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Abstract. The principle of stationary variance is advocated as a viable variational approach
to gauge theories. The method can be regarded as a second-order extension of the Gaussian
Effective Potential (GEP) and seems to be suited for describing the strong-coupling limit
of non-Abelian gauge theories. The single variational parameter of the GEP is replaced by
trial unknown two-point functions, with infinite variational parameters to be optimized by the
solution of a set of coupled integral equations. The stationary conditions can be easily derived by
the self-energy, without having to write the effective potential, making use of a general relation
between self-energy and functional derivatives that has been proven to any order. The low-
energy limit of pure Yang-Mills SU(3) gauge theory has been studied in Feynman gauge, and
the stationary equations are written as integral equations for the gluon and ghost propagators.
A physically sensible solution is found for any strength of the coupling. The gluon propagator
is finite in the infrared, with a dynamical mass that decreases as a power at high energies.
At variance with some recent findings in Feynman gauge, the ghost dressing function does not
vanish in the infrared limit and a decoupling scenario emerges as recently reported for the
Landau gauge.

1. Introduction
There is a growing consensus on the utility of variational methods as analytical tools for
a deeper understanding of the infrared (IR) limit of non-Abelian gauge theories. The IR
slavery of these theories makes the standard perturbation theory useless below some energy
scale, and our theoretical knowledge of the IR limit relies on lattice simulation and on non-
perturbative techniques like functional renormalization group and Dyson-Schwinger equations.
Variational methods have been developed [1, 2, 3, 4, 5, 6, 7] as a complement to these analytical
approaches and quite recently the method of stationary variance[8, 9] has been advocated as
a powerful second order extension of the Gaussian Effective Potential (GEP)[10, 11, 12, 13].
The GEP is a genuine variational method and has been successfully applied to many physical
problems in field theory, from scalar and electroweak theories[13, 14, 15, 16, 17, 18, 19, 20] to
superconductivity[21, 22, 23] and antiferromagnetism[24], but turns out to be useless for gauge
interacting fermions[25]. Actually, since the GEP only contains first order terms, it is not suited
for describing the minimal coupling of gauge theories that has no first-order effects.

Several methods have been explored for including fermions[20] and higher order
corrections[26], sometimes spoiling the genuine variational character of the method. By a formal
higher order extension of the GEP[27] the method of stationary variance has been developed as
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a genuine variational method that keeps in due account second order effects and seems to be
suited to deal with the minimal coupling of gauge theories. While the method has been shown
to be viable for the simple Abelian case of QED[28], its full potentialities have not been explored
yet. As a non-perturbative tool that can deal with fermions in gauge theories, the method seems
to be very useful for exploring the IR limit of QCD, and its natural field of application is the
non-Abelian SU(3) gauge theory[29].

As a first step, in Ref.[29] we explored the solution of the stationary equations for pure Yang-
Mills SU(3) theory. While the method is a genuine variational tool that does not require any
small parameter, the technique is based on standard Feynman rules of perturbation theory. The
single variational parameter of the GEP is replaced by trial unknown two-point functions, with
infinite variational parameters to be optimized by the solution of a set of integral equations, the
stationary equations. However, these equations can be easily derived by the self-energy, without
having to write the effective potential, making use of a general relation between self-energy
and functional derivatives that has been proven to any order[27]. For pure Yang-Mills theory
the method of stationary variance provides a set of non-linear coupled integral equations whose
solutions are the propagators for gluons and ghosts. Therefore the work has a double motivation:
the technical aim of showing that the method is viable and a solution does exist (which was
not obvious nor proven in general), and the physical interest on the gluon propagator in the IR
limit, where its properties seem to be related to the important issue of confinement.

On the technical side, having shown that a sensible untrivial solution does exist is a major
achievement that opens the way to a broader study of QCD by the same method. Inclusion of
quarks would be straightforward as some fermions, the ghosts, are already present in the simple
Yang-Mills theory, and they already seem to play well their role of canceling the unphysical
degrees of freedom.

On the physical side, the properties of the gluon propagator in Feynman gauge are basically
unexplored. In Coulomb gauge[2, 7, 3, 4, 5] and in Landau gauge[6, 30, 31, 32, 33, 34, 35, 36,
37, 38] there has been an intense theoretical work in the last years. In Landau gauge theoretical
and lattice data are generally explained in terms of a decoupling regime, with a finite ghost
dressing function and a finite massive gluon propagator. The more recent findings confirm the
original prediction[39] of a dynamical mass generation for the gluon. In Feynman gauge we do
not find a very different scenario.

