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Abstract: The problem of forecasting hourly solar irradiance over a multi-step horizon is dealt with
by using three kinds of predictor structures. Two approaches are introduced: Multi-Model (MM) and
Multi-Output (MO). Model parameters are identified for two kinds of neural networks, namely the
traditional feed-forward (FF) and a class of recurrent networks, those with long short-term memory
(LSTM) hidden neurons, which is relatively new for solar radiation forecasting. The performances
of the considered approaches are rigorously assessed by appropriate indices and compared with
standard benchmarks: the clear sky irradiance and two persistent predictors. Experimental results on
a relatively long time series of global solar irradiance show that all the networks architectures perform
in a similar way, guaranteeing a slower decrease of forecasting ability on horizons up to several
hours, in comparison to the benchmark predictors. The domain adaptation of the neural predictors is
investigated evaluating their accuracy on other irradiance time series, with different geographical
conditions. The performances of FF and LSTM models are still good and similar between them,
suggesting the possibility of adopting a unique predictor at the regional level. Some conceptual and
computational differences between the network architectures are also discussed.

Keywords: feed-forward neural networks; recurrent neural networks; LSTM cell; performances
evaluation; clear sky irradiance; persistent predictor

1. Introduction

As is well known, the key challenge with integrating renewable energies, such as solar power,
into the electric grid is that their generation fluctuates. A reliable prediction of the power that can be
produced using a few hours of horizon is instrumental in helping grid managers in balancing electricity
production and consumption [1–3]. Other useful applications could benefit from solar radiation
forecasting, such as the management of charging stations [4,5]. Indeed, such a kind of micro-grid
is developing in several urban areas to provide energy for electric vehicles by using Photo Voltaic
(PV) systems [6]. To optimize all these applications, a classical single-step-ahead forecast is normally
insufficient and a prediction over multiple steps is necessary, even if with decreasing precision.

Reviews concerning machine learning approaches to forecasting solar radiation were provided, for
instance, in [7–10], but the recent scientific literature has seen a continuous growth of papers presenting
different approaches to the problem of forecasting solar energy. According to Google Scholar, the
papers dealing with solar irradiance forecast were about 5000 in 2009 and became more than 15,000 in
2019, with a yearly increase of more than 15% in the last period. The growth of papers utilizing neural
networks as a forecasting tool has been quite more rapid since they grew up at a pace of almost 30% a
year in the last decade and they constituted about half of those cataloged in 2019.
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The short-term prediction of solar radiation and/or photovoltaic power output has expanded
from traditional ARMA (Auto-Regressive Moving Average) models and their evolution such as
ARMA-GARCH (Generalized Autoregressive with Conditional Heteroscedasticity) models [11],
to Bayesian statistical models [12], and Naïve Bayes Classifiers [13], and to Neuro-Fuzzy
Systems [14–16], and Fuzzy with Genetic Algorithms models [17]. More recently, other approaches
such as Markov Switching Models [18], Support Vector Machines [19–21], wavelets transformation [22],
kernel density estimation [23], and tree-based algorithms [24] have been suggested. Traditional Feed
Forward (FF) neural network for ultra-short-time horizon (one-minute resolution) was proposed
in [25]. Specific classes of neural networks have also been used, such as TDNN (Time Delay Neural
networks) [26], Recurrent [27–29], Convolutional Neural Networks [30] and other configurations [31–35].
Other works specifically concentrate on the use of Long Short-Term Memory (LSTM) networks [36–38].
Specifically, Abdel-Nasser and Mahmoud’s (2017) [36] use of the Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN) to accurately forecast the output power of PV systems was proposed,
based on the idea that such a network can model the temporal changes in PV output power due of
their recurrent architecture and memory units. The proposed method was evaluated using hourly
datasets of different sites for a year. The authors have implemented five different model structures
in order to predict the average hourly time series one-step ahead. The accuracy of the models was
assessed comparing the RMSE error in comparison with other techniques, namely Multiple Linear
Regression (MLR) models, Bagged Regression Trees (BRT) and classical Feed-Forward (FF) Neural
Networks (NN), showing that one of the five studied models outperforms the others. One of the
limitations of this attempt seems to be the very short time horizon considered (1 h). On the contrary,
several regression-based trees, were considered by Fouilloy et al. (2018) [39] for prediction horizons
from 1 to 6 hours ahead. They compared the performance of these ML approaches with the more
traditional ARMA and Multi-layer Perceptrons (MLP), over three different data sets recorded in France
and Greece. The performances, in terms of nRMSE and MAE, seem to point out that among the
methods considered there is no prevalent one and their ranking depends on the variability of the data
set. The recent paper [40] provides a large bibliography on neural network applications to solar power
forecast. The paper by Husein et al. [41] also analyses several preceding studies and compares the
results of LSTM-RNN and FF networks for hourly ahead solar irradiance forecasting using only indirect
weather measures (namely, dry-bulb temperature, dew-point temperature, and relative humidity),
even if irradiance data are still needed for network training. Various deep learning approaches, namely
Gated Recurrent Units (GRUs), LSTM, RNN and FF neural networks were considered by Aslam et
al. [42] to represent the statistical relations of solar radiation data over a very long horizon (one year
ahead).

