ 4c σ′ are decidable.

Proof. (i) (⇒) By contraposition, assume that σ 6



σ′. Since σ



σ by
Proposition 3, then by definition of 4s we have σ 64s σ′.
(⇐) Let σ



σ′. If ρ



σ, then from σ



σ′, we get ρ



σ′ by Proposition 4, and
therefore σ 4s σ′ by definition.
(ii) (⇒) By contraposition, assume that σ′ 6



σ. Since σ



σ by Proposition 3,
then by definition of 4c we have σ 64c σ′.
(⇐) Let σ′



σ. If σ



ρ, then from σ′



σ, we get σ′



ρ by Proposition 4, and
therefore σ 4c σ′ by definition.
(iii) From Item (i) we have σ 4s σ′ iff σ



σ′. From Item (ii) we have σ′ 4c σ

iff σ



σ′. The thesis follows since σ′ = σ′.
(iv) From Items (i) and (ii) and decidability of σ



σ′. ut

By item iii) above, from now on we can simply concentrate on the relation 4s.
We can now characterize duality in terms of the subcontract relation for

servers: given a client ρ, its dual ρ is a least element among all its possible servers,
that is it is a possible server, and it is smaller than all the other possible servers.
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(Ax -4s)
Γ I 1� σ′

(Hyp -4s)
Γ, σ � σ′ I σ � σ′

(⊕ ·+ -4s)

Γ, α.σ1 ⊕ σ2 � α.σ′1 + σ′2 I σ1 � σ′1

Γ I α.σ1 ⊕ σ2 � α.σ′1 + σ′2
(+ ·+ -4s)

∀h ∈ I. Γ,
∑

i∈Iαi.σi �
∑

j∈I∪Jαj .σ
′
j I σh � σ′h

Γ I
∑

i∈Iαi.σi �
∑

j∈I∪Jαj .σ
′
j

(⊕ · ⊕ -4s)

∀h ∈ I. Γ,
⊕

j∈I∪Jαj .σj �
⊕

i∈Iαi.σ
′
i I σh � σ′h

Γ I
⊕

j∈I∪Jαj .σ
′
j �

⊕
i∈Iαi.σ

′
i

Fig. 7. The formal system I

Proposition 5 (Dual as a Least Element w.r.t. 4s).
Let ρ ∈ rsC. Then ρ is a server for ρ, namely ρ



ρ, and more precisely it is a
least element in the set of the servers of ρ, that is,

∀σ ∈ rsC: ρ



σ implies ρ 4s σ

Proof. Suppose that ρ



σ and take any contract τ such that τ



ρ. Since ρ = ρ,
by Proposition 4 we know that τ



σ; hence ρ 4s σ by definition. ut

Since we have not yet proved that the subcontract relation is a partial order,
we do not know yet whether ρ is also a minimal, i.e. there is no smaller element,
neither whether other least elements or minimal elements exist. These questions
will be answered by Prop. 6.

As done for the compliance relation, we characterize now the subcontract
relation for servers in terms of derivability in the following formal system, where
the symbol � is used as syntactical counterpart of the relation 4s.

Definition 13 (Formal System for Subcontract I ). Judgments in the
formal system I are expressions of the form Γ I ρ� σ, where the environment
Γ is a finite set of expressions of the form δ � γ, with ρ, σ, δ, γ ∈ rsC. Axioms
and rules are as in Figure 7.

The rules in system I can be read as a translation of the rules in system
B via Theorem 4(i). As for B , in Γ I ρ� σ we may drop Γ if empty.

Lemma 1. Γ I σ � σ′ iff Γ̃ B σ v|σ′

where Γ = {σi � σ′i}i∈I and Γ̃ = {σi v|σ′i}i∈I .

Proof. (⇒) By induction over the derivation of Γ I σ � σ′.

(⇐) By induction over the derivation of Γ̃ B σ v|σ′. ut

System I is sound and complete for the subcontract relation 4s.

Theorem 5 (Soundness and Completeness of I ). I σ�σ′ iff σ4sσ′
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a+ b+ c a+ b+ c

a+ b a+ c b+ c a+ b a+ c b+ c

a b c a b c

a⊕ b a⊕ c b⊕ c a⊕ b a⊕ c b⊕ c

a⊕ b⊕ c a⊕ b⊕ c

Fig. 8. Subcontract preorder: a sample

Proof. (⇒) Let I σ � σ′. By Lemma 1 we get B σ v|σ′ and hence σ



σ′ by
soundness of system B . The thesis now descends from Theorem 4.
(⇐) Let σ 4s σ′. By Theorem 4 we have that σ



σ′. By completeness of system
B we get B σ v|σ′. Now, by Lemma 1, we can obtain I σ � σ′. ut

System I can be used to show that 4s is a partial order and hence, by
antisymmetry, ρ is also the minimum server of ρ: it is minimal, hence there is no
smaller server, and there is a unique minimal.

Proposition 6. 4s is a partial order ∧ ∀ρ∈rsC, ρ is the minimum server of ρ.

Proof (Sketch). We need to show 4s to be reflexive, transitive and antisymmet-
ric. Reflexivity and transitivity immediately descend from the definition of 4s
(Definition 12).

For the antisymmetric property, instead, we cannot rely directly on the
definition of 4s, since from σ 4s σ′ and σ′ 4s σ we can only infer that σ and σ′

have the same set of clients. This does not trivially imply that σ = σ′.
We can proceed, instead, roughly as follows. Let σ, σ′ ∈ rsC be such that σ 4s σ′

and σ′ 4s σ. By completeness of I we get I σ � σ′ and I σ′ � σ. By having
such derivations, we can infer that in each of them no rule (⊕ ·+ -4s) can be
present. Moreover, in each application of rule (+ ·+ -4s) or rule (⊕ · ⊕ -4s), we
have necessarily that J = ∅. Out of that we can infer σ = σ′.
For the second conjunct of the statement, suppose, towards a contradiction, that
there exists σ 6= ρ such that ρ



σ and σ 4s ρ. By Proposition 5 we have ρ 4s σ.
By antisymmetry we have σ = ρ, against the hypothesis. ut

The structure of the partial order is shown in Figure 8, where the relations
between terms with a unique choice among actions a, b, c, a, b and c are pictured.

Remark 3. Analogously to what done in Subsect. 3.1, one can show the subcon-
tract relation 4s to be a conservative extension of the corresponding notion in SC.
Moreover, the restriction of 4s to rC provides a suitable notion of subcontract
for rC (which has never been studied before).
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(Ax∞)
B 1v|σ

(+ ·+∞)
ρv|σ

α.ρ+ ρ′ v|α.σ + σ′

(⊕ ·+∞)

∀h ∈ I. ρh v|σh⊕
i∈Iαi.ρi v|

∑
j∈I∪Jαj .σj

(+ · ⊕∞)

∀h ∈ I. ρh v|σh∑
j∈I∪Jαj .ρj v|

⊕
i∈I αi.σi

Fig. 9. The non-well founded system B∞

5 Complexity Issues

The algorithm Prove in Figure 5 (and hence the decision procedure for com-
pliance) is simple, but, as it is, its complexity is strictly exponential, as shown
by the example below, where the exponential number of recursive calls of the
decision procedure is actually reached. The example is an adaptation of the one
presented in [19](§11) concerning the subtyping relation for recursive arrow and
product types.