2. Details of the calculation
The method has been described in detail in Ref.[29]. Here, we review the main steps for the
derivation of the stationary equations.

The Lagrangian of pure Yang-Mills SU(3) gauge theory is

L = LYM + Lfix (1)

where LYM is the Yang-Mills term

LYM = −1

2
Tr
(
F̂µνF̂

µν
)

(2)

and Lfix is the guage fixing term.
The quantum effective action Γ[A′] can be written as

eiΓ[A′] =

∫
1PI

DAe
iS[A′+A]JFP [A′ +A] (3)

where A′ is an external background field (to be set to zero), S[A] is the action, JFP [A] is the
Faddev-Popov determinant and the path integral represents a sum over one particle irreducible
(1PI) graphs.
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Expressing the determinant JFP as a path integral over ghost fields ωa(x), the effective action
can be written as

eiΓ =

∫
1PI

DA,ω,ω?eiS0[A,ω,ω?]eiSI [A,ω,ω?] (4)

where the total action is

Stot = S0 + SI =

∫
LYMd4x+

∫
Lfixd4x+ Sgh (5)

and Sgh is the ghost term. We can split the action in the two parts, the free action S0 and the
interaction SI , by insertion of trial functions[27]. We define the free action S0 as

S0 =
1

2

∫
Aaµ(x)D−1ab

µν(x, y)Abν(y)d4xd4y +

∫
ω?a(x)G−1

ab(x, y)ωb(y)d4xd4y (6)

where Dab
µν(x, y) and Gab(x, y) are unknown trial matrix functions. The interaction then follows

as the difference
SI = Stot − S0 (7)

and can be written as the sum of a two-point term and three local terms: the ghost vertex, the
three-gluon vertex and the four-gluon vertex respectively

SI = S2 +

∫
d4x [Lgh + L3 + L4] . (8)

In a concise notation, the two-point interaction term can be written as

S2 =
1

2

∫
A
[
D0
−1 −D−1

]
A+

∫
ω?
[
G0
−1 −G−1

]
ω (9)

where D0 and G0 are the standard free-particle propagators for gluons and ghosts respectively.
The three local interaction terms are

L3 = −gfabc(∂µAaν)AbµAcν

L4 = −1

4
g2fabcfadeA

b
µA

c
νA

dµAeν

Lgh = −gfabc(∂µω?a)ωbAcµ (10)

where g is the SU(3) coupling constant and fabc are the structure constants of the group. The
trial functions Gab, D

ab
µν cancel in the total action Stot which is exact and cannot depend on

them. Thus this formal decomposition holds for any choice of the trial functions.
Standard Feynman graphs can be drawn for this theory with the trial propagators Dab

µν and
Gab that play the role of free propagators, and the vertices that can be read from the interaction
action SI in Eq.(8). However, the expansion is not in power of the strength parameter g, but
must be regarded as an expansion in powers of the optimized interaction SI .

Genuine variational methods can be established by the functional derivative of the effective
potential with respect to the trial propagators, in order to fulfill some given stationary
conditions[27]. Moreover, as recently discussed in Ref.[27], the funcional derivatives can be
written in terms of self-energy graphs, without having to write the effective potential

δVn
δDab

µν(p)
=
i

2

(
Πνµ,ba
n (p)−Πνµ,ba

n−1 (p)
)
, (11)

δVn
δGab(p)

= −i
(

Σba
n (p)− Σba

n−1(p)
)
, (12)
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where the nth-order gluon polarization function Πµν,ab
n and the nth-order ghost self-energy Σab

n

are the sum of all nth-order connected two-point graphs without tadpoles, while Vn is the nth-
order term of the effective potential.

In this work we use the method of stationary variance[8, 9] that has been shown to be viable
in simple Abelian gauge theories like QED[28]. According, the self-energy graphs are required
up to second order, and the stationary conditions for the variance follow as[29]

Πνµ,ab
2 (p) = Πνµ,ab

1 (p)

Σba
2 (p) = Σba

1 (p). (13)

The choice of Feynman gauge, ξ = 1, simplifies the calculation once we take

Dab
µν(p) = δabηµνD(p) = δabηµν

f(p)

−p2
(14)

where D(p) is an unknown trial function and f(p) is a trial gluon dressing function. That choice
is perfectly legitimate, but is equivalent to a variation of the trial propagator inside a more
limited class of functions.

