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Abstract

We show that strangeness suppression in hadronic and nuclear collisions is fully deter-
mined by the initial energy density of the collision. The suppression factor γs(s), with√
s denoting the collision energy, can be expressed as a universal function of the initial

energy density ǫ0(s), and the resulting pattern is in excellent agreement with data from
p− p, p− Pb, Cu− Cu, Au − Au and Pb− Pb data over a wide range of energies and
for different centralities.

The relative hadron production rates in high energy strong interactions are in general
well accounted for in terms of an ideal resonance gas at temperature T and baryochemical
potential µ , with one significant caveat. Over a wide range of collision energies, both in pp
and in AA collisions, the rates for the production of strange hadrons are found fall below
the values predicted by an ideal resonance gas in chemical equilibrium; see e.g. [1–3]. The
resonance gas scenario can be maintained, however, by the rather ad hoc introduction of a
strangeness suppression factor γs(s) < 1, with γn

s reducing the production rate of hadrons
containing n strange quarks or antiquarks [4]. With increasing collision energies

√
s, the

strangeness suppression decreases, i.e., γs(s) is found to approach unity. In Fig. 1, we show
the behavior of γs(s) as function of the collision energy

√
s in pp and heavy ion (Pb−Pb,

Au − Au, Cu − Cu) collisions [5]; we return to the details of the mentioned fits a little
later on. With such a suppression factor, one finds excellent agreement for the relative
hadron abundances in hadronic and nuclear collisions as well as in e+e− annihilation.

Nevertheless, the origin and functional behavior of γs has for a long time remained enig-
matic, as has the difference in behavior between elementary and nuclear collisions. A
first step towards a solution was obtained by noting that in collisions producing only a
small number of strange particles, strangeness conservation should be enforced not only
exactly (canonical instead of grand canonical) [6], but moreover on a local level, within
a strangeness correlation volume Vc < V : the production of a single strange particle
would require that of an antiparticle nearby, not somewhere in some large equivalent
global volume V [7]. Such a requirement is effectively a deviation from global ideal gas
behavior, and it seems necessary only if there are just a few strange hadrons. Once their
numbers become large enough, local compensation is automatically given, so that there
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Figure 1: The strangeness suppression factor γs as function of the collision energy
√
s for

pp (red symbols), Pb−Pb, Au−Au, Cu−Cu (black symbols) and p−Pb (green symbol)
collisions [5].

is no longer any need for a specific strangeness correlation volume. And indeed one finds
that for Vc/V → 1, the corresponding resonance gas predictions converge to those of an
equilibrium grand canonical formulation.

The theoretical basis for such strangeness correlation volumes was recently provided
through causality considerations for the space-time evolution of high energy interac-
tions [9, 10]. In a boost-invariant production scenario [11], one has after a brief ther-
malization stage an intermediate thermal medium in strong interaction; this then freezes
out into free hadrons. At the thermalization time, all information about the initial state is
lost, and beyond the freeze-out time, there is no further interaction between the individual
hadrons. In [9, 10] it was shown that between these two times, the strongly interacting
thermal medium, whether deconfined (QGP) or confined (interacting hadrons), is par-
tioned into causally disconnected space-time regions, similar to the horizon problem in
cosmology, with no communication possible between different regions. Hadrons produced
at large rapidity come from a thermal fireball which is causally disjoint from a fireball
leading to low rapidity hadrons, and so one cannot expect strangeness conservation to oc-
cur through interaction between the relevant bubbles. The concept of a global equivalent
cluster [1] thus cannot be applied here: exactly conserved quantum numbers have to be
conserved within (smaller) causally connected volumes. This implies that any dynamical
correlations among regions separated by a large rapidity gap must originate before the
equilibration time.

The aim of the present paper is to show that this scenario leads to a universal description
of strangeness production in high energy collisions, providing a common formulation for
pp and AA collisions at different collision energies, different centralities, and different A.
In Fig. 2, we illustrate the definition of a fireball in terms of the collision evolution: we
require a causal connection between the most separate points (qR and hL) of the bubble.