For each n ∈ N we define two contracts ρn and σn by induction, as follows.

ρ0 = a+ b ρn+1 = recx.a.x+ b.ρn
σ0 = recx.a.x σn+1 = a.σn ⊕ recx.b.x

As for the example in [19], the size of ρn and σn is linear in n, since ρn and σn
appear just once in the definitions of ρn+1 and σn+1, respectively. By complete
induction over n it is possible to prove that, for any n, ρn



σn. The computation
of Prove(∅ B ρn v| σn) builds a derivation for B ρn v| σn in an actual exponential
number of calls. Given n, the first part of the recursive-call tree looks as follows
(where we abbreviate “Prove” by “Pr”)

Pr(∅ B ρn v| σn)

Pr(Γ1 B ρn v| σn−1) Pr(Γ2 B ρn−1 v| σn)

Pr(Γ3Bρnv|σn−2) Pr(Γ4Bρn−1 v| σn−1) Pr(Γ5Bρn−1 v| σn−1) Pr(Γ6Bρn−2 v| σn)

. . . . . . etc.

where Γ4 = {ρn v| σn, ρn v| σn−1} 6= {ρn v| σn, ρn−1 v| σn} = Γ5. So, any call
of the shape Pr(Γ B ρk v| σk) produces two calls Pr(Γ ′ B ρk−1 v| σk−1) and
Pr(Γ ′′ B ρk−1 v| σk−1) with Γ ′ 6= Γ ′′; overall there are at least 2n calls.

However, the complexity of the compliance decision procedure can be drasti-
cally reduced down to a polynomial complexity.

A polynomial decision algorithm. We first define a non-well founded version
of system B .

Definition 14 (The non-well founded system B∞ ). We write B∞ ρv|σ
whenever there exists a finite or infinite derivation tree formed by the rules in
Figure 9 having ρv|σ as conclusion, and such that each finite branch ends with
an instance of axiom (Ax∞).
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Because all expressions in the premises are subexpressions of those in the conclu-
sion, and contracts are regular trees, in an infinite branch there must be at least
a judgment occurring infinitely many times.

Lemma 2 (Systems B and B∞ are equivalent). B ρv|σ iff B∞ ρv|σ

In Figure 10 we present a decision algorithm Decide , based on the pro-
cedures P and P+. A run of the proof reconstruction algorithm resembles a
computation tree of an alternating Turing machine, where nodes corresponding
to rules (⊕ ·+∞) and (+ · ⊕∞) are universal, nodes corresponding to (+ ·+∞)
are existential; P(A,F, L, b) attempts to prove all statements in its goal list L,
while P+(A,F, L, b) succeeds if at least one goal in L is satisfiable.

The procedure P is an adaptation of the concrete subtyping algorithm for
recursive arrow and product types of [19](§10) to the present, more complex
context. It consists of a proof reconstruction procedure for B∞ using a depth-first
technique. P accumulates in its first argument A all the judgments it encounters
during the search, in order to avoid looping over the same judgments (a role
similar to Γ in system B ). With respect to the algorithm in [19](§10) we have
two further parameters, F and b. The argument F accumulates the judgments
for which it has been found that no derivation exists. When a rule (+ · +) is
encountered, the algorithm proceeds by calling the procedure P+ which, in case
a premise is unprovable, goes on checking the other premises. The negative
information inferred about unprovable judgments is stored in F and it is carried
along by the procedure P+ (as well as the positive information stored in A) in
order not to duplicate work. The argument b, that can be either ok or fail, is
used to record whether the last call was successful or not, and it is used by P+

to know whether it has to stop with success, or to check a new premise.
Let us note that, contrary to the previous treatment, while studying the

algorithm Decide , we abandon the equi-recursive view of recursion, and we
represent a contract by a particular explicit (possibly) recursive expression.

Proposition 7 (Complexity of Deciding Compliance). Given two con-
tracts ρ, σ ∈ rsC, deciding whether ρ



σ has a complexity O(n5), where n is the
maximum size of ρ and σ.

Proof. First, observe that:

(1) the recursive calls in lines -1-, -2-, -16-, -17-, -19- and, possibly, in lines -7-,
-11-, -15-, -20- do leave unaltered the arguments A and F;

(2) in the other recursive calls the cardinality of A ∪ F strictly increases.

The number p of consecutive calls related to item 1 cannot be greater than
the maximum branching of a node in the derivation tree we are trying to build,
and this is bounded by the size n of the input. That is p is O(n). The number q
of calls related to item 2, instead, is bounded by the cardinality of all the possible
pairs of the subterms ρ′ and σ′ of, respectively, ρ and σ, that is q is O(n2). This
means that the overall number of calls is bounded by pq, that is O(n3).

It remains to look at
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Decide (ρv|σ) = let (A,F, b) = P(∅, ∅, [ρv|σ],ok)
in b = ok

where

P(A,F, [ ], b) = (A,F, b)

P(A,F, (ρv|σ):xs, b) =
-1- if ρ = 1 then P(A,F, xs, b)
-2- else if ρv|σ ∈ A then P(A,F, xs, b)

-3- else if ρv|σ ∈ F then (A,F, fail)

-4- else if ρ =
∑

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ∩ J = {i1, . . . , in}
-5- then let (A0,F0, b0) = P+(A∪{ρv|σ},F, [ρi1 v| σi1 . . . ρin v| σin ], b)

-6- in if b0=fail then (A0,F0, fail)

-7- else P(A0,F0, xs, b0)

-8- else if ρ =
⊕

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ⊆ J and I = {i1, . . . , in}
-9- then let (A0,F0, b0) = P(A∪{ρv|σ},F, [ρi1 v| σi1 . . . ρin v| σin ], b)

-10- in if b0=fail then (A0,F0, fail)

-11- else P(A0,F0, xs, b0)

-12- else if ρ =
∑

i∈I αi.ρi and σ =
⊕

j∈J αj .σj and I ⊇ J and J = {j1, . . . , jn}

-13- then let (A0,F0, b0) = P(A∪{ρv|σ},F, [ρi1 v| σi1 . . . ρjn v| σjn ], b)

-14- in if b0=fail then (A0,F0, fail)

-15- else P(A0,F0, xs, b0)

-16- else if ρ = recx.ρ′ then P(A,F, ({recx.ρ′/x}ρ′ v|σ):xs, b)

-17- else if σ = recx.σ′ then P(A,F, (ρv| {recx.σ′/x}σ′):xs, b)

-18- else (A,F ∪ {ρv|σ}, fail)

and where

P+(A,F, [ρv|σ], b) = P(A,F, [ρv|σ], b)

P+(A,F, (ρv|σ):xs, b)=

-19- let (A0,F0, b0) = P(A,F, [ρv|σ], b) in

-20- if b0 = fail then P+(A ∪ A0,F ∪ F0, xs,ok)

-21- else (A0,F0, b0)

Fig. 10. The polynomial decision procedure for compliance.



