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Abstract

A system of quasilinear elliptic equations on an unbounded domain is considered. The existence of a sequence of radially
symmetric weak solutions is proved via variational methods.
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1. Introduction

We consider the following problem 
−∆pu+ |u|p−2u = λα1(x)f1(v) in RN ,

−∆qv + |v|q−2v = λα2(x)f2(u) in RN ,

u, v ∈W 1,p(RN ),

(1)

where p, q > N > 1. We assume that f1, f2 : R → R are continuous functions, α1(x), α2(x) ∈ L1(RN ) ∩ L∞(RN ) are
nonnegative (not identically zero) radially symmetric maps, and λ is a real parameter. Also ∆pu := div(|∇u|p−2∇u) denotes
the p-Laplacian operator.

Partial differential equations’s is used to model a wide variety of physically significant problems arising in every dif-
ferent areas such as physics, engineering and other applied disciplines (see [7, 11, 12, 18, 25, 26, 28–31, 34–45]). Sobolev
spaces play an important role in the theory of partial differential equations as well as Orlicz-Morrey space and Ḃ−1

∞,∞

space (see [2,8–10,32–34]). Laplace equation is the prototype for linear elliptic equations. This equation has a non-linear
counterpart, the so-called p-Laplace equation (see [1,6,13,14,19,21–24,48]).

Here, by inspiration of [20], we prove the existence of a sequence of radially symmetric weak solutions for (1) in the
unbounded domain RN . The solution of (1) belongs to the product space

W 1,(p,q)(RN ) = W 1,p(RN )×W 1,q(RN )

equipped with the norm ‖(u, v)‖(p,q) = ‖u‖p + ‖u‖q.

Definition 1.1. For fixed λ1 and λ2, ((u, v) : RN → R is said to be a weak solution of (1), if (u, , v) ∈ W 1,(p,q)(RN ) and for
every (z, w) ∈W 1,(p,q)(RN )

−
∫
RN
|∇u(x)|p−2∇u(x).∇z(x)dx−

∫
RN
|∇u(x)|q−2∇u(x).∇w(x)dx+

∫
RN
|u(x)|p−2u(x)z(x)dx+

∫
RN
|v(x)|q−2v(x)w(x)dx

−λ1

∫
RN
α1(x)f1(v(x))z(x)dx− λ2

∫
RN
α2(x)f2(u(x))w(x)dx = 0,

where
‖(u, v)‖W 1,(p,q)(RN ) :=

(∫
RN
|∇u(x)|pdx+

∫
RN
|u(x)|pdx

)
+

(∫
RN
|∇v(x)|qdx+

∫
RN
|v(x)|qdx

)
.

Note that the critical points of an energy functional are exactly the weak solutions of (1). Morrey’s theorem, implies
the continuous embedding

W 1,(p,q)(RN) ↪→ L∞(RN)× L∞(RN), (2)
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which says that there exists c (depends on p, q,N ), such that

‖(u, v)‖∞ ≤ c‖(u, v)‖W 1,(p,q)(RN ),

for every (u, v) ∈ W 1,p(RN) ×W 1,q(RN), where ‖(u, v)‖∞ := max{‖u‖∞, ‖v‖∞}. Since in the low-dimensional case, every
function (u, v) ∈ W 1,(p,q)(RN ) admits a continuous representation (see [4, p.166]). In the sequel we will replace (u, v) by
this element. We need the following notations (see [5] or [17] for more details):

(I) O(N) stands for the orthogonal group of RN .

(II) B(0, s) denotes the openN -dimensional ball of center zero, radius s > 0 and standard Lebesgue measure,meas(B(0, s)).

(III) ‖α‖B(0, s2 ) :=
∫
B(0, s2 )

α(x)dx.

Definition 1.2.

• A function h : RN → R is radially symmetric if h(gx) = h(x), for every g ∈ O(N) and x ∈ RN .

• Let G be a topological group. A continuous map ξ : G×X → X : (g, x)→ ξ(g, u) := gu, is called the action of G on the
Banach space (X, ‖.‖X) if

1u = u, (gm)u = g(mu), u 7→ gu is linear.

• The action is said to be isometric if ‖gu‖X = ‖u‖X , for every g ∈ G.

• The space of G-invariant points is defined by

Fix(G) := {u ∈ X : gu = u, for all g ∈ G}.

• A map m : X → R is said to be G-invariant if mog = m for every g ∈ G.

The following theorem is important to study the critical point of the functional (see [27]).

Theorem 1.1. Assume that the action of the topological group G on the Banach space X is isometric. If J ∈ C1(X : R) is
G-invariant and if u is a critical point of J restricted to Fix(G), then u is a critical point of J .

