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ABSTRACT
Automatic detection of diseases by use of computers is an important,
but still unexplored field of research. Such innovations may improve
medical practice and refine health care systems all over the world.
However, datasets containing medical images are hardly available,
making reproducibility and comparison of approaches almost im-
possible. In this paper, we present Kvasir, a dataset containing
images from inside the gastrointestinal (GI) tract. The collection of
images are classified into three important anatomical landmarks
and three clinically significant findings. In addition, it contains two
categories of images related to endoscopic polyp removal. Sorting
and annotation of the dataset is performed by medical doctors (ex-
perienced endoscopists). In this respect, Kvasir is important for
research on both single- and multi-disease computer aided detec-
tion. By providing it, we invite and enable multimedia researcher
into the medical domain of detection and retrieval.
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1 INTRODUCTION
The human digestive system may be affected by several diseases.
As an example, three of the eight most common cancers overall
are located in the gastrointestinal (GI) tract (figure 1). Altogether
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Figure 1: GI tract
(shutterstock).

esophageal, stomach and colorectal cancer
accounts for about 2.8 million new cases
and 1.8 million deaths per year [40]. Endo-
scopic examinations (figures 2(a) and 2(b))
are the gold standards for investigation of
the GI tract. Gastroscopy is an examination
of the upper GI tract including esophagus,
stomach and first part of small bowel, while
colonoscopy covers the large bowel (colon)
and rectum. Both these examinations are
real-time video examinations of the inside of
the GI tract by use of digital high definition
endoscopes (figures 2(c)). Endoscopic examinations are resource
demanding and requires both expensive technical equipment and
trained personnel.

For colorectal cancer prevention, endoscopic detection and re-
moval of possible precancerous lesions are essential. Adenoma
detection is therefore considered to be an important quality indi-
cator in colorectal cancer screening. However, the ability to detect
adenomas varies between doctors, and this may eventually affect
the individuals’ risk of getting colorectal cancer [19].

Endoscopic assessment of severity and sub-classification of dif-
ferent findings may also vary from one doctor to another. Accurate
grading of diseases are important since it may influence decision-
making on treatment and follow-up [4, 11, 16]. For example, the
degree of inflammation directly affects the choice of therapy in in-
flammatory bowel diseases (IBD) [37]. An objective and automated
scoring system would therefore be highly welcomed.

Automatic detection, recognition and assessment of pathological
findings will probably contribute to reduce inequalities, improve
quality and optimize use of scarce medical resources. Furthermore,
since endoscopic examinations are real-time investigations, both
normal and abnormal findings have to be recorded and documented
within written reports. Automatic report generation would proba-
bly contribute to reduce doctors’ time required for paperwork and
thereby increase time to patient care. Reliable and careful docu-
mentation with the use of minimal standard terminology (MST) [1]
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(a) Colonoscopy (b) Gastroscopy (c) A colonoscope
Figure 2: Various types of endoscopy examinations.

may also contribute to improved patient follow-up and treatment.
To our knowledge, a standardized and automatic reporting system
that ensure high quality endoscopy reports does not exist.

In order to make the health care system more scalable and cost
effective, basic research in the intersection between computer sci-
ence and medicine must go beyond traditional medical imaging by
combining this area with multimedia data analysis and retrieval,
artificial intelligence, and distributed processing. Next-generation
medical big-data applications are a frontier for innovation, compe-
tition and productivity, where there are currently large initiatives
both in the EU [26] and the US [24]. In the area of multimedia re-
search, people are starting to see the synergies between multimedia
and medical systems [31]. For automatic algorithmic detection of
abnormalities in the GI tract, there have been many proposals from
various research communities. For example, many systems present
promising results for polyp detection [3, 5, 9, 18, 21, 23, 32, 38, 39, 41]
reaching high precision and recall scores. However, the results are
hard to reproduce due to lack of available medical data, i.e., the
work listed above all use different data sets ranging from 35 to 1.8
million images/video frames.