21

– the complexity of checking whether, given ρv|σ and ρ′ v|σ′, the expression ρ
represents the same regular tree as ρ′, and σ the same as σ′;

– the complexity of checking the conditions ρv|σ ∈ A and ρv|σ ∈ F.

The first one is O(n) as contracts are regular expressions. This implies that the
second one is O(n2). Since the above conditions are checked before each recursive
call, the overall complexity is polynomial, and in particular O(n5). ut

Corollary 4 (Complexity of Deciding Subcontract). Given two contracts
ρ, σ ∈ rsC, deciding whether ρ 4s σ has a complexity in O(n5), where n is the
maximum size of ρ and σ.

Proof. It follows from Proposition 7 using Theorem 4 to reduce the checking of
subcontract to the checking of compliance. Note that building the dual of a given
contract takes linear time. ut

Remark 4. The polynomial decision procedure Decide applies also to the
formalism of retractable session contracts of [7]. In fact, the sound and complete
formal system B rC (and the corresponding procedure Prove) for



rC (see
Appendix A.1) is the restriction to elements of rC of the system in Figure 4.
Obviously, when applied to elements of rC, the clauses -8- and -12- of Decide 

do not need to take into account the possibility of internal input choices.

6 Retractable Contracts vs Reversible Computing

In this section we explore the relations between our retractable contracts and
calculi for reversible computation (see [25] for an overview). In [28], Phillips and
Ulidowski provide an automatic technique to derive, from the forward semantics
of a given calculus, its reversible semantics. In principle, we would like to start
from the forward calculus underlying our retractable contracts, that is from
retractable contracts equipped with the semantics obtained by replacing a and a
with α in the semantics of session contracts (see Definition 20 in Appendix A.1).

Definition 15 (Retractable Contracts Underlying Semantics).

α.σ ⊕ σ′ τ−→U α.σ α.σ
α−→U σ α.σ + σ

α−→U σ

ρ
τ−→U ρ′

ρ ‖ σ −→U ρ′ ‖ σ

σ
τ−→U σ′

ρ ‖ σ −→U ρ ‖ σ′
ρ

α−→U ρ′ σ
α−→U σ′

ρ ‖ σ −→U ρ′ ‖ σ′

However, the technique in [28] requires the LTS of the forward semantics to
satisfy a number of conditions, and the LTS in Definition 15 does not satisfy
them. Thus, in order to apply the technique, we transform the syntax and the
semantics of our forward calculus as follows:

– we merge the two levels of syntax and semantics (contracts and client/server
pairs) into one;
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– we transform internal choice into τ -prefixed external choice;
– we separate action prefixing from internal/external choice.

The syntax of the resulting calculus, that we dub TC (transformed contracts), is:

σ := ατ .σ |
∑
i∈I

σi | x | recx.σ | σ ‖ σ′ | 1

where ατ denotes a, a or τ .
We use J·K to denote the translation of either a contract σ or a client/server

pair σ ‖ ρ into the syntax above.

Definition 16 (Translation function). The translation function J·K : rsCo ∪
rsCo× rsCo −→ TC is defined inductively as follows:
J
∑
i∈I αi.σiK =

∑
i∈I αi.JσiK JxK = x Jrecx.σK = recx.JσK

J
⊕

i∈I αi.σiK =
∑
i∈I τ.αi.JσiK J1K = 1 Jσ ‖ ρK = JσK ‖ JρK

Transformed contracts are more general than our contracts, allowing for gen-
eral parallel composition and mixed choice, however the restriction of transformed
contracts to the translation of closed contracts via function J·K is closed under
reduction, as shown by the semantics below. Thus, from now on we consider only
such transformed contracts.

Definition 17 (Semantics of Transformed Contracts).

ατ .σ
ατ−→ σ

σ
ατ−→ σ′

σ + ρ
ατ−→ σ′

ρ
τ−→ ρ′

ρ ‖ σ τ−→ ρ′ ‖ σ
ρ

α−→ ρ′ σ
α−→ σ′

ρ ‖ σ τ−→ ρ′ ‖ σ′

Symmetric rules have been omitted.

It is easy to check that the LTS for transformed contracts and the LTS
underlying retractable contracts model the same client/server interactions.

Proposition 8. Let σ, ρ, σ′, ρ′ ∈ rsC.

σ ‖ ρ −→U σ′ ‖ ρ′ iff Jσ ‖ ρK τ−→ Jσ′ ‖ ρ′K

Proof. By inspection of the rules. ut

One can apply to the LTS in Definition 17 the technique in [28], obtaining
the LTS below. In order to simplify the treatment, we replaced the keys used
in [28] to annotate actions with an underline. While this is not correct in general,
this is correct in the image of our contracts, since keys are used to distinguish
interactions with different communication partners, but in our case for each
action there is at most one possible partner.
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[[a.c+ b.d]] = a.c+ b.d [[a.c+ b.(e⊕ f)]] = a.c+ b.(τ.e+ τ.f)

〈 〉na.c+ b.d ‖ 〈 〉na.c+ b.(e⊕ f) a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

−→ a.cnd ‖ a.cne⊕ f −→ a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

−→ a.cnd ‖ a.cne −→ a.c+ b.d ‖ a.c+ b.(τ .e+ τ.f)

 a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

rb−→ 〈 〉na.c ‖ 〈 〉na.c  a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

−→ ◦nc ‖ ◦nc −→ a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

−→ ◦: ◦n1 ‖ ◦: ◦n1 −→ a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f)

Fig. 11. Contracts with history vs transformed contracts: an example

Definition 18 (Reversible Transformed Contracts: Forward Rules).

std(X)

ατ .X
ατ−→ ατ .X

X
ατ−→ X ′

ατ .X
ατ−→ ατ .X

′
X

ατ−→ X ′ std(Y )

X + Y
ατ−→ X ′ + Y

X
τ−→ X ′

X ‖ Y τ−→ X ′ ‖ Y
X

α−→ X ′ Y
α−→ Y ′

X ‖ Y τ−→ X ′ ‖ Y ′

Symmetric rules have been omitted, and std(X) holds if X does not contain
underlined prefixes.

Backward rules, denoted by arrow  , can be obtained simply by changing
the direction of the arrows in the rules above.