The action of the group O(N) on W 1,p(RN ) can be defined by (gu)(x) := u(g−1x), for every g ∈ W 1,p(RN ) and x ∈ RN.
A computation shows that this group acts linearly and isometrically, which means ‖u‖ = ‖gu‖, for every g ∈ O(N) and
u ∈W 1,p(RN ).

Definition 1.3. The subspace of radially symmetric functions of W 1,(p,q)
r (RN ) is defined by

X := W
1,(p,q)
r (RN )

:= {(u, v) ∈W 1,(p,q)(RN ) : (g1u, g2v) = (u, v), for all (g1, g2) ∈ O(N)×O(N)},

and endowed by the norm

‖(u, v)‖
W

1,(p,q)
r (RN )

:=
(∫

RN |∇u(x)|pdx+
∫
RN |u(x)|pdx

)
+
(∫

RN |∇v(x)|qdx+
∫
RN |v(x)|qdx

)
.

In what follows: ‖(u, v)‖r denotes ‖(u, v)‖
W

1,(p,q)
r (RN )

. The following crucial embedding result due to Kristály and prin-
cipally based on a Strauss-type estimation (see [46]) (also see [15, Theorem 3.1], [16] and [47] for related subjects).

Theorem 1.2. The embedding W 1,p
r (RN ) ↪→ L∞(RN ), is compact whenever 2 ≤ N < p < +∞.

Here we consider the following functionals:

• Fi(ξ) :=
∫ ξ

0
fi(t)dt for every ξ ∈ R.

• Φ(u, v) :=
‖u‖pr
p +

‖v‖qr
q for every (u, v) ∈ X.

• Ψ(u, v) :=
∫
RN α1F1(v(x))dx+

∫
RN α2F2(u(x))dx, for every (u, v) ∈ X.

• Iλ(u, v) := Φ(u, v)− λΨ(u, v) for every (u, v) ∈ X.
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By standard arguments [5], we can show that Φ is Gâteaux differentiable, coercive and sequentially weakly lower
semicontinuous whose derivative at the point (u, v) ∈ X is the functional Φ′(u, v) ∈ X∗ given by

Φ′(u, v)(z, w) = (
∫
RN |∇u|p−2∇u.∇zdx+

∫
RN |u|p−2uzdx) + (

∫
RN |∇v|q−2∇v.∇wdx+

∫
RN |v|q−2vwdx),

for every (z, w) ∈ X. Also standard arguments show that the functional Ψi are well defined, sequentially weakly upper
semicontinuous and Gâteaux differentiable whose Gâteaux derivative at the point (u, v) ∈ X and for every (z, w) ∈ X is
given by

Ψ′(u, v)(z, w) =

∫
RN
α1(x)f1(u(x))dx+

∫
RN
α2(x)f2(v(x))dx.

2. Weak solutions

First, we recall the following theorem [3, Theorem 2.1].

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two Gâteaux differentiable functionals such
that Φ is sequentially weakly lower semicontinuous, strongly continuous and coercive, and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, set

ϕ(r) := inf
Φ(u)<r

supΦ(v)<r Ψ(v)−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional Iλ := Φ − λΨ to Φ−1(] − ∞, r[) admits a

global minimum, which is a critical point (local minimum) of Iλ in X.

(b) if γ < +∞, then for each λ ∈]0, 1
γ [, the following alternative holds either,

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that limn→+∞ Φ(un) = +∞.

(c) if δ < +∞, then for each λ ∈]0, 1
δ [, the following alternative holds either:

(c1) there is a global minimum of Φ which is a local minimum of Iλ. or,

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ which weakly converges to a global
minimum of Φ, with limn→+∞ Φ(un) = infu∈X Φ(u).

For fixed D > 0, set

m(D) := meas(B(0, D)) = DN π
N
2

Γ(1 + N
2 )
,

where Γ is the Gamma function defined by Γ(t) :=
∫ +∞

0
zt−1e−zdz for all t > 0. Moreover,

Ω := max

m(D)
(
σ(N,p)
Dp + g(p,N)

)
pλB1‖α2‖B(0,D2 )

,
m(D)

(
σ(N,q)
Dq + g(q,N)

)
qλB2‖α1‖B(0,D2 )

 > 0, (3)

where σ(N, p) := 2p−N (2N − 1), c = 2p
2−N , m1,m0 are upper and lower bounds for M(t) in (1) and

g(p,N) :=
1 + 2N+pN

∫ 1
1
2
tN−1(1− t)pdt

2N
.

Assume ‖ · ‖1 denotes the norm of L1(Ω) and F (ξ) := F1(ξ) + F2(ξ).