In our earlier work [27, 32, 33], we have used the two only usable,
publicly available GI tract datasets: the ASU-Mayo Clinic polyp data-
base [35] and the CVC-ColonDB colonoscopy video database [7].
The ASU-Mayo dataset consists of training and test sets of images
and videos with corresponding ground truth showing the exact
polyp location areas. This is currently the biggest available dataset
consisting of 20 videos from standard colonoscopies with a total
of 18, 781 frames and different resolution up to full HD. However,
the images in this dataset are very similar raising the challenge
of overfitting, and currently, the use of the dataset is restricted.
The CVC-ColonDB dataset consists of images and videos partially
covered by corresponding ground truth showing the exact polyp
location areas. This is currently the second biggest available dataset
consisting of 15 small videos from standard colonoscopies with a
total of 1, 200 frames and 300 frames with the region of interest
marked. The resolution is 500x574 pixels. Furthermore, both these
datasets contain only one endoscopic finding (polyps). In this pa-
per, we therefore publish Kvasir our multi-class dataset1 from the
Vestre Viken Health Trust (Norway) containing not only polyps,
but also two other findings, two classes related to polyp removal
and three anatomical landmarks in the GI tract.

2 DATA COLLECTION
The data is collected using equipment as shown in figure 2(c) at
Vestre Viken Health Trust (VV) in Norway. The VV consists of
4 hospitals and provides health care to 470.000 people. One of

1http://datasets.simula.no/kvasir

these hospitals (the Bærum Hospital) has a large gastroenterology
department from where training data have been collected and will
be provided, making the dataset larger in the future. Furthermore,
the images are carefully annotated by one or more medical experts
from VV and the Cancer Registry of Norway (CRN). The CRN
provides new knowledge about cancer through research on cancer.
It is part of South-Eastern Norway Regional Health Authority and
is organized as an independent institution under Oslo University
Hospital Trust. CRN is responsible for the national cancer screening
programmes with the goal to prevent cancer death by discovering
cancers or pre-cancerous lesions as early as possible.

3 DATASET DETAILS
The initial Kvasir dataset consists of 4, 000 images, annotated and
verified by medical doctors (experienced endoscopists), including
8 classes showing anatomical landmarks, phatological findings or
endoscopic procedures in the GI tract, i.e., 500 images for each
class. The number of images is sufficient to be used for different
tasks, e.g., image retrieval, machine learning, deep learning and
transfer learning, etc. [2, 12, 28]. The anatomical landmarks are
Z-line, pylorus and cecum, while the pathological finding includes
esophagitis, polyps and ulcerative colitis. In addition, we provide
two set of images related to removal of polyps, the "dyed and lifted
polyp" and the "dyed resection margins". The dataset consist of the
images with different resolution from 720x576 up to 1920x1072
pixels and organized in a way where they are sorted in separate
folders named accordingly to the content. Some of the included
classes of images have a green picture in picture illustrating the
position and configuration of the endoscope inside the bowel, by
use of an electromagnetic imaging system (ScopeGuide, Olympus
Europe) that may support the interpretation of the image. This
type of information may be important for later investigations (thus
included), but must be handled with care for the detection of the
endoscopic findings.

3.1 Anatomical Landmarks
An anatomical landmark is a recognizable feature within the GI
tract that is easily visible through the endoscope. They are essential
for navigating and as a reference point to describe the location of a
given finding. The landmarks may also be typical sites for pathology
like ulcers or inflammation. A complete endoscopic rapport should
preferably contain both brief descriptions and image documentation
of the most important anatomical landmarks [30].

Figure 3: Z-line

3.1.1 Z-line. The Z-line marks
the transition site between the
esophagus and the stomach. En-
doscopically, it is visible as a clear
border where the white mucosa in
the esophagus meets the red gas-
tric mucosa. An example of the Z-
line is shown in figure 3. Recogni-
tion and assessment of the Z-line
is important in order to determine
whether disease is present or not. For example, this is the area
where signs of gastro-esophageal reflux may appear. The Z-line is
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also useful as a reference point when describing pathology in the
esophagus.

Figure 4: Pylorus

3.1.2 Pylorus. The pylorus is
defined as the area around the
opening from the stomach into the
first part of the small bowel (duo-
denum). The opening contains cir-
cumferential muscles that regu-
lates the movement of food from
the stomach. The identification
of pylorus is necessary for endo-
scopic instrumentation to the duo-
denum, one of the challenging maneuvers within gastroscopy. A
complete gastroscopy includes inspection on both sides of the py-
loric opening to reveal findings like ulcerations, erosions or stenosis.
Figure 4 shows an endoscopic image of a normal pylorus viewed
from inside the stomach. Here, the smooth, round opening is visible
as a dark circle surrounded by homogeneous pink stomach mucosa.