In Figure 11 we show an example of how a reduction sequence in our reversible
contract formalism does correspond to a reduction sequence for transformed
contracts. We formalize the correspondence hinted at in the example by providing
a definition of simulation between a contract with history and its encoding into
reversible transformed contracts:

Definition 19. Let R be a relation between contracts with history and reversible
transformed contracts. R is a simulation iff for each (Hnσ,X) ∈ R:

– if Hnσ −→ H′nσ′ with a forward move then X
τ−→ X ′ and (H′nσ′, X ′) ∈ R;

– if Hnσ −→ H′nσ′ with a backward move then X
τ
 

+
X ′ and (H′nσ′, X ′) ∈

R;

where
τ
 

+
is the transitive closure of

τ
 .

Theorem 6. For each σ ∈ rsC there is a simulation R such that (〈 〉nσ, JσK) ∈ R.

Proof (Sketch). The definition of the relation R is quite convoluted, hence we
will not spell out it here, but we present the main ideas below. Essentially, one
starts from the inverse of the translation function J·K, keeping into account that:
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– underlined actions are dropped;
– for branches in choices where another branch contains underlined actions two

possibilities have to be considered: either the branch is dropped (corresponding
to paths that have been executed and discarded, or directly discarded by an
unretractable choice), or it is moved to the history (corresponding to paths
starting from a retractable choice which have not been tried yet).

It is easy to check that such a relation is a simulation. ut

Note that the opposite of Theorem 6 cannot hold because of the mechanisms
to control reversibility discussed in Remark 1. Indeed, the technique in [28]
generates an uncontrolled semantics. A sample difference is that in transformed
contracts we can have an infinite reduction sequence persistently choosing the
right branch after the backward reduction, as follows.

a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f) −→+ a.c+ b.d ‖ a.c+ b.(τ .e+ τ.f)

 + a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f) −→+ a.c+ b.d ‖ a.c+ b.(τ .e+ τ.f)

 + a.c+ b.d ‖ a.c+ b.(τ.e+ τ.f) −→+ etc.

It is easy to check, instead, that 〈 〉na.c+ b.d ‖ 〈 〉na.c+ b.(e⊕ f) can perform
no infinite reduction sequence since the chosen branch is discarded upon rollback.

7 Related Work and Conclusion

We have presented two conservative extensions of the session contracts of [2,3,9],
a formalism interpreting session types [21] into a subset of contracts [13,26,14].
One extension deals with backtracking and one with speculative execution. We
have shown that they both give rise to the same compliance relation, and, as a
consequence, to the same subcontract (both for servers and for clients) and duality
relations. For each of these relations we provided syntactic characterizations of
the semantic concepts, allowing for efficient ways of checking them.

We discussed in the Introduction the improvements w.r.t. the preliminary
results about retractable session contracts in [7]. Another closely related work
is [5,6], where a different form of contracts with rollback is presented. Our
retractable contracts depart from that model on three main aspects: (1) we use
rollback in a disciplined way to tolerate failures in the interaction (in [5,6] it is
an internal decision of a participant), thus improving compliance; (2) we embed
checkpoints in the structure of contracts, avoiding explicit checkpoints; (3) we
keep a stack of “pasts”, instead of just a single past as in [5,6].

Reversibility, generalizing backtracking by allowing one to go back to any
past state, has also been studied in the setting of binary session types [31,32].
There however the emphasis is on defining the reversible engine, based on causal-
consistent reversibility [25], and not on studying compliance or subtyping (which
would correspond to our subcontract relation).

Similarly to our retractable contracts, long running transactions with com-
pensations, and in particular interacting transactions [17], allow one to undo past
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agreements. In interacting transactions, however, abort (which corresponds to
our backtracking) can occur at any time, not only when an agreement cannot be
found as in our case. Also, each transaction offers just two possibilities, and they
are sorted: first the normal execution, then the compensation. Finally, compliance
of interacting transactions has never been studied.

In [4] a game-theoretical interpretation of the retractable session contracts of
[7] has been provided. Such an interpretation is likely to extend to the retractable
contracts presented here.

We plan also to investigate whether our approach can be extended to multi-
party sessions [22]. An investigation of multi-party sessions with rollbacks and
named checkpoints has been already undertaken in [18]. In such a paper, however,
the cause of a rollback is not a synchronization failure, but it is completely
transparent to the calculus. Moreover, chosen branches are not discarded and
can be retried upon rollback.

Because of the relevance of higher-order features in type systems, and of
session delegation in type systems with sessions in particular, also higher-order
session contracts, i.e. session contracts with delegation, have been investigated
[3,10]. It is hence worth studying the integration of backtracking (or speculative
execution) and session delegation.

A last line of future work is the study of how to extract retractable or
speculative contracts from actual software based on backtracking or on speculative
parallelism, and how to propagate the results on contracts to the original software.
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A Appendix: Proofs

A.1 Session Contracts and Retractable Session Contracts

Session contracts, a formalism interpreting session types [21] into a subset of
contracts [13,26,14], have been introduced in [3,9].

The set SC of session contracts can be seen as the subset of elements in
rsC not containing external output choices and internal input choices, with the
following operational semantics.

Definition 20 (Semantics of Session Contracts).

a.σ ⊕ σ′ τ−→SC a.σ α.σ
α−→SC σ a.σ + σ

a−→SC σ

As done for rsC, we can look at session contracts up-to unfolding of recursion.

The next definitions introduce the LTS for client/server pairs of session
contracts, and the corresponding compliance relation.

Definition 21 (Semantics of Client/Server Pairs of Session Contracts).

ρ
τ−→SC ρ

′

ρ‖σ −→SC ρ
′‖σ

σ
τ−→SC σ

′

ρ‖σ −→SC ρ‖σ′
ρ

α−→SC ρ
′ σ

α−→SC σ
′

ρ‖σ −→SC ρ
′‖σ′

Definition 22 (Compliance Relation



SC for Session Contracts).
The relation


SC ⊂ SC× SC is defined by:

ρ



SC σ if, for each ρ′, σ′ such that
ρ ‖ σ ∗−→SC ρ

′ ‖ σ′ 6−→SC we have ρ′ = 1

The sound and complete formal system BSC for



SC is recalled in Figure 12.