Theorem 2.2. Let fi : R→ R be two continuous and radially symmetric functions. Set

A := lim inf
(ξ1,ξ2)→+∞

max
|t1|≤ξ1

F2(t1)

|ξ1|p +
max
|t2|≤ξ2

F1(t2)

|ξ2|q ,

B1 := lim sup
ξ2→+∞

F1(ξ2)
|ξ2|p , and B2 := lim sup

ξ1→+∞

F2(ξ1)
|ξ1|q .
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where B := B1 +B2, ξ = (ξ1, ξ2). If inf
(ξ1,ξ2)≥0

F2(ξ1) + F1(ξ2) = 0 and A < Ωm0B, where Ω is given by (3), for every

λ ∈ Λ :=

]
Ω,

1

(pcp1‖α2‖1 + qcq2‖α1‖1)A

[
,

there exists an unbounded sequence of radially symmetric weak solutions for (1) in X.

Proof. For fixed λ ∈ Λ, we consider Φ, Ψ and Iλ as in the last section. Knowing that Φ and Ψ satisfy the regularity
assumptions in Theorem 2.1. In order to study the critical points of Iλ in X, we show that λ < 1

γ < +∞, where γ =

lim inf
r→+∞

φ(r). Let {tn} be a sequence of positive numbers such that limn→∞ tn = +∞,

r1n :=
tp1n
pcp1

and r2n :=
tq2n
qcq2

,

for all n ∈ N. Set rn = min{rn1, rn2}. Considering Theorem 1.2 (by relation (2)), a computation shows that

Φ−1(]−∞, rn[) ={(z, w) ∈ X : Φ(z, w) < rn}

={(z, w) ∈ X :
‖z‖pr
p

+
‖w‖qr
q

< rn}

⊂{(z, w) ∈ X; ‖(z, w)‖∞ < tn},

(4)

where tn = min{tn1, tn2}. Since Φ(0, 0) = Ψ(0, 0) = 0, by a computation one can show

ϕ(rn) = inf
Φ(u,v)<rn

(supΦ(z,w)<rn Ψ(z, w))−Ψ(u, v)

rn − Φ(u, v)

≤ (pcp1‖α2‖1 + qcq2‖α1‖1)A.

Hence
γ ≤ lim inf

n→+∞
ϕ(rn) ≤ (pcp1‖α2‖1 + qcq2‖α1‖1)A < +∞.

Now, we show that Iλ is unbounded from below. Let {d1n} and {d2n} be two sequences of positive numbers such that
limn→+∞ d1n = limn→+∞ d2n = +∞ and

B1 = lim
n→+∞

F1(d2n)

dq2n
, B2 = lim

n→+∞

F2(d1n)

dp1n
(5)

Define {(H1n, H2n)} ∈ X by

Hin(x) :=


0 RN \B(0, D)

din B(0, D2 )

2din
D

(D − |x|) B(0, D) \B(0, D2 ),

for every n ∈ N and i = 1, 2. By a similar argument and computations in [5, P.1017] one can show that

‖H2n‖qr = dq2nm(D)
(
σ(N,p)
Dq + g(q,N)

)
, and

‖H1n‖pr = dp1nm(D)
(
σ(N,p)
Dp + g(p,N)

)
.

Condition (i), implies ∫
RN α1(x)F1(H2n(x))dx ≥

∫
B(0,D2 )

α1(x)F1(d2n)dx = F1(d2n)‖α1‖B(0,D2 ), and∫
RN α2(x)F2(H1n(x))dx ≥

∫
B(0,D2 )

α2(x)F2(d1n)dx = F2(d1n)‖α2‖B(0,D2 ),

for every n ∈ N. Then

Iλ(H1n, H2n) = Φ(H1n, H2n)− λΨ(H1n, H2n)

=
‖H1n‖pr

p +
‖H2n‖qr

q − λ
∫
RN α1(x)F1(H2n(x))dx− λ

∫
RN α2(x)F2(H1n(x))dx

≤ dp1nm(D)(σ(N,p)
DP

+g(p,N))
p +

dq2nm(D)(σ(N,q)Dq +g(q,N))
q

−λ
(
F1(d2n)‖α1‖B(0,D2 ) + F2(d1n)‖α2‖B(0,D2 ).

)
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If B < +∞ (B1, B2 < +∞), the conditions (5) implies that
there exists N1 such that for all n ≥ N1 we have F1(d2n) > εB1d

p
2n, and

there exists N2 such that for all n ≥ N2 we have F2(d1n) > εB2d
q
1n.

Then for every n ≥ Nε := max{N1, N2},

Iλ(H1n, H2n) ≤ dp1nm(D)(σ(N,p)
DP

+g(p,N))
p +

dq2nm(D)(σ(N,q)Dq +g(q,N))
q

−λε
(
dp1nB2‖α1‖B(0,D2 ) + dq2nB2‖α1‖B(0,D2 ).

