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Abstract

A system of quasilinear elliptic equations on an unbounded domain is considered. The existence of a sequence of radially
symmetric weak solutions is proved via variational methods.
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1. Introduction

We consider the following problem
—Apu+ [u[P?u = Aay(z) fi(v) inRY,

—Agv+ [v]97%20 = () f2(u)  inRY, (@8]
u,v € WHP(RN),

where p,q > N > 1. We assume that f;,fo : R — R are continuous functions, a;(z),az(z) € L'(RY) N L>=(RYN) are
nonnegative (not identically zero) radially symmetric maps, and ) is a real parameter. Also A,u := div(|Vu|P~2Vu) denotes
the p-Laplacian operator.

Partial differential equations’s is used to model a wide variety of physically significant problems arising in every dif-
ferent areas such as physics, engineering and other applied disciplines (see [7, 11,12, 18,25, 26,28-31, 34-45]). Sobolev
spaces play an important role in the theory of partial differential equations as well as Orlicz-Morrey space and Bo‘ol,oo
space (see [2,8-10,32-34]). Laplace equation is the prototype for linear elliptic equations. This equation has a non-linear
counterpart, the so-called p-Laplace equation (see [1,6,13,14,19,21-24,48]).

Here, by inspiration of [20], we prove the existence of a sequence of radially symmetric weak solutions for (1) in the
unbounded domain R”Y. The solution of (1) belongs to the product space

whED(RN) = whr(RY) x WhH(RY)
equipped with the norm ||(u, v)||(,q) = llullp + [Jullg-

Definition 1.1. For fixed \; and o, ((u,v) : RN — R is said to be a weak solution of (1), if (u,,v) € WH®9(RN) and for
every (z,w) € Wh®a(RN)

_/RN |Vu(z)|P~2Vu(z).Vz(r)dz —/

RN

|Vu(x)|q_2Vu(m).Vw(m)das—|—/

RN

|u(a:)|p_2u(ac)z(x)dm+/ lv(z) |7 2v(2z)w(z)d

RN

)\ /RN o1 (2) fi(v(z))z(x)dz — Ao /RN as () fo(u(z))w(z)dr = 0,

where

oo = ([ Futpas+ [ @pas) « ([ wo@pds s [ ).

Note that the critical points of an energy functional are exactly the weak solutions of (1). Morrey’s theorem, implies
the continuous embedding
WhED(RN) < L2°(RN) x L=(RY), 2)
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which says that there exists ¢ (depends on p, ¢, V), such that

(s )l < ell(w, )l @),
(RN)

for every (u,v) € WLP(RY) x Wh4(RY), where ||(u,v)||oo := max{||t| s, ||v]l}. Since in the low-dimensional case, every
function (u,v) € W4 @9 (RN) admits a continuous representation (see [4, p.166]). In the sequel we will replace (u,v) by
this element. We need the following notations (see [5] or [17] for more details):

(I) O(N) stands for the orthogonal group of R,
(IT) B(0,s) denotes the open N-dimensional ball of center zero, radius s > 0 and standard Lebesgue measure, meas(B(0, s)).
I |lallpo,s) := fB(O%) a(z)dz.
Definition 1.2.
e A function h : RN — R is radially symmetric if h(gx) = h(x), for every g € O(N) and = € RY.

e Let G be a topological group. A continuous map £ : G x X — X : (g,2) — &£(g,u) := gu, is called the action of G on the
Banach space (X, ||.||x) if
lu = wu, (gm)u = g(mu), u — gu is linear.

e The action is said to be isometric if ||gu||x = ||u| x, for every g € G.

e The space of G-invariant points is defined by

Fiz(G) :=={u € X : gu = u,for all g € G}.

e Amap m: X — Ris said to be G-invariant if mog = m for every g € G.

The following theorem is important to study the critical point of the functional (see [27]).

Theorem 1.1. Assume that the action of the topological group G on the Banach space X is isometric. If J € C1(X : R) is
G-invariant and if u is a critical point of J restricted to Fix(Q), then wu is a critical point of J.

The action of the group O(N) on W1 ?(R¥Y) can be defined by (gu)(z) := u(g~'x), for every g € W1?(RV) and = € RY.
A computation shows that this group acts linearly and isometrically, which means |u| = ||gul|, for every g € O(N) and
u e WhP(RN).

Definition 1.3. The subspace of radially symmetric functions of wh e (RN) is defined by
X:= WP Ry
= {(u,v) € WHPD(RN) 2 (g1u, g2v) = (u,v), for all (g1,92) € O(N) x O(N)},
and endowed by the norm

||(u,v)||W:,<p,q)(RN) = (fRN |Vu(z)Pds + [on |u(x)|pda:) + (I]RN IVo(z)|%dx + [o |v(x)|qda:) )

In what follows: ||(u,v)|. denotes ||(u,v)|l,;,1.0.0 (BN)" The following crucial embedding result due to Kristaly and prin-
cipally based on a Strauss-type estimation (see [46]) (also see [15, Theorem 3.1], [16] and [47] for related subjects).