Theorem 7. Let ρ, σ ∈ SC. ρ



SC σ iff BSC ρv|σ

Proof. In [3] a formal system BH is devised which is sound and complete for
compliance of higher-order session contracts (HSC), that is

BH ρv|σ iff ρ



H σ

The set SC can be looked at as the first-order restriction of HSC. It is easy to
show that, for ρ, σ ∈ SC,

BH ρv|σ iff BSC ρv|σ

It is also not difficult to show that, for ρ, σ ∈ SC,

ρ



SC σ iff ρ



H σ

From the above statement, the thesis descends immediately. ut
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(Ax)
Γ BSC 1v|σ

(Hyp)
Γ, ρv|σ BSC ρv|σ

(⊕ ·+)

∀h ∈ I. Γ,
⊕

i∈Iai.ρi v|
∑

j∈I∪Jaj .σj BSC ρh v|σh

Γ BSC

⊕
i∈Iai.ρi v|

∑
j∈I∪Jaj .σj

(+ · ⊕)
∀h ∈ I. Γ,

∑
j∈I∪J aj .ρj v|

⊕
i∈I ai.σi BSC ρh v|σh

Γ BSC

∑
j∈I∪Jaj .ρj v|

⊕
i∈I ai.σi

Fig. 12. System BSC

Retractable session contracts were introduced in [7]. The set rC of retractable
session contracts can be seen as the subset of elements in rsC not containing
internal input choices. The operational semantics of retractable session contracts
is the restriction to elements in rC of the semantics defined in Definitions 3 and
4. The sound and complete formal system BrC for



rC is the restriction to
elements of rC of the system in Figure 4.

Theorem 8 (From [7]). Let ρ, σ ∈ rC. ρ



rC σ iff BrC ρv|σ

A.2 Conservativity Proofs

Before proving that the operational semantics of retractable and speculative
contracts is a conservative extension of the operational semantics of session
contracts, we need a simple technical lemma and a fact.

Lemma 3. Let ρ ∈ SC. Then either ρ = a.ρ1⊕ρ2, or ρ = α.ρ′, or ρ = a.ρ1 +ρ2,
or ρ = 1. Moreover,

i) a.ρ1 ⊕ ρ2
τ−→ a.ρ1 if and only if Hna.ρ1 ⊕ ρ2

τ−→ Hna.ρ1;

ii) α.ρ′
α−→ ρ′ if and only if Hnα.ρ′ α−→ H: ◦nρ′;

iii) a.ρ1 + ρ2
a−→ ρ1 if and only if Hna.ρ1 + ρ2

a−→ H : ρ2nρ1
iv) ρ = 1 if and only if (Hnρ 6 α−→ and Hnρ 6 τ−→).

Proof. Easy, by definition of session contract and by Definitions 4 and 20. ut

Fact 2 Let ρ, σ ∈ SC. H1nρ ‖ H2nσ −→f H′1nρ′ ‖ H′2nσ′ implies ρ′, σ′ ∈ SC

Both the retractable operational semantics and the speculative operational
semantics of contracts are conservative extension of the operational semantics of
session contracts SC in the following sense:

Proposition 1 Let ρ, σ ∈ SC.

i) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff H1nρ ‖ H2nσ

∗−→f H′1nρ′ ‖ H′2nσ′
for some H1,H2,H

′
1 and H′2
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ii) ρ ‖ σ ∗−→SC ρ
′ ‖ σ′ iff ρ ‖ σ ∗−→ α1@ . . . αn@ρ′ | Cρ ‖ α1@ . . . αn@σ′ | Cσ

for some n, α1, . . . , αn,Cρ and Cσ

Proof. (i) The inclusion SC ( rsC holds by definition. Hence, given ρ, σ ∈ SC
we have ρ, σ ∈ rsC and H1nρ,H2nσ ∈ rsCH.

(⇒) By induction on the length of the reduction sequence
∗−→SC, using Defini-

tions 4 and 21 and Lemma 3 to check all the possible cases for the reductions
of client/server pairs.

(⇐) Using Fact 2 we first show that no pair of the form H1nα.ρ1+ρ2 ‖ H2nα.σ1+

σ2 can ever appear inside the reduction sequence
∗−→f . Then we proceed by

induction on the length of the reduction sequence
∗−→f using Definitions 4

and 21 and Lemma 3 to check all the possible cases for the reductions of
client/server pairs with histories.

(ii) By induction on the length of the derivation. The base case is trivial. Let us
consider the inductive case.

(⇒) the actions performed by σ′ and ρ′ can be performed as well by
α1@ . . .@αn@ρ′ and α1@ . . . αn@σ′, with the only possible side effects of
adding complementary actions to the prefixes, and of spawning further par-
allel threads. Since both the effects are compatible with the thesis, we are
done.

(⇐) if the action is a τ action, then the corresponding session contract can
perform it as well. If it is a synchronization, by definition of the semantics
it involves two threads with complementary prefixes α1@ . . .@αn@ρ′ and
α1@ . . . αn@σ′. By inductive hypothesis ρ ‖ σ ∗−→SC ρ

′ ‖ σ′, hence the thesis
follows since ρ′ and σ′ can match the synchronization. ut

The proof of Proposition 2(i) descends immediately from the fact that SC ( rC (
rsC. and the fact that system BSC is a subsystem of system B . Similarly for
Proposition 2(ii), by taking into account BrC .

A direct proof of Corollary 3(i) We provide now a direct proof of Corollary
3(i), that is of the conservativity of the retractable/speculative compliance with
respect to to session-contract compliance. We do that by taking into account the
definition of the relation



R , since we have that



=



R .
The proof requires some care. In fact, as seen in Lemma 3, even if we restrict ρ in
Hnρ to be a session contract, reductions can modify the stack. This implies that
in a sequence of reductions out of a retractable client/server system 〈 〉nρ ‖ 〈 〉nσ
with ρ, σ ∈ SC, also

rb−→ reductions can occur. In order to handle the presence
of rollbacks, we can show that in reduction sequences out of 〈 〉nρ ‖ 〈 〉nσ, with
ρ, σ ∈ SC, only particular stacks can be produced (called incompatible below),
such that once a rollback procedure is started it necessarily goes on till a stuck
state is reached.

Definition 23 (Incompatible Stacks). Let H1,H2 ∈ rsCH such that H1 = δ1 :
· · · :δn and H2 = γ1 : · · · :γn for some n.
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We say that H1 and H2 are incompatible if for any 1 ≤ i ≤ n either δi = ◦ or
γi = ◦.

The following technical lemmas describe the behaviour of reduction and
reduction sequences out of contracts with histories when session contracts are
taken into account.

Lemma 4. Let ρ, σ ∈ SC.

i) Let H1nρ ‖ H2nσ −→f H′1nρ′ ‖ H′2nσ′. If H1 and H2 are incompatible, so
are H′1 and H′2.

ii) If 〈 〉nρ ‖ 〈 〉nσ ∗−→f H′1nρ′ ‖ H′2nσ′ then H′1 and H′2 are incompatible.
iii) Given two incompatible stacks H1 and H2 and given ρ, σ ∈ rsC, if

H1nρ ‖ H2nσ 6−→f then H1nρ ‖ H2nσ
rb ∗−→ H′1nρ′ ‖ H′2nσ′ 6−→.

iv) If 〈 〉nρ ‖ 〈 〉nσ ∗−→ H′1nρ′ ‖ H′2nσ′ 6−→ then the reduction sequence
∗−→ is

actually of the form
∗−→f

rb ∗−→

Proof. (i) If the reduction −→f is actually a reduction (τ), the thesis trivially
holds. Otherwise, −→f is necessarily a reduction (comm). Since ρ, σ ∈ SC,
from H1nρ ‖ H2nσ −→f H′1nρ′ ‖ H′2nσ′ we can infer that either ρ = a.ρ′′

and σ = a.σ′′ or ρ = a.ρ′′ + ρ′′′ and σ = a.σ′′ or σ = a.σ′′ and ρ = a.ρ′′ or
σ = a.σ′′ + σ′′′ and ρ = a.σ′′. In all such cases, by rule (comm) of Definition
4, we get that either H′1 = H1 :◦ or H′2 = H2 :◦. This implies H′1 and H′2 to
be incompatible if H1 and H2 are so.