Figure 5: Cecum

3.1.3 Cecum. The cecum the
most proximal part of the large
bowel. Reaching cecum is the
proof for a complete colonoscopy
and completion rate has shown
to be a valid quality indicator for
colonoscopy [6]. Therefore, recog-
nition and documentation of the
cecum is important. One of the
characteristics hallmarks of cecum
is the appendiceal orifice. This combined with a typical configura-
tion on the electromagnetic scope tracking system may be used as
proof for cecum intubation when named or photo documented in
the reports [29, 36]. Figure 5 shows an example of the appendiceal
orifice visible as a crescent shaped slit, and the green picture in
picture shows the scope configuration for cecal position.

3.2 Phatological findings
A pathological finding in this context is an abnormal feature within
the gastrointestinal tract. Endoscopically, it is visible as a damage
or change in the normal mucosa. The finding may be signs of an
ongoing disease or a precursor to for example cancer. Detection and
classification of pathology is important in order to initiate correct
treatment and/or follow-up of the patient.

Figure 6: Esophagitis

3.2.1 Esophagitis. Esophagitis
is an inflammation of the esoph-
agus visible as a break in the
esophageal mucosa in relation to
the Z-line. Figure 6 shows an exam-
ple with red mucosal tongues pro-
jecting up in the white esophageal
lining. The grade of inflammation
is defined by length of the mucosal
breaks and proportion of the cir-
cumference involved. This is most commonly caused by condi-
tions where gastric acid flows back into the esophagus as gas-
troesophageal reflux, vomiting or hernia. Clinically, detection is

necessary for treatment initiation to relieve symptoms and prevent
further development of possible complications. Computer detection
would be of special value in assessing severity and for automatic
reporting.

Figure 7: Polyp

3.2.2 Polyps. Polyps are le-
sions within the bowel detectable
as mucosal outgrows. An exam-
ple of a typical polyp is shown
in figure 7. The polyps are either
flat, elevated or pedunculated, and
can be distinguished from normal
mucosa by color and surface pat-
tern. Most bowel polyps are harm-
less, but some have the potential
to grow into cancer. Detection and removal of polyps are therefore
important to prevent development of colorectal cancer. Since polyps
may be overlooked by the doctors, automatic detection would most
likely improve examination quality. The green boxes within the
image shows an illustration of the endoscope configuration. In live
endoscopy, this helps to determine the current localisation of the
endoscope-tip (and thereby also the polyp site) within the length
of the bowel. Automatic computer aided detection of polyps would
be valuable both for diagnosis, assessment and reporting.

Figure 8: Ulcerative colitis

3.2.3 Ulcerative colitis. Ulcer-
ative colitis is a chronic inflam-
matory disease affecting the large
bowel. The disease may have a
large impact on quality of life,
and diagnosis is mainly based on
colonoscopic findings. The degree
of inflammation varies from none,
mild, moderate and severe, all with
different endoscopic aspects. For
example, in a mild disease, the mucosa appears swollen and red,
while in moderate cases, ulcerations are prominent. Figure 8 shows
an example of ulcerative colitis with bleeding, swelling and ulcer-
ation of the mucosa. The white coating visible in the illustration
is fibrin covering the wounds. As mentioned earlier, an automatic
computer aided assessment system will contribute to more accurate
grading of the disease severity.

3.3 Polyp removal
Polyps in the large bowel may be precursors of cancer and are
therefore removed during endoscopy if possible. One of the polyp
removal techniques is called endoscopic mucosal resection (EMR).
This includes injection of a liquid underneath the polyp, lifting the
polyp from the underlying tissue. The polyp is then captured and
removed by use of a snare. The lifting minimizes risk of mechanical
or electrocautery damage to the deeper layers of the GI wall. Stain-
ing dye (i.e., diluted indigo carmine) is added to facilitate accurate
identification of the polyp margins [17]. Computer detection of
dyed polyps and the site of resection would be important in order
to generate computer aided reporting systems for the future.
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Figure 9: Dyed and Lifted
Polyp

3.3.1 Dyed and Lifted Polyps.
Figure 9 shows an example of a
polyp lifted by injection of saline
and indigocarmine. The light blue
polyp margins are clearly visible
against the darker normal mucosa.
Additional valuable information
related to automatic reportingmay
involve successfulness of the lift-
ing and eventual presence of non-
lifted areas that might indicate ma-
lignancy.

Figure 10: Dyed Resection
Margin

3.3.2 Dyed Resection Margins.
The resection margins are impor-
tant in order to evaluate whether
the polyp is completely removed
or not. Residual polyp tissue may
lead to continued growth and in
worst case malignancy develop-
ment. Figure 10 illustrates the re-
section site after removal of a
polyp. Automatic recognition of
the site of polyp removals are of
value for automatic reporting sys-
tems and for computer aided assessment on completeness of the
polyp removal.