)
= dp1n

(
m(D)(σ(N,p)

DP
+g(p,N))

p − λεB1‖α2‖B(0,D2 )

)
+dq2n

(
m(D)(σ(N,q)Dq +g(q,N))

q − λεB2‖α1‖B(0,D2 )

)
.

If we set

Ω := max

m(D)
(
σ(N,p)
Dp + g(p,N)

)
pλB1‖α2‖B(0,D2 )

,
m(D)

(
σ(N,q)
Dq + g(q,N)

)
qλB2‖α1‖B(0,D2 )

 ,

then for ε ∈ (Ω, 1) one can get
lim

n→+∞
Iλ(H1n, H2n) = −∞.

If at least one of the B1 or B2 are +∞. Let B1 = +∞, and consider M1 > Ω, then by (5) there exists NM1
such that for every

n > NM1 , we have F1(d1n) > M1d
p
1n. Moreover, for every n > NM1

Iλ(H1n, H2n) ≤ dp1nm(D)(σ(N,p)
DP

+g(p,N))
p +

dq2nm(D)(σ(N,q)Dq +g(q,N))
q

−λ
(
dp1nM1‖α2‖B(0,D2 ) + dq2nM1‖α1‖B(0,D2 ).

)
= dp1n

(
m(D)(σ(N,p)

DP
+g(p,N))

p − λM1‖α2‖B(0,D2 )

)
+dq2n

(
m(D)(σ(N,q)Dq +g(q,N))

q − λM1‖α1‖B(0,D2 )

)
.

This implies that limn→+∞ Iλ(H1n, H2n) = −∞.
Now, Theorem 2.1 (b) implies, the functional Iλ admits an unbounded sequence {un} ⊂ X of critical points. Considering

Theorem 1.1, these critical points are also critical points for the smooth and O(N)-invariant functional Iλ : W 1,p(RN ) →
R. Therefore, there is a sequence of radially symmetric weak solutions for the problem (1), which are unbounded in
W 1,p(RN ).

Here we prove our second result which says that under different conditions the problem (1) has a sequence of weak
solutions, which converges weakly to zero.

Theorem 2.3. Let fi : R→ R be two continuous and radially symmetric functions. Set

A′ := lim inf
(ξ1,ξ2)→0+

max
|t1|≤ξ1

F2(t1)

|ξ1|p +
max
|t2|≤ξ2

F1(t2)

|ξ2|q ,

B′1 := lim sup
ξ2→0+

F1(ξ2)
|ξ2|p , and B′2 := lim sup

ξ1→0+

F2(ξ1)
|ξ1|q ,

where B′ := B′1 +B′2, ξ = (ξ1, ξ2). If inf
(ξ1,ξ2)≥0

F2(ξ1) + F1(ξ2) = 0 and A′ < Ωm0B
′, where Ω is given by (3), for every

λ ∈ Λ′ :=

]
Ω,

1

(pcp1‖α2‖1 + qcq2‖α1‖1)A′

[
,

there exists an unbounded sequence of radially symmetric weak solutions for (1) in X.

Proof. For fixed λ ∈ Λ′, we consider Φ, Ψ and Iλ as in Section 2. Knowing that Φ and Ψ satisfy the regularity assumptions
in Theorem (2.1), we show that λ < 1

δ . We know that infX Φ = 0. Set δ := lim infr→0+ ϕ(r). A computation similar to the
one in the Theorem 2.2 implies δ < ∞ and if λ ∈ Λ′ then λ < 1

δ . A compaction (similar in the Theorem 2.2) shows that
Iλ(H1n, H2n) < 0 for n large enough and thus zero is not a local minimum of Iλ. Therefore, there exists a sequence {un} ⊂ X
of critical points of Iλ which converges weakly to zero in X as limn→+∞ Φ(un) = 0. Again, considering Theorem 1.1, these
critical points are also critical points for the smooth and O(N)-invariant functional Iλ : W 1,p(RN ) → R. Therefore, there
is a sequence of radially symmetric weak solutions for the problem (1), which converges weakly to zero in W 1,p(RN ).

15



M. A. Ragusa and A. Razani / Contrib. Math. 1 (2020) 11–16 16

Acknowledgment

This work is supported by I.N.D.A.M - G.N.A.M.P.A. 2019 and the “RUDN University Program 5-100”.

References
[1] F. Behboudi, A. Razani, Two weak solutions for a singular (p, q)-Laplacian problem, Filomat 33 (2019) 3399–3407.
[2] S. Benbernou, S. Gala, M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO

space, Math. Methods Appl. Sci. 37 (2014) 2320–2325.
[3] G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009

(2009) Art# 670675.
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[15] A. Kristály, Infinitely many solutions for a differential inclusion problem in RN , J. Differential Equations 220 (2006) 511–530.
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