(ii) By induction of the length of the reduction sequence, using point (i).
(iii) Since H1 and H2 are incompatible, the rollbacks out of H1nρ ‖ H2nσ can

proceed until the stacks become empty. At that point, the last element of
such sequence of rollbacks is 〈 〉nδ1 ‖ 〈 〉nγ1, where 〈 〉nδ1 ‖ 〈 〉nγ1 6−→ since
one among δ1 and γ1 is equal to ◦.

(iv) If the reduction sequence does not contain any rollback, we get the thesis
immediately. Let us then consider the leftmost subsequence such that

〈 〉nρ ‖ 〈 〉nσ ∗−→f H′′1nρ′′ ‖ H′′2nσ′′ 6−→f

By point (ii) we have that H′′1 and H′′2 are incompatible. By point (iii) we

hence get that H′′1nρ′′ ‖ H′′2nσ′′
rb ∗−→ H′′′1 nρ′′′ ‖ H′′′2 nσ′′′ 6−→. So, we have

necessarily that H′1nρ′ ‖ H′2nσ′ does coincide with H′′′1 nρ′′′ ‖ H′′′2 nσ′′′ 6−→
and that the reduction sequence is actually a sequence

∗−→f
rb ∗−→. ut

Fact 3 Let ρ, σ ∈ SC.
H1nρ ‖ H2nσ −→f H′1nρ′ ‖ H′2nσ′ 6−→ implies ρ ‖ σ −→SC ρ

′ ‖ σ′.

We are now ready to provide a direct proof of Corollary 3(i), that we recall below
(taking into account that



R =



).

The theory of retractable compliance is a conservative extension of com-
pliance for session contracts SC, that is, given ρ, σ ∈ SC,

ρ



SCσ iff ρ



R σ
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Proof. (⇒) By contradiction let us assume

〈 〉nρ ‖ 〈 〉nσ ∗−→ H′1nρ′ ‖ H′2nσ′ 6−→

with ρ′ 6= 1. By Lemma 4(iv) just the following two cases can be taken into
account:
either

〈 〉nρ ‖ 〈 〉nσ ∗−→f H′1nρ′ ‖ H′2nσ′ 6−→

or
〈 〉nρ ‖ 〈 〉nσ ∗−→f H′′1nρ′′ ‖ H′′2nσ′′

rb +−→ H′1nρ′ ‖ H′1nσ′ 6−→

In the first case, by induction, using Fact 3, we get that ρ ‖ σ −→SC ρ
′ ‖ σ′ 6

−→SC with ρ′ 6= 1, that is ρ 6



SCσ.
In the second case, similarly to what done previously, we can get ρ ‖ σ −→SC

ρ′′ ‖ σ′′ 6−→SC. Since H′′1nρ′′ ‖ H′′2nσ′′
rb−→, we have necessarily that ρ′′ 6= 1.

This means that ρ 6



SCσ.
(⇐) By contradiction, let us assume that ρ ‖ σ −→SC ρ

′ ‖ σ′ 6−→SC with ρ′ 6= 1.

It is easy now to get 〈 〉nρ ‖ 〈 〉nσ ∗−→f H′1nρ′ ‖ H′2nσ′ 6−→f . We distinguish

now two cases: either H′1nρ′ ‖ H′2nσ′
rb−→ or H′1nρ′ ‖ H′2nσ′ 6

rb−→. In the
first case we have finished, since we get ρ 6



R σ by definition. In the second

one, by Lemma 4(ii) we get that H′1nρ′ ‖ H′2nσ′
rb ∗−→ H′′1nρ′′ ‖ H′′2nσ′′ 6−→.

Moreover, ρ′′ cannot be 1, otherwise it should have be put on the stack
in one of the reductions of 〈 〉nρ ‖ 〈 〉nσ ∗−→f H′1nρ′ ‖ H′2nσ′, and that is
impossible. Hence we get by definition that ρ 6



R σ. ut

A.3 Soundness and Completeness Proofs (Theorems 2 and 3)

We begin with the proof of Soundness and Completeness of system B with
respect to the retractable compliance.

Retractable Soundness and Completeness It is useful to show that if a configu-
ration is stuck, then both histories are empty. This is a consequence of the fact
that the property “the histories of client and server have the same length” is
preserved by reductions.

Lemma 5. If 〈 〉nρ ‖ 〈 〉nσ ∗−→ H1nρ′ ‖ H2nσ′ 6−→, then H1 = H2 = 〈 〉.

Proof. Clearly H1nρ′ ‖ H2nσ′ 6−→ implies either H1 = 〈 〉 or H2 = 〈 〉. Observe
that:

– rule (comm) adds one element to both stacks;
– rule (τ) does not modify both stacks;
– rule (rbk) removes one element from both stacks.

Then starting from two stacks containing the same number of elements, the
reduction always produces two stacks containing the same number of elements.
So H1 = 〈 〉 implies H2 = 〈 〉 and vice versa. ut
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The following lemma proves that compliance is preserved by the concatenation
of histories to the left of the current histories.

Lemma 6. If H1nρ



R H2nσ, then H′1 :H1nρ



R H′2 :H2nσ for all H′1, H′2.

Proof. It suffices to show that

H1nρ



R H2nσ implies ρ′ :H1nρ



R H2nσ and H1nρ



R σ′ :H2nσ

which we prove by contraposition.
Suppose that ρ′ :H1nρ 6



R H2nσ; then

ρ′ :H1nρ ‖ H2nσ
∗−→ H′1nρ′′ ‖ H′2nσ′′ 6−→ and ρ′′ 6= 1

If ρ′ is never used, then H′1 = ρ′ :H′′1 and H′2 = 〈 〉, so that we get

H1nρ ‖ H2nσ
∗−→ H′′1nρ′′ ‖ 〈 〉nσ′′ 6−→

Otherwise we have that

ρ′ :H1nρ ‖ H2nσ
∗−→ ρ′nρ′′ ‖ H′2nσ′′ −→ 〈 〉nρ′ ‖ H′′2nσ′′′

and we assume that
∗−→ is the shortest such reduction. It follows that ρ′′ 6= 1.