Theorem 1.2. The embedding WP (RY) — L>(RY), is compact whenever 2 < N < p < +oo.
Here we consider the following functionals:
o F(&) = f(f fi(t)dt for every ¢ € R.
o O(u,v) = % + W for every (u,v) € X.
o U(u,v):= [pnonFi(v(z))de + [on aaFy(u(z))dz, for every (u,v) € X.

o I\(u,v) := P(u,v) — AU(u,v) for every (u,v) € X.
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By standard arguments [5], we can show that ® is Gateaux differentiable, coercive and sequentially weakly lower
semicontinuous whose derivative at the point (u,v) € X is the functional ®'(u,v) € X* given by

' (u,v)(z,w) = (fpu [VulP2Vu.Vade + [o [ulP~2uzdz) + ([ [VU]972Vo.Vwds 4+ [o [0 ?vwdz),

for every (z,w) € X. Also standard arguments show that the functional ¥; are well defined, sequentially weakly upper
semicontinuous and Gateaux differentiable whose Gateaux derivative at the point (u,v) € X and for every (z,w) € X is
given by

V() w) = [

RN

a1 (z) f1(u(z))dz + /RN as(z) fo(v(z))dz.

2. Weak solutions

First, we recall the following theorem [3, Theorem 2.1].

Theorem 2.1. Let X be a reflexive real Banach space, let ®,V : X — R be two Gdteaux differentiable functionals such
that ® is sequentially weakly lower semicontinuous, strongly continuous and coercive, and V is sequentially weakly upper

semicontinuous. For every r > inf x @, set

Sup@(v)<r \I/(’U) - \Il(u)

o(r) = @(151)@ Yo )
v = kglig o(r), and §:= r_}btﬁlfi?iﬁ o(r).

Then the following properties hold:

(a) for every r > infx ® and every A €]0, ﬁ[, the restriction of the functional I, := ® — \V to ®71(] — oo, r[) admits a

global minimum, which is a critical point (local minimum) of I in X.
(b) if v < 400, then for each X €]0, %[, the following alternative holds either,

(by) I, possesses a global minimum, or
(by) there is a sequence {uy,} of critical points (local minima) of I such that lim,_, ;. ®(u,) = +oo.
(¢c) if 6 < 400, then for each X €]0, %[, the following alternative holds either:

(cy) thereis a global minimum of ® which is a local minimum of I,. or,
(c2) thereis a sequence {u, } of pairwise distinct critical points (local minima) of I, which weakly converges to a global

minimum of ®, with lim,_, . ®(u,) = inf,cx P(u).

For fixed D > 0, set

vz

™

m(D) := meas(B(0, D)) = DNW,

where T is the Gamma function defined by I'(¢) := f0+°° 2'=te=*dz for all t > 0. Moreover,

m(D) (252 + g(p.N)) m(D) (252 +g(q, N))

)

) := max >0, 3)

p)\Bl||a2||B(0,§) q)\B2Ha1HB(o,§)

where (N, p) := 20"V (2N — 1), ¢ = 522 m;, m, are upper and lower bounds for M (¢) in (1) and

14 28PN [N =1(1 — t)pdt
g(p,N) = 22N .

Assume || - ||; denotes the norm of L'(Q) and F(¢) := Fy (&) + Fa(€).

Theorem 2.2. Let f; : R — R be two continuous and radially symmetric functions. Set

P i Tl 1=
A= (gll’lglgglfroo RE [€2]a )
By := limsup I?Siglf’)’ and Bs :=lim sup%ﬁ;).

2 —+00 &1 —+o0
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where B := By + B, £ = (£1,&2). f(é mf; Fy(&1) 4+ F1(&) = 0and A < QmgB, where Q) is given by (3), for every

1

AeAN:=1|Q,
(pet[loz]ly + gcdflenlr) A

there exists an unbounded sequence of radially symmetric weak solutions for (1) in X.

Proof. For fixed A\ € A, we consider ®, ¥ and I, as in the last section. Knowing that ® and V¥ satisfy the regularity

assumptions in Theorem 2.1. In order to study the critical points of I in X, we show that \ < % < 400, where v =

lim lnf(b(r). Let {¢,} be a sequence of positive numbers such that lim,,_, t,, = +00,
r—+00

p q
tln . t2n

"n =% and Ton 1= —G
1 qcy

for all n € N. Set r,, = min{r,1,7,2}. Considering Theorem 1.2 (by relation (2)), a computation shows that
O] — o0, m]) ={(z,w) € X : ®(z,w) < rp}
p q
{(zw) € X : IIZplr N IIU;IIT <} @

Az, w) € X5 (2, w)]loo <tn},

where t,, = min{¢,;,t,2}. Since ©(0,0) = ¥(0,0) = 0, by a computation one can show

. (Supé(z,w)<rn \I/(Z7 w)) - \Il(uv ’U)
o(rn,) = inf
P (u,v)<rp Ty — (I)(U, U)

< (pcfllazll1 + qc3lloa ) A

Hence
v < liminf o(r,) < (pefllozlly + gcdllan]l1) A < +oc.