Defining the summed quantity

Πn(p) =
1

4(N2 − 1)

∑
ab,µν

δabηµν(p)Πµν,ab
n (p) (15)

where ηµν is the metric tensor, we obtain the simple stationary equation

Π2(p) = Π1(p) (16)

while in any case, color symmetry ensures that we can always take

Gab(p) = δabG(p) = δab
χ(p)

p2
(17)

where χ(p) is a trial ghost dressing function.
Despite their simple shape, the stationary equations are a set of coupled non-linear integral

equations for the trial functions D, G. In terms of 1PI proper functions and dressing functions,
switching to the Euclidean formalism, the stationary equations can be written as

χ(pE) =

[
1 +

1

p2
E

Σ?
2(pE)

]
f(pE) =

p2
E

p2
E +M2

[
1− Π?

2(pE)

p2
E +M2

]
. (18)

Of course an iterative solution of these equations requires a numerical evaluation of the one- and
two-loop graphs contributing to the second-order proper functions Π?

2, Σ?
2 that we need at each

step as functionals of the unknown trial dressing functions f , χ. The details of the numerical
evaluation have been described in Ref.[29].

3. Regularization and numerical solutions
For any choice of the bare coupling g, Eqs.(18) can be iterated and show a fast convergence
towards a stable solution. The existence of a stable and physically reasonable solution for the
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Figure 1. The renormalized propagator DR(p) in physical units for the bare coupling
g = 0.35, 0.40, 0.65, 0.75, 0.90, 1. The energy scale has been fixed in order to fit the lattice
data of Ref.[36] (g = 1.02, L=96) that are displayed as filled circles.

method of stationary variance is one of the main achievements of the present work, since the
method can be developed further as a non-perturbative tool for the study of QCD.

For a numerical solution we first need to regularize all the diverging integrals by a non-
perturbative multiplicative renormalization scheme. Since the variational method is not gauge
invariant, the regulator can even break gauge symmetry, as we expect that gauge invariance
should be recovered in physical observables only approximately in the present approximation.
The simple choice of an energy cutoff in the Euclidean space p2

E < Λ2 has the merit of giving
physical results that are directly comparable with lattice simulations where a finite lattice acts
just like an energy cutoff. Moreover, lattice simulations are the most natural benchmark for
any variational calculation in the low energy limit. Thus we borrow from lattice simulation
the regulating scheme and its physical interpretation in terms of a bare interaction parameter
g = g(Λ) which is supposed to be dependent on the energy scale Λ. Renormalization Group
(RG) invariance requires that the physical observables are left invariant by a change of scale
Λ→ Λ′ that is accompanied by the corresponding change of the bare interaction g(Λ)→ g(Λ′).
Then, renormalized physical quantities can be defined that do not depend on the cutoff. We fix
the scale by a direct comparison with the available lattice data. It is important to point out
that the present regularization scheme does not need the inclusion of any counterterm in the
Lagrangian and especially mass counterterms that are forbidden by the gauge invariance of the
Lagrangian.

The gluon propagator is reported in Fig.1 for several values of the bare coupling. By an
appropriate change of scale, the renormalized propagator DR(p) becomes almost independent of
g and all the curves fall one on top of the other. Here the single curves are rescaled in order to fall
on top of the g = 1 bare propagator. Scaling is rather good with the exception of the far infrared
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Figure 2. The renormalized second order propagator is shown in physical units for g = 0.4,
0.65, 0.9, 1.15, 1.4, 1.65, 1.9, 2.15. By scaling, all the curves fall one on top of the other. The
energy scale is fixed by a rough fit of the Landau-gauge lattice data of Ref.[36] (g = 1.02, L=96)
that are dispayed as filled circles.

region. A physical energy scale is fixed in order to give a rough fit of the lattice data of Ref.[36]
that are included in the figure. We must warn that the data of the simulation are obtained in
the Landau gauge, while the present calculation is in Feynman gauge. While the propagator is
not expected to be gauge invariant, the physical mass should not be too much sensitive to the
gauge choice, and we may extract a rough estimate of the energy scale by comparison of the
data. Unfortunately we could not find any recent lattice data in Feynman gauge to compare
with. Despite the use of a different gauge, the main features of the lattice propagator seem to
be reproduced by the trial function, with a pronounced flat behavior in the infrared.