What clearly emerges is that the very large majority of these studies concentrate on a single
(very short to very long) forecast step. However, the implementation of advanced control methods,
such as model predictive control requires the availability of forecasted values for some steps ahead.
This paper thus contributes to the field by clearly defining the possible model structures for a multi-step
prediction and comparing the performances of feed-forward and LSTM recurrent networks in the
problem of multi-step ahead forecasting of the solar irradiance at a station in Northern Italy, which
is characterized by a relatively high annual and daily variability. The forecasting approaches are
rigorously evaluated using appropriate indices and compared with standard benchmarks: the clear
sky irradiance and two persistent predictors.

Furthermore, the adaptation capability of the neural predictors is investigated evaluating their
accuracy on three locations with different geographical conditions with respect to that used for
the training.

The paper is organized as follows: In Section 2, the basic characteristics of the multi-step
feed-forward and LSTM forecasting model are presented together with the different ways of formulating
and approaching the prediction task. Some features of solar irradiance time series are pointed out
through statistical and spectral analysis. In addition, the benchmark predictors and the evaluation
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metrics are presented. Section 3 shows the results of solar irradiance forecasting performed by
autoregressive neural models, along with the domain adaptation capability of such predictors.
Section 4 reports a discussion on the intrinsic differences in the identification phase of feed-forward
and LSTM neural predictors. In Section 5, some concluding remarks are drawn.

2. Materials and Methods

2.1. Structure of the Multi-Step Neural Predictors

The time-series forecasting task is inherently dynamic because the variable to be predicted can be
seen as the output of a dynamical system. Recurrent neural networks, which are themselves dynamical
systems due to the presence of one or more internal states, are a natural choice. On the other hand,
the more traditional feed-forward (FF) nets are static and can reproduce any arbitrarily complex
mapping from the input to the output space. Static models can be adapted to deal with dynamic tasks
in different ways.

Thinking for instance to an hourly autoregressive forecast, we can consider three different ways to
predict the h step-ahead hourly sequence

[
Î(t + h− 1), . . . , Î(t + 1), Î(t)

]
basing on the observations of

the last d steps (i.e., [I(t− 1), I(t− 2), . . . , I(t− d)]) with a FF network. Here, the symbols Î(t) and I(t)
indicate the forecasted and observed solar irradiance, respectively.

2.1.1. The Recursive (Rec) Approach

Rec approach repeatedly uses the same one-step-ahead model, assuming as input for the second
step the forecast obtained one step before [43]. Only one model, fRec, is needed in this approach,
whatever the length of the forecasting horizon and this explains the large diffusion of this approach.

Î(t) = fRec(I(t− 1), I(t− 2), . . . , I(t− d)) (1)

Î(t + 1) = fRec
(
Î(t), I(t− 1), . . . , I(t− d + 1)

)
(2)

Equations (1) and (2) show the first two steps of the procedure, which has to be repeated h times.

2.1.2. The Multi-Model (MM) Approach

Although the Rec model structure is the most natural one also for h-steps ahead prediction,
other alternatives are possible and in this work, we have explored two new structures, here respectively
referred as multi-model (MM) and multi-output (MO), which are illustrated below. The peculiarity of
the MM model is that, unlike the fRec, its parameters are optimized for each prediction time horizon,
following the framework expressed by Equations (3)–(5). MM thus requires h different models to cover
the prediction horizon.

It is trivial to note that for h = 1 the model works exactly as a Rec model, but it represents a
generalization when h > 1.