In such a scheme, the size d of the causal correlation region is determined by the values
of the thermalization time τ0 (the “equilibration” time) and the hadronisation time τh,
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Figure 2: The formation and evolution of a fireball at rest in the center of mass; the
fireball is indicated in pink.

specifying the emission of free hadrons. Geometric considerations [9] result in

d

τ0
=

√

τh
τ0

(

τh
τ0

− 1
)

. (1)

For boost-invariant hadronisation, the time evolution is governed by the one-dimensional
hydrodynamic expansion

dǫ

dτ
= −

(ǫ+ p)

τ
, (2)

where ǫ denotes the energy density and p the pressure. Given the equation of state of
the plasma, we can thus express τ as function of the energy density ǫ. To illustrate, we
consider an ideal quark-gluon plasma, with p = ǫ/3, to obtain

τh
τ0

=
(

ǫ0
ǫh

)3/4

. (3)

As other extreme, we set p = 0, to find

τh
τ0

=
(

ǫ0
ǫh

)

. (4)

For a realistic description, we can take the equation of state as determined in finite
temperature lattice QCD studies [12, 13], which with p = aǫ, 0 < a < 1/3, gives us

τh
τ0

=
(

ǫ0
ǫh

)1/(1+a)

. (5)

a value lying somewhere between the two extremes just considered. For our present
considerations, however, the precise form is not important, as we shall see.

What is crucial is that the spatial size d of the causally correlated region is determined
by ǫ0/ǫh. Since the universal hadronisation energy density ǫh ≃ 0.4 − 0.6 GeV/fm3 is
obtained in lattice QCD studies and τ0 is conventionally assumed to be about 1 fm, we
find that the correlation volume is effectively specified by the initial energy density ǫ0(s).
For a central collision in the boost-invariant scheme assumed here, this is given by the
Bjorken expression [14]

ǫ0 τ0 =
1.5A

πR2
A

(

dE

dy

)AA

y=0

, (6)
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with RA = 1.25A1/3. Here A(dE/dy)AA
y=0 is the average energy deposited in the y = 0 in-

terval of a central AA collision; hence (dE/dy)AA
y=0 denotes the average energy per one-half

the number of participants in the nuclear interaction volume. A simplistic approximation
gives

(

dE

dy

)AA

y=0

≃ mT

(

dN

dy

)AA

y=0

, (7)

wheremT ≃ 0.5 GeV is the average transverse energy per produced hadron and (dN/dy)AA
y=0

the average multiplicity per one-half the number of participants deposited in the nuclear
interaction volume. The result is the often-used form

ǫ0 τ0 =
1.5mTA

πR2
A

(

dN

dy

)AA

y=0

, (8)

for the central energy density. It effectively ignores the energy density component arising
from hydrodynamic flow; nevertheless, we shall use it to begin with and later on return
to the modification arising when flow is included.

The average charged multiplicity in Pb − Pb and Au − Au collisions at central rapidity
and per one-half the number of participants has been parametrized by [15]

(

dN

dy

)AA

y=0

= a(
√
s)0.3 + b, (9)

with a=0.7613 and b= 0.0534 ( A(dN/dy)AA
y=0 is the overall charged multiplictiy in a

central AA collision). The counterpart for pp collisions is

ǫp0 τ0 =
1.5mT

πR2
p

(

dN

dy

)pp

y=0

, (10)

with
(

dN

dy

)pp

y=0

= a(
√
s)0.22 + b, (11)

where Rp = 0.8 fm, a=0.797 and b= 0.04123 [15].

These expressions specify the initial energy density ǫ0 in terms of the collision energy
√
s,

and this in turn gives us the causal correlation size d. It is thus the initial energy density
which determines the degree of strangeness suppression. If this is correct, we should be
able to relate directly the strangeness suppression as given by γs(s) to the initial energy
densities of pp and AA collisions.

To test this, we use the fits to γs(s) given in [16, 17],

γA
s (s) = 1− aA exp (−bA

√

A
√
s) (12)

and
γp
s (s) = 1− ap exp (−bps

1/4), (13)

with aA = 0.606, ap = 0.5595, bA = 0.0209, bp = 0.0242. In Fig. 1, these fits were shown
together with high energy data. At a given collision energy s, we thus have from equ’ns.
(6-11) the average energy density ǫ0(s) and from equ’ns. (12 - 13) the corresponding value
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Figure 3: Strangeness suppression as function of the initial energy density in pp, pPb and
AA collisions, based on eq.(8); black symbols correspond to AA, green to pPb and red to
pp data.

of γs(s). As a result, we therefore obtain γs(s) as a function of ǫ0(s). The result is shown
in Fig. 3 together with the available data from SPS to LHC energies.