By the minimality assumption about the length of
∗−→ we know that ρ′ neither

has been restored by some previous application of rule (rbk), nor pushed back
into the stack before. We get

H1nρ ‖ H2nσ
∗−→ 〈 〉nρ′′ ‖ H′′2nσ′′ 6−→

In both cases we conclude that H1nρ 6



R H2nσ as desired.

Similarly we can show that H1nρ 6



R σ′ :H2nσ implies H1nρ 6



R H2nσ. ut

The following lemma gives all possible shapes of compliant contracts. It is
the key lemma for the proof of soundness and completeness.

Lemma 7. We have ρ



R σ if and only if one of the following conditions holds:

1. ρ = 1;
2. ρ =

∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃k ∈ I ∩ J. ρk



R σk;

3. ρ =
⊕

i∈I αi.ρi, σ =
∑
j∈J αj .σj, I ⊆ J and ∀k ∈ I. ρk



R σk;

4. ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj, I ⊇ J and ∀k ∈ J. ρk



R σk.

Proof. The if part is immediate. We prove the only if part by contraposition and
by cases on the possible shapes of ρ and σ.

Suppose ρ =
∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj , I∩J = {k1, . . . , kn} and ρki 6



R σki
for 1 ≤ i ≤ n. Then we get

〈 〉nρki ‖ 〈 〉nσki
∗−→ Hinρ′i ‖ H′inσ′i 6−→
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for 1 ≤ i ≤ n, where ρ′i 6= 1 and Hi = H′i = 〈 〉 by Lemma 5. This implies∑
i∈I\{k1}αi.ρinρk1 ‖

∑
j∈J\{k1}αj .σjnσk1

∗−→∑
i∈I\{k1}αi.ρinρ

′
1 ‖

∑
j∈J\{k1}αj .σjnσ

′
1

by Lemma 6. Let I ′ = I \ J and J ′ = J \ I. We can reduce 〈 〉nρ ‖ 〈 〉nσ only as
follows:

〈 〉nρ ‖ 〈 〉nσ −→
∑
i∈I\{k1} αi.ρinρk1 ‖

∑
j∈J\{k1} αj .σjnσk1 by (comm)

∗−→
∑
i∈I\{k1} αi.ρinρ

′
1 ‖

∑
j∈J\{k1} αj .σjnσ

′
1

−→ 〈 〉n
∑
i∈I\{k1} αi.ρi ‖ 〈 〉n

∑
j∈J\{k1} αj .σj by (rbk)

...
...

∗−→
∑
i∈I′ αi.ρinρ′n ‖

∑
j∈J′ αj .σjnσ′n

−→ 〈 〉n
∑
i∈I′ αi.ρi ‖ 〈 〉n

∑
j∈J′ αj .σj by (rbk)

and 〈 〉n
∑
i∈I′ αi.ρi ‖ 〈 〉n

∑
j∈J′ αj .σj is stuck since I ′ ∩ J ′ = ∅.

Suppose ρ =
⊕

i∈I αi.ρi and σ =
∑
j∈J αj .σj . If I 6⊆ J let k ∈ I \ J ; then we

get
〈 〉nρ ‖ 〈 〉nσ −→ 〈 〉nαk.ρk ‖ 〈 〉nσ by (τ)

6−→

Otherwise I ⊆ J and ρk 6



R σk for some k ∈ I. By reasoning as above we have

〈 〉nρk ‖ 〈 〉nσk
∗−→ 〈 〉nρ′ ‖ 〈 〉nσ′ 6−→

and
◦nρk ‖

∑
j∈J\{k}αj .σjnσk

∗−→ ◦nρ′ ‖ ∑
j∈J\{k}αj .σjnσ

′

which imply

〈 〉nρ ‖ 〈 〉nσ −→ 〈 〉nαk.ρk ‖ 〈 〉nσ by (τ)
−→ ◦nρk ‖

∑
j∈J\{k} αj .σjnσk by (comm)

∗−→ ◦nρ′ ‖
∑
j∈J\{k} αj .σjnσ′

−→ 〈 〉n ◦ ‖ 〈 〉n
∑
j∈J\{k} αj .σj by (rbk)

6−→

In both cases we conclude that ρ 6



R σ.

The proof for the case ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj is similar.

Lemma 7 suggests that



R can be coinductively defined, or equivalently that

R =
⋂
n

R
n where

R
0 is the trivial relation rsC × rsC, and for all n > 0,

1

R
n σ and we have ρ

R
n σ if one of the following holds:

1. ρ =
∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃k ∈ I ∩ J. ρk

R
n−1 σk;

2. ρ =
⊕

i∈I αi.ρi, σ =
∑
j∈J αj .σj , I ⊆ J and ∀k ∈ I. ρk

R
n−1 σk;

3. ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj , I ⊇ J and ∀k ∈ J. ρk

R
n−1 σk.
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We write:

1. |=R Γ if for all ρ′



R σ′ ∈ Γ we have ρ′



R σ′

2. Γ |=R ρv|σ if |=R Γ implies ρ



R σ

We also write Γ |=R
n ρv|σ if



R is replaced by

R
n in the above.

Observing that

R
n+1 ⊆

R
n , we have that |=R

n+1 Γ implies |=R
n Γ . Also it is

immediate to verify that the following holds:

Fact 4 If Γ |=R
n ρv|σ for all n, then Γ |=R ρv|σ.

We are ready now to prove Theorem 2, which, using the notation above, can
be restated as follows.

Theorem 2 (Retractable Soundness and Completeness)

B ρv|σ iff |=R ρv|σ

Proof. (⇒) For this direction we can actually prove a stronger statement,
namely

Γ B ρv|σ ⇒ Γ |=R ρv|σ

By Fact 4 it suffices to prove that if Γ B ρv|σ then Γ |=R
n ρv|σ for all n, which

we establish by simultaneous induction over n and over the derivation D of
Γ B ρv|σ.

If D either ends by Ax or by Hyp then the thesis trivially holds. If D ends by
rule:

(+ ·+)

Γ, α.ρ+ ρ′ v|α.σ + σ′ B ρv|σ

Γ B α.ρ+ ρ′ v|α.σ + σ′

then we have to show that |=R
n Γ implies α.ρ + ρ′

R
n α.σ + σ′. By induction

over n we know that Γ |=R
n−1 α.ρ + ρ′ v|α.σ + σ′; from this and the fact that

|=R
n Γ implies |=R

n−1 Γ , we obtain that α.ρ+ ρ′

R
n−1 α.σ + σ′, and hence that

|=R
n−1 Γ, α.ρ+ ρ′ v|α.σ+σ′. By induction over D it follows that ρ

R
n−1 σ, which

implies α.ρ+ ρ′

R
n α.σ + σ′ by Lemma 7 as desired.

The cases in which D ends by either (⊕ · +) or (+ · ⊕) are similar, and we
conclude.