4 APPLICATIONS OF THE DATASET
Our vision is that the available data may eventually help researchers
to develop systems that improve the health-care system in the
context of disease detection in videos of the GI tract. Such a system
may automate video analysis and endoscopic findings detection
in the esophagus, stomach, bowel and rectum. Important results
will include higher detection accuracies, reduced manual labor for
medical personnel, reduced average cost, less patient discomfort
and possibly increased willingness to undertake the examination. In
the end, the improved screening will probably significantly reduce
mortality and number of luminal GI disease incidents.

With respect to direct use in the multimedia research areas, the
main application area of Kvasir is automatic detection, classifi-
cation and localization of endoscopic pathological findings in an
image captured in the GI tract. Thus, the provided dataset can be
used in several scenarios where the aim is to develop and evaluate
algoritmic analysis of images. Using the same collection of data, re-
searchers can easier compare approaches and experimental results,
and results can easier be reproduced. In particular, in the area of
image retrieval and object detection, Kvasir will play an important
initial role where the image collection can be divided into training
and test sets for developments of and experiments for various image
retrieval and object localization methods including search-based
systems, neural-networks, video analysis, information retrieval,
machine learning, object detection, deep learning, computer vision,
data fusion and big data processing.

In our work [27, 32, 33], we have for example conducted a leave-
one-out cross-validation to evaluate our system. This is a method
that assesses the generalization of a predictive model where the

training and testing datasets are rotated, i.e., leaving out a single
different non-overlapping item or portion for testing, and using
the remaining items for training. This process is repeated until
every item or portion has been used for testing exactly once [13].
Being one of the first medical multi-class datasets available to the
multimedia community, we hereby invite and enable multimedia
researcher into the medical domain of detection and retrieval.

5 SUGGESTED METRICS
Looking at the list of related work in this area, there are a lot of
different metrics used, with potentially different names when used
in the medical area and the computer science (information retrieval)
area. Here, we provide a small list of the most important metrics. For
future research, in addition to describing the dataset with respect
to total number of images, total number of images in each class and
total number of positives, it might be good to provide as many of the
metrics below as possible in order to enable an indirect comparison
with older work:
True positive (TP): The number of correctly identified samples.

The number of frames with an endoscopic finding which cor-
rectly is identified as a frame with an endoscopic finding.

True negative (TN): The number of correctly identified negative
samples, i.e., frames without an endoscopic finding which cor-
rectly is identified as a frame without an endoscopic finding.

False positive (FP): The number of wrongly identified samples,
i.e., a commonly called a "false alarm". Frames without an endo-
scopic finding which is erroneously identified as a frame with
an endoscopic finding.

False negative (FN): The number of wrongly identified negative
samples. Frames without an endoscopic finding which erro-
neously is identified as a frame with an endoscopic finding.

Recall (REC): Thismetric is also frequently called sensitivity, prob-
ability of detection and true positive rate, and it is the ratio of
samples that are correctly identified as positive among all ex-
isting positive samples:

recall =
TP

# o f all positives
=

TP

TP + FN

Precision (PREC): This metric is also frequently called the pos-
itive predictive value, and shows the ratio of samples that are
correctly identified as positive among the returned samples (the
fraction of retrieved samples that are relevant):

precision =
TP

# o f all returned samples
=

TP

TP + FP

Specificity (SPEC): This metric is frequently called the true neg-
ative rate, and shows the ratio of negatives that are correctly
identified as such (e.g., the fraction of frames without an endo-
scopic finding are correctly identified as a negative result):

speci f icity =
TN

# o f all neдatives
=

TN

FP +TN

Accuracy (ACC): The percentage of correctly identified true and
false samples:

accuracy =
TP +TN

# o f samples in total

167



Kvasir: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease DetectionMMSys ’17, June 20–23, 2017, Taipei, Taiwan

Matthews correlation coefficient (MCC): MCC takes into ac-
count true and false positives and negatives, and is a balanced
measure even if the classes are of very different sizes:

MCC =
TP ×TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
F1 score (F1): A measure of a test’s accuracy by calculating the

harmonic mean of the precision and recall:

F1 score = 2 × precision × recall

precision + recall
=

2TP
2TP + FP + FN

In addition to the above metrics, system performance metrics pro-
cessing speed and resource consumption are of interest. In our
work, we have used the achieved frame-rate (FPS) as a metric as
real-time feedback is important.