Î(t) = fMM,1(I(t− 1), I(t− 2), . . . , I(t− d)) (3)

Î(t + 1) = fMM,2(I(t− 1), I(t− 2), . . . , I(t− d)) (4)

Î(t + h− 1) = fMM,h(I(t− 1), I(t− 2), . . . , I(t− d)) (5)

2.1.3. The Multi-Output (MO) Approach

The MO model [44] expressed by Equation (6) can be considered a trade-off between the Rec and
the MM since it proposes to develop a single model with a vector output composed by the h values
predicted for each time step.[

Î(t + h− 1), . . . , Î(t + 1), Î(t)
]
= fMO(I(t− 1), I(t− 2), . . . , I(t− d)) (6)
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The number of parameters of the MO, is a bit higher than the Rec (a richer output layer has to be
trained), but much lower than the MO. However, with respect to the Rec it could appear, at least in
principle, more accurate, since it allows its performance to be optimized over a higher dimensional
space. A MO in comparison to the Rec offers the user a synoptic representation of the various prediction
scenarios and therefore can be more attractive from the application point of view. Furthermore, in case
the Rec model has some exogenous inputs, one must limit the forecasting horizon h to the maximum
delay between the external input and the output. Nothing changes, on the contrary, for the other
two approaches.

2.2. Model Identification Strategies

Neural networks are among the most popular approaches for identifying nonlinear models
starting from time series. Probably this popularity is due to the reliability and efficiency of the
optimization algorithms, capable of operating in the presence of many parameters (many hundreds or
even thousands, as in our case). Two different kinds of neural networks have been used in this work.
One of the purposes behind this work was in fact to explore, on rigorous experimental bases, if more
complex but more promising neural network architectures, such as the LSTM neural networks, could
offer greater accuracy for predicting solar radiation, compared to simpler and more consolidated
architectures such as feed-forward (FF) neural networks.

LSTM cells were originally proposed by Hochreiter and Schmidhuber in 1997 [45] as a tool to
retain a memory of past errors without increasing the dimension of the network explosively. In practice,
they introduced a dynamic within the neuron that can combine both long- and short-term memory.
In classical FF neural networks, the long-term memory is stored in the values of parameters that are
calibrated on past data. The short-term memory, on the other side, is stored in the autoregressive inputs,
i.e., the most recent values. This means that the memory structure of the model is fixed. LSTM networks
are different because they allow balancing the role of long and short-term in a continuous way to best
adapt to the specific process.

Each LSTM cell has three gates (input, output, and forget gate) and a two-dimensional state vector
s(t) whose elements are the so-called cell state and hidden state [46,47]. The cell state is responsible
for keeping track of the long-term effects of the input. The hidden state synthesizes the information
provided by the current input, the cell state, and the previous hidden state. The input and forget
gates define how much a new input and the current state, respectively, affect the new state of the cell,
balancing the long- and short-term effects. The output gate defines how much the output depends on
the current state.

Recurrent nets with LSTM cells appear particularly suitable for solar radiation forecast since
the underlying physical process is characterized by both slow (the annual cycle) and fast (the daily
evolution) dynamics.

An LSTM network can be defined as in Equations (7)–(8), namely as a function computing an
output and an updated state at each time step.[

Î(t), s(t)
]
= fLSTM(I(t− 1), s(t− 1)) (7)[

Î(t + 1), s(t + 1)
]
= fLSTM

(
Î(t), s(t)

)
(8)

The predictor iteratively makes use of fLSTM starting from an initial state s(t− d− 1) of LSTM
cell and processes the input sequence [I(t− 1), I(t− 2), . . . , I(t− d)], updating the neurons internal
states in order to store all the relevant information contained in the input. The LSTM net is thus able to
consider iteratively all the inputs and can directly be used to forecast several steps ahead (h) at each
time t. In a sense, these recurrent networks unify the advantages of the FF recursive and multi-output
approaches mentioned above. They explicitly take into account the sequential nature of the time series
as the FF recursive, and are optimized on the whole predicted sequence as the FF multi-output.
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The four neural predictors presented above have been developed through an extensive
trial-and-error procedure implemented on an Intel i5-7500 3.40 GHz processor with a GeForce GTX
1050 Ti GPU 768 CUDA Cores. FF nets have been coded using the Python library Keras with Tensorflow
as backend [48]. For LSTM networks, we used Python library PyTorch [49]. The hyperparameters of
the neural nets were tuned by systematic grid search together with the number of neurons per layer,
the number of hidden layers, and all the other features defining the network architecture.