n—-+00
Now, we show that I, is unbounded from below. Let {d;,} and {d2,} be two sequences of positive numbers such that

limy, 4 oo d1p, = limy, 4 oo doy, = +00 and

R N ®
Define {(H1,, H2,)} € X by
0 R\ B(0, D)
Hin(z) = { %in B(0,%)
Mol BO,D)\BO,2),

for every n € N and 7 = 1, 2. By a similar argument and computations in [5, P.1017] one can show that
| Hanll2 = d§,m(D) (252 + g(a.N)) , and
|Hwlle = d,m(D) (252 + g(p. V)
Condition (4), implies
Jur o1 (@) Fr(Han(2))dz > [ py 01(2) Fi(dan)dz = Fi(dan)llaa] o, 2, and

fRN az(z) Fo(Hin(z))dz > fB 2($)F2(d1n)d$ = FQ(dl'rL)“a2|‘B(07%)7

)

N‘D

for every n € N. Then
I/\(H1n7H2n) = (b(HlnaH2n) _)\\IJ(Hln;HQn)
”HM”P + ”H%“ — A fon @1 (2)Fy (Han(2))dz — A [ou a2(2) Fo(Hip(z))d

d’fnmw)(%wmm) 4 dg, m(D) (=52 +9(a,N))
p q

IN

A (Fi(dzn)llasll 5o, 2) + Fa(din) s 50,2
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If B < 400 (B1, By < +00), the conditions (5) implies that

there exists N; such that for all n > N, we have Fy(ds,) > eB1db,,, and
there exists N, such that for all n > N, we have Fy(dy,,) > eBadi,,.

Then for every n > N, := max{Ny, N2},

47, m(D)(ZT +9(p.N)) | di,m(D)(ZF542 +9(a,N))
p + q

IA(H1n7H2n) é
—2e (&, Ballonll o, 2) + 4% Balon 5o, ) )

m(D)( 2L 4 g(p,N
_ djljn< (D) (=552 +9(p,N)) _/\{-:310423(0713))

p

m(D “(N <I)+ N

q

If we set
m(D) (252 + g(p. N)) m(D) (25 + (g, )

PABillaallpopy 7 aABellaallpe )

2

) := max

then for € € (2,1) one can get
hm I(H1p, Hop) = —o0.

Tl—) oo
If at least one of the B; or By are +o0o. Let B; = +00, and consider M; > (2, then by (5) there exists Ny, such that for every
n > Ny, we have Fy(dy,) > M,dY,. Moreover, for every n > Ny,

%, m(D)(ZXE 4 g(p,N)) n dg, m(D) (2552 +9(q,N))

I)\(HlanQn) S P q

2 (&, Millas ] 5o, ) + a8, Millenl 5,2 )

In

m(D) M+9(F»N)
( ( o ) _ AMi|lazlgo, 2y

m(D)( 2552 +9(¢,N)
+d§n( (D)( 9(a, )—)\M1||a1||3(07§)).

q

This implies that lim,,, y oo Ix(H1p, Han) = —00.

Now, Theorem 2.1 (b) implies, the functional I, admits an unbounded sequence {u,,} C X of critical points. Considering
Theorem 1.1, these critical points are also critical points for the smooth and O(N)-invariant functional I, : W1?(RY) —
R. Therefore, there is a sequence of radially symmetric weak solutions for the problem (1), which are unbounded in
Whe(RN), O

Here we prove our second result which says that under different conditions the problem (1) has a sequence of weak
solutions, which converges weakly to zero.

Theorem 2.3. Let f; : R — R be two continuous and radially symmetric functions. Set

max Fa(t1) max F(t2)
Al = Lim inf [t11<&1 [ta]<&2
EERGEA= ekt

B := limsup |2(£|f>)7 and B) := limsup |2(| ),

Eo—0TF &1—071
where B' := B} + B}, £ = (£1,&2). f(E 1nf F2(§1) + F1(&2) = 0and A" < QmoB’, where ) is given by (3), for every
1, 2
AeN = |Q L ,

" (pc} ezl + gedflon|1) A7

there exists an unbounded sequence of radially symmetric weak solutions for (1) in X.

Proof. For fixed A € A/, we consider &, ¥ and I, as in Section 2. Knowing that ® and ¥ satisfy the regularity assumptions
in Theorem (2.1), we show that \ < %. We know that infx ® = 0. Set ¢ := liminf, o+ ¢(r). A computation similar to the
one in the Theorem 2.2 implies § < co and if A € A’ then A < %. A compaction (similar in the Theorem 2.2) shows that
I\(Hip, Hap) < 0 for nlarge enough and thus zero is not a local minimum of 7). Therefore, there exists a sequence {u,,} C X
of critical points of I, which converges weakly to zero in X as lim,—, o, ®(u,) = 0. Again, considering Theorem 1.1, these
critical points are also critical points for the smooth and O(N)-invariant functional I, : W1?(R") — R. Therefore, there
is a sequence of radially symmetric weak solutions for the problem (1), which converges weakly to zero in W ?(RY). O
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