We can regard the optimized trial propagators D(p) and G(p) as the free propagators in an
expansion in powers of the interaction SI . Thus, it is quite reasonable to think that the actual
approximation could be improved by just adding higher-order Feynman graphs. Higher order
functions D(n), G(n) can be built by Dyson equations

D−1
(2)µν

(p) = ηµν(p2 +M2)−Π?
2µν(p) (19)

G−1
(2)(p) = G−1(p)− Σ1(p)− Σ?

2(p) (20)

The renormalized second-order propagator is shown in Fig.2 for several values of the bare
coupling g. By a proper scaling, all curves can be put one on top of the other, while a physical
energy scale has been chosen in order to give a rough fit of the lattice data. The scaling is now
very good, but the agreement with the (Landau gauge) lattice data of Ref.[36] is very poor and
only a very loose energy scale can be fixed by this method. Once more, we expect that relevant
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Figure 3. The second-order dynamical mass of Eq.(22) is reported in a log-log plot with the
same scaling factors and energy scale of Fig.2, for g = 0.9, 1.15 and 1.4. The straight dotted
line shows the power behavior ∼ (p2)−η with the exponent η = 1.5.

differences may exist between propagators in different gauges and these differences may also
depend on the formal definition of the propagator that is not an observable quantity but just
an intermediate scheme-dependent step of the full calculation.

The renormalized second order propagator D(2)(p) in Fig.2 can be fitted quite well by the
simple expression

D(2)(p) ≈
Z

p2 +m2
(21)

yielding a physical mass parameter m ≈ 0.8 GeV that is basically independent of g.
We can introduce a better definition for the dynamical mass if we take

D(2)(p) =
Z

p2 +m2(p)
(22)

where now m(p) is a function which is supposed to decrease as a power, m2 ∼ (p2)−η for large
energies.

The parameter Z can be tuned in order to get a power-law behavior that would appear as
a linear curve in a log-log plot. For any bare coupling we find Z ≈ 1, as we expected by the
knowledge of the exact asymptotic limit. For instance, in the case of g = 0.9 the asymptotic
behavior of m(p) is fitted by Z = 0.9978. The exponent turns out to be η = 1.5 for any
coupling, as shown in Fig.3 where the function m2(p) is reported for some different values of
the bare coupling, with the same scaling factors and energy scale of Fig.2. Scale dependent
values of η, oscillating in the range 1.08 < η < 1.26, have been reported in Landau gauge by
Ref.[34]. While this kind of plot enhances minor deviations from the exact scaling, we find the
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same high-energy power-law behavior for different couplings, with a dynamical mass m(p) that
saturates at m(0) ≈ 0.8 GeV.

4. Concluding remarks
In summary, one of the major achievements of the present work is the proof that a physically
consistent solution does exist for the coupled set of non-linear integral equations that arise from
the condition of stationary variance. Since pure Yang-Mills theory already contains fermions
(the ghosts), inclusion of quarks in the formalism is straightforward, and would open the way
to a broader study of QCD by the same technique.

Feynman gauge is interesting because the IR behavior of the theory is basically unexplored
yet in that gauge. The general picture that emerges from the calculation confirms a decoupling
scenario, with a finite ghost dressing function, a finite gluon propagator in the IR limit, and a
dynamical mass that decreases as a power in the UV limit.

The method can be improved in many ways. We did not bother about gauge invariance in this
first approach, but the properties of the polarization function, namely the correct cancellations
of the unphysical degrees of freedom by the ghosts, show that the constraints of gauge invariance
can be satisfied, at least approximately, by the variational solution. Actually the polarization
function is found approximately transverse up to a constant mass shift due to the dynamical
mass generation. As far as the solution satisfies, even approximately, the constraints imposed
by gauge invariance, the method is acceptable on the physical ground. While some attempts
could be made for enforcing gauge invariance[1, 30], a physically motivated choice for the gauge
would probably improve the approximation. Landau gauge would be a good candidate, as it
would enforce the transversality in the polarization function from the beginning.

An other interesting further development would come from the extension of the formalism to
the general case of a finite external background field. For a scalar theory that kind of approach
allows a consistent definition of approximate vertex functions by the functional derivative of the
effective action. For the GEP these functions can be shown to be the sum of an infinite set of
bubble graphs[16]. A similar approach would give a more consistent approximation for the gluon
propagator in the present variational framework. Eventually, the inclusion of quarks would lead
to a direct comparison with the low energy phenomenology of QCD.
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