2.3. Preliminary Analysis of Solar Data

The primary dataset considered for this study was recorded from 2014 to 2019 by a Davis Vantage 2
weather station installed and managed by the Politecnico di Milano, Italy, at Como Campus. The station
is continuously monitored and checked for consistence as part of the dense measurement network of
the Centro Meteorologico Lombardo (www.centrometeolombardo.com). Its geographic coordinates
are: Lat = 45.80079, Lon = 9.08065 and Elevation = 215 m a.s.l. Together with the solar irradiance
I(t), the following physical variables are recorded every 5 min: air temperature, relative humidity,
wind speed and direction, atmospheric pressure, rain, and the UV index. However, as explained in
Section 2.2, the current study only adopts purely autoregressive models; namely, the forecasted values
of solar irradiance Î(t) are computed only based on preceding values.

A detail of the time series recorded at 00:00 each hour is shown in Figure 1a. We can interpret this
time series as the sum of three different components: the astronomical condition (namely the position
of the sun), that produces the evident annual cycle; the current meteorological situation (the attenuation
due to atmosphere, including clouds); and the specific position of the receptor that may be shadowed
by the passage of clouds in the direction of the sun. The first component is deterministically known,
the second can be forecasted with a certain accuracy, while the third is much trickier and may easily
vary within minutes without a clear dynamic.
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implements this model is part of the SNL PVLib Toolbox, provided by the Sandia National Labs PV
Modeling Collaborative (PVMC) platform [52].

2.3.1. Fluctuation of Solar Radiation

Solar radiation time series, as well as other geophysical signals, belong to the class of the so-called
1/f noises (also known as pink noise), i.e., long-memory processes whose power density spectrum
exhibit a slope, α, ranging in [0.5,1.5]. In other words, they are random processes lying between white
noise processes, characterized byα= 0, and random walks, characterized byα= 2 (see, for instance [53]).
Indeed, the slope of hourly solar irradiance recorded at Como is about α = 1.1 (Figure 2), while the
daily average time series exhibits a slope of about α = 0.6, meaning that solar radiation at daily scale is
more similar to a white process.
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Figure 2 also shows that the power spectral density has some peaks corresponding to periodicity
of 24 hours (1.16·10−5 Hz) and its multiples.

2.3.2. Mutual Information

To capture the nonlinear dependence of solar irradiance time series from its preceding values,
we computed the so-called mutual information M(k), defined as in Equation (9) [54].

M(k) = −
∑
i, j

pi j(k)·ln
pi j(k)

pip j
(9)

In this expression, for some partition of the time series values, pi is the probability to find a time
series value in the i-th interval, and pij(k) is the joint probability that an observation falls in the i-th
interval, and the observation k time steps later falls into the j-th interval. The partition of the time
series can be made with different criteria, for instance by dividing the range of values between the
minimum and maximum in a predetermined number of intervals or by taking intervals with equal
probability distribution [55]. In our case, we chose to divide the whole range of values into 16 intervals.
The normalized mutual information of solar irradiance time series at Como is shown in Figure 3. In the
case of Como hourly time series, it gradually decays reaching zero after about six lags. Moreover, it can
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be observed that the mutual information for the daily values decays more rapidly, thus confirming the
greatest difficulty in forecasting solar radiation at a daily scale.
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2.4. Benchmark Predictors of Hourly Solar Irradiance

Multi-step ahead forecasting of the global solar irradiance I(t) at hourly scale was performed by
using models of the form (1–8) defined above.

The performance of such a predictor has been compared with that of some standard baseline
models. More specifically, we computed:

• The “clear sky” model, Clsky in the following, computed as explained in Section 2.2,
which represents the average long-term cycle;

• The so-called Pers24 model expressed as Î(t) = I(t− 24), which represents the memory linked to
the daily cycle;

• A classical persistent model, Pers in what follows, where Î(t + k) = I(t), k = 1, 2, . . . h, representing
the component due to a very short-term memory.

2.5. Performance Assessment Metrics

The performances of the various predictors were assessed by computing the following error
indices [56]: Bias (10), Mean Absolute Error—MAE (11), Root Mean Square Error—RMSE (12), and R2,
also known as Nash-Sutcliffe Efficiency—NSE (13).

Bias =
1
T

T∑
t=1

(
I(t) − Î(t)

)
(10)

MAE =
1
T

T∑
t=1

∣∣∣I(t) − Î(t)
∣∣∣ (11)

RMSE =

√√√
1
T

T∑
t=1

(
I(t) − Î(t)

)2
(12)

NSE = 1−

∑T
t=1

(
I(t) − Î(t)

)2

∑T
t=1

(
I(t) − I

)2 (13)
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where T is the length of the time series, while I is the average of the observed data.
As concerning to the NSE, an index originally developed for evaluating hydrological models [57],

it is worth bearing in mind that it can range from −∞ to 1. An efficiency of 1 (NSE = 1) means that
the model perfectly interprets the observed data, while an efficiency of 0 (NSE = 0) indicates that the
model predictions are as accurate as the mean of the observed data. It is worth stressing here that,
in general, a model is considered sufficiently accurate if NSE > 0.6.