In Fig. 1, we had also included the LHC point for p−Pb collisions at
√
s = 5.02 TeV. To

determine the corresponding energy density, we use in eq. (6)

RT = Rp(0.5N̄part)
1/3 (14)

for the transverse radius, with N̄part ≃ 8, as given by [18], together with the average
secondary multiplicity found there. The resulting point is included in Fig. 3.

In Fig. 3, we note first of all that the functional forms of γs for AA and pp collisions in
terms of ǫ0(s)τ0 fully coincide; the difference between elementary and nuclear collisions
seen in Fig. 1 is simply due to the fact that strangeness suppression is not determined by
the overall collision energy. Instead, it is governed by the initial energy density. Next we
note that in fact all data are in excellent agreement with such a universal energy density
scaling of strangeness suppression.

As a further test, we can check the variation of γs with the centrality of the collision at
fixed A and

√
s. This requires a definition of the initial energy density for non-central

collisions. In the spirit of our form (6), we have used

ǫ
Np

0 τ0 =
1.5mT (0.5Np)

πR2
Np

(

dN

dy

)AA

y=0

, (15)

with RNp
= 1.25(0.5Np)

1/3 as an estimate of the energy density as function of the number
of participants Np. This then allows us to enter recent data for γs as function of Np in
Au− Au and Cu− Cu collisions at 200 GeV [19]. In Fig. 4 it is seen to agree quite well
with the universal curve obtained from the central data. – In the similar vein, it would
be interesting to see if pp data at fixed

√
s also follow the predicted pattern; for fixed

transverse area, γs must increase with multiplicity according to the curve shown in Figs.
3 and 4, see eq. (10).
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Figure 4: Strangeness suppression as function of the initial energy density in central pp
and AA collisions, as in Fig. 3; the circles show the results from non-central collisions,
using eq.(15).

We now return to the assumed form (8) for the energy density. In a hydrodynamic
description, it is the entropy density which is related to the number of emitted secondaries,

s0 = csT
3 =

c

τ0πR2
A

(

dN

dy

)

; (16)

this holds for an ideal gas of massless hadrons at temperature T , with cs and c determined
by the number of degrees of freedom of the species produced; the transverse nuclear area
is given by πR2

A. The corresponding energy density is then given by

ǫ0 = (3/4)csT
4, (17)

so that the relation between energy density and multiplicity is now given by

ǫ0τ0 = (3/4)
τ0

c
1/3
s

[

c

τ0πR
2
A

(

dN

dy

)]4/3

. (18)

Comparing equ’s. (8) and (18) we find that as before, when (dN/dy)(s) is given, γs(s)
and ǫ0(s) are fully specified for a given s. Our main result, strangeness suppression is
determined by the initial energy density, thus remains valid. More generally speaking,
γs(s) at given s is uniquely correlated to the initial energy density at this s, as defined in
eq. (6), i.e., to the total (transverse) energy and the transverse area of the system. The
specific relation assumed to hold between dE/dy and dN/dy only modifies the detailed
form of the scaling variable. In other words, the variation of γs(s) with ǫ0τ0 in Fig. 3,
based on eq. (8), will coincide with that of γs(s) as function of [(4c1/3s /3)ǫ0τ0]

3/4, as given
by eq. (18). The basic meaning of the observed universal model-independent behavior
thus is that γs is fully determined by the ratio between the total transverse energy and
the transverse area of the system.

It would evidently be interesting to extend these consideration to hadron production in
e+e− annihilation. Here the crucial aspect is a determination of the relevant transverse
area; work on this is in progress.
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In closing, we recall that our causality considerations relate the size of the causal cor-
relation region to the life-time of the fireball as strongly interacting thermal system.
Strangeness suppression provides an experimental measure of the correlation region, while
the initial energy density determines the life-time of the interacting thermal medium. The
observed scaling of γs with a function of ǫ0τ0 is thus an observable consequence of our
basic causality correspondence.

Nevertheless, if one were to just ad hoc assume a γs(s)− ǫ0(s) correlation, the results of
Figs. 3 and 4 would remain. On a purely phenomenological level, one thus also finds that
the degree of strangeness suppression in hadronic and nuclear collisions is fully determined
by the initial energy density. A specific example of this (the K−/π ratio) was already
noted some time ago [20].
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