(⇐) By Theorem 1 each computation of Prove( B ρv|σ) always terminates.
By Lemma 7 and Fact 1, ρ



R σ implies that Prove( B ρv|σ) 6= fail, and hence
B ρv|σ. ut

We proceed now with the proof of Soundness and Completeness of system
B with respect to the speculative compliance.
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Speculative Soundness and Completeness

Lemma 8. We have ρ



S σ if and only if one of the following conditions holds:

1. ρ = 1;
2. ρ =

∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃k ∈ I ∩ J. ρk



S σk;

3. ρ =
⊕

i∈I αi.ρi, σ =
∑
j∈J αj .σj, I ⊆ J and ∀k ∈ I. ρk



S σk;

4. ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj, I ⊇ J and ∀k ∈ J. ρk



S σk.

Proof. The if part is immediate. We prove the only if part by contraposition and
by cases on the possible shapes of ρ and σ.

Suppose ρ =
∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj , I∩J = {k1, . . . , kn} and ρki 6



S σki
for 1 ≤ i ≤ n. Then we get

ρki ‖ σki
∗−→ Cρ

i ‖ Cσ
i 6−→

for 1 ≤ i ≤ n, where Cρ
i 6= C | α1@...@αn@1.

This implies∑
i∈Iαi.ρi ‖

∑
j∈Jαj .σj

∗−→ (
∏
i∈I∩Jαi@ρi) |

∑
i∈I\Jαi.ρi ‖ (

∏
j∈I∩Jαj@σj) |

∑
j∈J\Iαj .σj

where
∏
i∈I Ci denotes the parallel composition of Ci for each i ∈ I.

One can notice that terms
∑
i∈I\J αi.ρi and

∑
j∈J\I αj .σj cannot inter-

act with other terms. Instead, term
∏
i∈I∩J αi@ρi can interact only with

term
∏
j∈I∩J αj@σj and vice versa. The interaction follows the computations

ρki ‖ σki
∗−→ Cρ

i ‖ Cσ
i 6−→, with the added prefixes αi and αi. However, none of

these computations produces a thread of the form α′1@ . . .@α′n@1, hence ρ 6



S σ.

Suppose ρ =
⊕

i∈I αi.ρi and σ =
∑
j∈J αj .σj . If I 6⊆ J let k ∈ I \ J ; then we

get
ρ ‖ σ −→ αk.ρk ‖ σ by (τ)

6−→

Otherwise I ⊆ J and ρk 6



S σk for some k ∈ I. By reasoning as above we have

ρk ‖ σk
∗−→ Cρ ‖ Cσ 6−→

and

ρ ‖ σ
−→ αk.ρk ‖ σ
−→ αk@ρk ‖ αk@σk |

∑
j∈J\{k} αj .σj

∗−→ αk@Cρ ‖ αk@Cσ |
∑
j∈J\{k} αj .σj

6−→

where α@C denotes
∏
i∈I α@Ti if C =

∏
i∈I Ti.

In both cases we conclude that ρ 6



S σ.

The proof for the case ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj is similar. ut
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As with



R , we define the family of relations

S
n on the basis of Lemma 8,

which are such that



S =
⋂
n

S
n ; similarly we define the respective notions

Γ |=S ρv|σ and Γ |=Sn ρv|σ.

Theorem 3 (Speculative Soundness and Completeness)

B ρv|σ iff |=S ρv|σ

Proof. (⇒) This implication can be proved in the same way as Theorem 2.
(⇐) By Theorem 1 each computation of Prove( B ρv|σ) always terminates.
By Lemma 7 and Fact 1, ρ



R σ implies that Prove( B ρv|σ) 6= fail, and hence
B ρv|σ. ut

A.4 Proof of Proposition 4

As stated previously, Lemma 7



R can be coinductively defined. This holds
for



as well, since, by Corollary 1,



R =



S =



. So



=
⋂
n



n where



n =

R
n .

We recall here the definition of



n for sake of readability.

0 is the trivial relation rsC× rsC, and for all n > 0, 1



nσ and we have ρ



nσ
if one of the following holds:

1. ρ =
∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃k ∈ I ∩ J. ρk



n−1σk;
2. ρ =

⊕
i∈I αi.ρi, σ =

∑
j∈J αj .σj , I ⊆ J and ∀k ∈ I. ρk



n−1σk;
3. ρ =

∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj , I ⊇ J and ∀k ∈ J. ρk



n−1σk.

We shall prove that

∀n.[(ρ



nσ and σ



nσ
′) implies ρ



nσ
′] (1)

So, from ρ



σ and σ



σ′ we have that ∀n.ρ



nσ and ∀n.σ



nσ
′ and hence,

by 1 we can get ∀n.ρ



nσ
′, that is ρ



σ′.
We show now 1 by induction on n.

The base case is trivial. Let then n > 0 with ρ



nσ and σ



nσ
′. We proceed

by cases according to the possible shapes of ρ and σ in the definition of



n.

ρ = 1 Immediate.

ρ =
∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃k ∈ I ∩ J. ρk



n−1σk
We have then that σ =

⊕
j∈J αj .σj . So, by σ



nσ
′ and by definition of



n

we have that σ′ =
∑
h∈H αh.σ

′
h, J ⊆ H and ∀j ∈ J. σj



n−1σ
′
j . By the

induction hypothesis we can hence get that ∃k ∈ (I ∩ J) ⊆ (I ∩H) such that
ρk



n−1σ
′
k, that means, by definition, that ρ



nσ
′.

ρ =
⊕

i∈I αi.ρi, σ =
∑
j∈J αj .σj, I ⊆ J and ∀k ∈ I. ρk



n−1σk
We have then that σ =

⊕
j∈J αj .σj . So, by σ



nσ
′ and by definition of



n

we have that σ′ =
∑
h∈H αh.σ

′
h, J ⊆ H and ∀j ∈ J. σj



n−1σ
′
j . By the

induction hypothesis we can hence get that ∀k ∈ I ⊆ J ⊆ H. ρk



n−1σ
′
k,

that means, by definition, that ρ



nσ
′.



37

ρ =
∑
i∈I αi.ρi, σ =

⊕
j∈J αj .σj, I ⊇ J and ∀k ∈ J. ρk



n−1σk
We have then that σ =

∑
j∈J αj .σj . So, by σ



nσ
′ and by definition of



n

we have to take into account two cases.

σ′ =
∑
h∈H αh.σ

′
h and ∃k ∈ J ∩H. σk



n−1σ
′
k

By the induction hypothesis we can get that ∃k ∈ (J ∩ H) ⊆ (I ∩ H)
such that ρk



n−1σ
′
k, that means, by definition, that ρ



nσ
′.

σ′ =
⊕

h∈H αh.σ
′
h, J ⊇ H and ∀h ∈ H. σh



n−1σ
′
h

By the induction hypothesis we can get that ∀h ∈ H ⊆ J ⊆ I. ρh



n−1σ
′
h,

that means, by definition, that ρ



nσ
′.