Regardless of what performance index is considered, it is worth noticing that the above classical
indicators may overestimate the actual performances of models when applied to the complete time
series. When dealing with solar radiation, there is always a strong bias due to the presence of many
zero values. In the case at hand, they are about 57% of the sample due to some additional shadowing
of the nearby mountains and to the sensitivity of the sensors. When the recorded value is zero,
also the forecast is zero (or very close) and all these small errors substantially reduce the average
errors and increase the NSE. Additionally, forecasting the solar radiation during the night is useless,
and the power network dispatcher may well turn the forecasting model off. In order to overcome
this deficiency, which unfortunately is present in many works in the current literature, and allow
the models’ performances to be compared when they may indeed be useful, we have also computed
the same indicators considering only values above 25 Wm−2 (daytime in what follows), a small value
normally reached before dawn and after the sunset. These are indeed the conditions when an accurate
energy forecast may turn out to be useful.

Since the Clsky represents what can be forecasted even without using any information about the
current situation, it can be assumed as a reference, and the skill index Sf (14) can be computed to
measure the improvement gained using the f LSTM and the f FF models:

S f = 1−
RMSE f

RMSEClsky
(14)

3. Results

3.1. Forecasting Perfomances

The comparison of the multi-step forecast of solar irradiance with LSTM and FF networks was
performed setting the delay parameter d to 24, despite the mutual information indicated that it would
be enough to assume d = 6. This choice is motivated by the intrinsic periodicity of solar radiation at an
hourly scale [54]. We have experimentally observed that this choice gives more accurate estimates for
all the models considered. This probably helps the model in taking into account the natural persistence
of solar radiation (see the comments about the performance of the Pers24 model, below). The length of
the forecasting horizon h, representing the number of steps ahead we predict in the future, was varied
from 1 to 12. Data from 2014 to 2017 were used for network training, 2018 for validating the architecture,
and 2019 for testing.

The average performances computed on the first 3 hours of the forecasting horizon of the Pers,
Pers24, and Clsky models for the test year 2019 are shown in Tables 1 and 2. The Pers predictor
performance rapidly deteriorate when increasing the horizon. They are acceptable only in the short
term: after 1 h, the NSE is equal to 0.79 (considering whole day samples) and 0.59 (daytime samples
only), but after two hours NSE decreases to 0.54 (whole day) and 0.14 (daytime only), and six steps
ahead the NSE becomes −0.93 (whole day) and −1.64 (daytime). The Pers24 and Clsky preserve the
same performances for each step ahead since they are independent on the horizon. Such models
inherently take into account the presence of the daily pseudo-periodic component, which affects hourly
global solar radiation.
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Table 1. Average performances of the Pers, Pers24, and Clsky predictors on the first 3 hours (whole day).

Index Pers Pers24 Clsky

Bias 0.07 0.01 −46.20
MAE 87.78 59.24 74.07

RMSE 158.40 136.63 146.39
NSE 0.51 0.63 0.58

Table 2. Average performances of the Pers, Pers24, and Clsky predictors on the first 3 hours (daytime
samples only).

Index Pers Pers24 Clsky

Bias 28.82 7.08 −89.91
MAE 175.89 131.71 154.35

RMSE 228.24 204.91 212.97
NSE 0.11 0.28 0.22

The Pers24 predictor appears to be superior to the Clsky (lower error indicators, higher NSE)
confirming that the information of the last 24 h is much more relevant for a correct prediction than
the long-term annual cycle. Indeed, the sun position does not change much between one day and the
following, and the meteorological conditions have a certain, statistically relevant tendency to persist.
Additionally, the Pers24 predictor is the only one with practically zero bias, since the small difference
that appears in the first column of Table 1 is simply due to the differences between 31/12/2018 (which is
used to compute the predicted values of 1/1/2019) and 31/12/2019. The clear sky model that operates by
definition in the absence of cloud cover, overestimates the values above the threshold by 89.86 Wm−2,
on average.

From Table 2, it appears that Pers, Pers24 and Clsky, are not reliable models, on average, especially
if the NSE is evaluated by using daytime samples only.

Figure 4 reports the results obtained with the three different FF approaches (Figure 4a–c) and
the LSTM forecasting model (Figure 4d) in terms of NSE (both in the whole day and in daytime
samples only).
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Generally speaking, Figure 4 shows that all the considered neural predictors exhibit an NSE which
reaches an asymptotic value around six steps ahead. This is coherent with the previous analysis about
the mutual information (see Figure 3), which, at an hourly scale, is almost zero after six lags.

If the evaluation is carried out considering whole day samples, all the models would have to
be considered reliable enough since NSE is only slightly below 0.8, even for prediction horizons of
12 h. On the contrary, if the evaluation is made considering daytime samples only, it clearly appears
that models are reliable for a maximum of 5 h ahead, as for higher horizons the NSE value typically
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falls below 0.6. Therefore, removing the nighttime values of the time series is decisive for a realistic
assessment of a solar radiation forecasting model, that would otherwise be strongly biased.

Going in deeper details, the following considerations can be made.
The FF recursive approach performs slightly worse, particularly as measured by NSE and

specifically after a forecasting horizon of 5 h. The FF multi-output and multi-model approaches
show performances similar to the LSTM. Additionally, one can note that the performance regularly
decreases with the length of the horizon for the FF recursive approach and LSTM net, since they
explicitly take into account the sequential nature of the task. Conversely, the FF multi-output and
the multi-model ones have irregularities, particularly the latter being each predictor for each specific
time horizon completely independent on those on a shorter horizon. If perfect training was possible,
such irregularities might perhaps be reduced, but they cannot be completely avoided, particularly on
the test dataset, because they are inherent to the approach that considers each predicted value as a
separate task.

For all the considered benchmarks and neural predictors, the difference between the whole
time series (average value 140.37 Wm−2) and the case with a threshold (daytime only), that excludes
nighttime values (average 328.62 Wm−2), emerges clearly, given that during all nights the values are
zero or close to it, and thus the corresponding errors are also low.

FF nets and LSTM perform similarly also considering the indices computed along the first 3 h of
the forecasting horizon as shown in Tables 3 and 4, for the whole day and daytime, respectively.

Table 3. Average performances of FF and LSTM predictors on the first 3 hours (whole day).

Index FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Bias −1.49 −0.28 0.17 −4.19
MAE 40.26 40.39 39.26 45.91

RMSE 84.33 82.60 82.29 82.09
NSE 0.86 0.87 0.87 0.87

S 0.42 0.44 0.44 0.44

Table 4. Average performances of FF and LSTM predictors on the first 3 hours (daytime samples only).

Index FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Bias 3.79 6.59 6.46 12.11
MAE 86.31 84.63 84.75 86.01

RMSE 125.35 122.87 122.74 121.78
NSE 0.73 0.74 0.74 0.75

S 0.41 0.42 0.42 0.43

All the neural predictors provide a definite improvement in comparison to the Pers, Pers24,
and Clsky models. Looking, for instance, at the NSE the best baseline predictor is the Pers24, scoring
0.63 (whole day) and 0.28 (daytime only). The corresponding values for the neural networks exceed
0.86 and 0.73, respectively.

An in-depth analysis should compare the neural predictors performance at each step with the best
benchmark for that specific step. The latter can be considered as an ensemble of benchmarks composed
by the the Pers model, the most performing one step ahead (NSE equal to 0.79), and the Pers24 on the
following steps (NSE equal to 0.63 for h from 2 to 12). Under this perspective, the neural nets clearly
outperform the considered baseline since their NSE score varies from 0.90 to 0.75 (see the solid lines in
Figure 4 referring to the whole day). The same analysis performed excluding nighttime values leads to
quite similar results, confirming that the neural networks always provide a performance much higher
than the benchmarks considered here.

An additional way to examine the model performances is presented in Table 5. We report here
the NSE of the predictions of the LSTM network on three horizons, namely 1, 3, and 6 hours ahead.
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The sunlight (i.e., above 25 W/m2) test series is partitioned into three classes: cloudy, partly cloudy
and sunny days, which constitute about 30, 30, and 40% of the sample, respectively. More precisely,
cloudy days are defined as those when the daily average irradiance is below 60% of the clear sky index
and sunny days those that are above 90% (remember that the clear sky index already accounts for the
average sky cloudiness).

Table 5. LSTM performances in terms of NSE for cloudy, partly cloudy and sunny days
(daytime samples only).

Index 1 Hour Ahead 3 Hours Ahead 6 Hours Ahead

Cloudy 0.44 0.06 −0.45
Partly cloudy 0.65 0.59 0.59

Sunny 0.89 0.83 0.73

It is quite apparent that the performance of the model decreases consistently from sunny, to
partly cloudy, to cloudy days. This result is better illustrated in Figure 5 where the 3-hour-ahead
predictions are shown for three typical days. In the sunny day, on the right, the process is almost
deterministic (governed mainly by astronomical conditions), while the situation is completely different
in a cloudy day. In the last case, the forecasting error is of the same order of the process (NSE close to
zero) and it can be even larger at 6 hours ahead. This determines the negative NSE value shown in
Table 5.
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3.2. Domain Adaptation

Besides the accuracy of the forecasted values, another important characteristic of the forecasting
models is their generalization capability, often mentioned as domain adaptation in the neural networks
literature [58]. This means the possibility of storing knowledge gained while solving one problem and
applying it to different, though similar, datasets [59].

To test this feature, the FF and LSTM networks developed for the Como station (source domain)
have been used, without retraining, on other sites (target domains) spanning more than one degree of
latitude and representing quite different geographical settings: from the low and open plain at 35 m
a.s.l. to up the mountains at 800 m a.s.l. In addition, the test year has been changed because solar
radiation is far from being truly periodical and some years (e.g., 2017) show significantly higher values
than others (e.g., 2011). This means quite different solar radiation encompassing a difference of about
25% between yearly average values.

Figure 6 shows the NSE for the multi-output FF and LSTM networks for three additional stations.
All the graphs reach somehow a plateau after six steps ahead, as suggested by the mutual information
computed on Como station, and the differences between FF and LSTM networks appear very small or
even negligible in almost all the other stations. Six hours ahead, the difference in NSE between Como,
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for which the networks have been trained, in the test year (2019) and Bema in 2017, which appears to
be the most different dataset, is only about 3% for both FF models and LSTM.Energies 2020, 13, x FOR PEER REVIEW 12 of 18 
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As a further trial, both FF models and LSTM have been tested on a slightly different process,
i.e., the hourly average solar radiation recorded at the Como station. While the process has the same
average of the original dataset, the variability of the process is different since its standard deviation
decreased of about 5%. The averaging process indeed filters the high frequencies. Forecasting results
are shown in Figure 7. Additionally for this process, the neural models perform more or less as for the
hourly values for which they have been trained. The accuracy of both LSTM and FF networks improves
by about 0.02 (or 8%) in terms of standard MAE and slightly less in terms of NSE, in comparison to the
original process. For a correct comparison with Figure 4, however, it is worth bearing in mind that
the 1-hour-ahead prediction corresponds to (t + 2) in the graph, since the average computed at hour
(t + 1) is that from (t) to (t + 1) and, thus, includes values that are only 5 minutes ahead of the instant
at which the prediction is formulated.

An ad-hoc training on each sequence would undoubtedly improve the performance, but the
purpose of this section is exactly to show the potential of networks calibrated on different stations,
to evaluate the possibility of adopting a predictor developed elsewhere when a sufficiently long series
of values is missing. The forecasting models we developed for a specific site could be used with
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acceptable accuracy for sites were recording stations are not available or existing time series are not long
enough. This suggest the possibility of developing a unique forecasting model for the entire region.
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4. Some Remarks on Network Implementations

The development of many successful deep learning models in various applications has been
made possible by three joint factors. First, the availability of big data, which are necessary to identify
complex models characterized by thousands of parameters. Second, the intuition of making use of
fast parallel processing units (GPUs) able to deal with the high computational effort required. Third,
the availability of an efficient gradient-based method to train these kinds of neural networks.

This latter are the well-known backpropagation (BP) techniques, which allow efficient computing
of the gradients of the loss function with respect to each model weight and bias. To apply the
backpropagation of the gradient, it is necessary to have a feed-forward architecture (i.e., without
self-loops). In this case, the optimization is extremely efficient since the process can be entirely
parallelized, exploiting the GPU.

When the neural architecture presents some loops, as it happens in recurrent cells, the BP
technique has to be slightly modified in order fit the new situation. This can be done by unfolding
the neural networks through time, to remove self-loops. This extension of BP technique is known
as backpropagation through time (BPTT) in the machine learning literature. The issue with BPTT
is that the unfolding process should in principle lasts for an infinite number of steps, making the
technique useless for practical purposes. For this reason, it is necessary to limit the number of unfolding,
considering only the time steps that contain useful information for the prediction (in this case, we say
that the BPTT is truncated). As it is easy to understand, BPTT is not as efficient as the traditional BP,
because it is not possible to fully parallelize the computation. As a consequence, we are not able to
fully exploit the GPU’s computing power, resulting in a slower training. The presence of recurrent
units also produces much complex optimization problems due to the presence of a significant number
of local optima [60].

Figure 8 shows the substantial difference in the evolution of the training process. As usual,
the mean of the quadratic errors of the FF network slowly decreases toward a minimum while
this function shows sudden jumps followed by several epochs of stationarity in the case of LSTM.
The training algorithm of LSTM can avoid being trapped for too many epochs into local minima, but
on the other side, these local minima are more frequent.
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For the sake of comparison, we trained the four neural architectures using the same
hyperparameters grid, considering the ranges reported in Table 6. As training algorithm, we used the
Adam optimizer. Each training procedure has been repeated three times to avoid the problems of an
unlucky weights initialization.

Table 6. Hyperparameters values considered in the grid-search tuning process for FF and
LSTM predictors.

Hyperparameter
Search
Range

Optimal Values

FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Hidden layers 3–5 3 5 5 3
Neurons per layer 5–10 5 10 10 5

Learning rate 10−2–10−3 10−3 10−2 10−2 10−3

Decay rate 0–10−4 0 10−4 10−4 10−4

Batch size 128–512 512 128 512 512

While performing similarly under many viewpoints, the FF and LSTM architectures show
significant differences if we consider the sensitivity to the hyperparameters values. Figure 9 shows
the sensitivity bands obtained for each architecture. The upper bound represents, for each step
ahead, the best NSE score achieved across the hyperparameters combinations. The cases in which the
optimization process fails due to a strongly inefficient initialization of the weights have been excluded.
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The variability of performances of LSTM across the hyperparameter space is quite limited if
compared with that of FF architectures. This is probably because the LSTM presents a sequential
structure and is optimized on the whole 12-step-forecasting horizon. The recursive FF model is
identified as the optimal one-step ahead predictor, and thus there are some cases characterized by
poor performances in the rest of the horizon. The multi-output and multi-model FF seem to suffer
of the same problem because, as already pointed out, they predict the values at each time step as
independent variables.

5. Conclusions

The availability of accurate multi-step ahead forecast of solar irradiance (and, hence, power) is of
extreme importance for the efficient balancing and management of power networks since they allow
the implementation of accurate and efficient control procedures, such as model predictive control.

The results reported in this study further confirm the well-known accuracy of FF and LSTM
networks for the above purpose and, more in general, in predicting time series related to environmental
variables. Another interesting conclusion is that among the Rec, MM and MO models, the Rec is
the one that exhibits the lowest performances. A rough explanation probably lies in the fact that its
parameters are optimized over a time horizon of 1 step, but then artificially used for a longer horizon,
thus propagating the error. Therefore one of the merits of this study is to clarify that a common practice,
namely to identify a model of the type x(t + 1) = f (x(t)), to then predict x(t + h) is not the best choice.
To this end, the proposed MM and MO may represent alternatives that are more appropriate.

However, such good performances are obtained at a cost in terms of data and time required to
train the network. In actual applications, one has to trade these costs versus the improvement in
the precision of the forecasting. In this respect, the solution which appears to be a trade-off between
accuracy and complexity seems to be the MO. Indeed, it can reach a very good performance with
a minimum increment of the number of parameters compared to the recursive approach. The MM
approach performs slightly better than the MO one but requires a different training (and possibly,
a different architecture) for each forecasting horizon, which, in the present study, means training over a
million parameters.

In more general terms, the selection of the forecasting model should be made by looking at the
comparative advantages that a better precision provides versus the effort to obtain such a precision.
Though the economic cost and the computation time required to synthesize even a very complex LSTM
network are already rather low and still decreasing, one may also consider adopting a classical FF
neural network model, which outperforms the traditional Pers24 model and is much easier to train
with respect to the corresponding LSTM.

Another of the peculiarities of this work has been showing how performance indices are strongly
affected by the presence of null values and, in this respect, nighttime samples should be removed for a
correct assessment of model performances.

Both FF and LSTM networks developed in this study have proved to be able to forecast solar
radiation in other stations of a relatively wide domain with a minimal loss of precision and without
the need to retrain them. This opens the way to the development of county or regional predictors,
valid for ungauged locations with different geographical settings. Such precision may perhaps be
further improved by using other meteorological data as input to the model, thus extending the purely
autoregressive approach adopted in this study.
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