6 BASELINE PERFORMANCE
We have here performed an initial multi-class detection experi-
ment on Kvasir as a baseline for future experiments. We have
experimented using various configurations of three different main
approaches, i.e., classification using global features (GF), deep learn-
ing convolutional neural networks (CNN) and transfer learning in
deep learning (TFL).

For the GF approaches, we extracted several image features for
classification using the latest version of the Lire open source soft-
ware [22], i.e., the extracted features are JCD, Tamura, Color Layout,
Edge Histogram, Auto Color Correlogram and Pyramid Histrogram
of Oriented Gradients. For the 2 GF run, we combined JCD and
Tamura resulting in a feature vector of 187. For the 6 GF run, we
combined all extracted features resulting in a feature vector of 1186.
We decided for these combinations based on our previous findings
and experiments in [32]. We performed a simple early fusion of the
features, and all extracted features are included in the dataset in the
arff file format for reuse and reproducibility. We used the Random
Forrest (RF) and Logistic Model Tree (LMT) classifiers provided in
the Weka machine learning library [15].

For all deep learning implementations, we used Keras [10] with
Google Tensorflow [2] as backend. For the two CNN runs, we
trained two different CNNs from scratch, i.e., one with three convo-
lution layers and one with six. As activation function, we used the
rectified linear unit (ReLU) [14] and for pooling maxpooling. In all
layers, we also included a 0.5 dropout, and the final classification
step was performed using two dense layers with first ReLU and
then Sigmoid as activation functions. Both networks were trained
for 200 epochs using the Adam optimizer [20].

The TFL run is based on transfer learning [8] by re-training
and fine-tuning the pre-trained Inception v3 model [34]. For the
re-training, we followed a similar approach as presented in [12].
Firstly, we locked all the basic convolutional layers of the network
and only retrained the two top dense classification layers. The dense
layers were retrained for 1, 000 epochs using the RMSprop optimizer
that allows an adaptive learning rate during the training process.
After that, fine-tuning of a subset of the convolutional layers was
performed. We decided to apply the fine-tuning on the two top
convolutional layers of the re-trained model. For this training step,
we used the SGD optimizer with a low learning rate (to achieve the
best effect in terms of speed and accuracy) [25].

Table 1: Classification performance in terms of weighted av-
erage (2-folded) using the metrics described above.

Method PREC REC SPEC ACC MCC F1 FPS
6 Layer CNN 0.661 0.640 0.953 0.914 0.602 0.651 43
3 Layer CNN 0.589 0.408 0.890 0.959 0.430 0.453 45
Inception v3 TFL 0.698 0.689 0.957 0.924 0.649 0.693 66
2 GF Random Forrest 0.713 0.715 0.959 0.928 0.672 0.711 333
2 GF Logistic Model Tree 0.706 0.707 0.958 0.926 0.664 0.705 210
6 GF Random Forrest 0.732 0.732 0.962 0.933 0.692 0.727 105
6 GF Logistic Model Tree 0.748 0.748 0.964 0.937 0.711 0.747 80
Baseline (JCD Random Forrest) 0.708 0.710 0.958 0.927 0.666 0.706 370
Baseline (Random/Majority) 0.016 0.125 0.000 0.016 0.666 0.000 -

Table 2: Confusion matrix for both cross validated folds for the 6
GF LMT experiment in table 1. The classes are Esophagitis (A), Dyed
and Lifted Polyps (B), Dyed Resection Margins (C), Cecum (D), Py-
lorus (E), Z-line (F), Polyps (G) and Ulcerative colitis (H). The test
set in each fold contains 250 images for each class.

Detected class
A B C D E F G H

A
ct
ua

lc
la
ss

A 198/177 0/0 0/0 0/0 3/8 49/64 0/1 0/0
B 0/0 139/149 104/92 4/0 0/0 1/0 1/7 1/2
C 0/0 90/100 154/148 2/0 0/0 1/0 2/1 1/1
D 0/0 0/1 0/0 214/223 0/0 0/0 30/18 6/8
E 5/3 0/0 0/0 0/0 235/227 2/8 5/12 3/0
F 64/33 0/0 0/0 0/0 6/6 180/210 0/0 0/1
G 0/0 0/0 4/1 24/26 10/2 2/2 169/178 41/41
H 1/0 2/0 1/0 18/8 3/1 1/1 32/44 192/196

The exact configurations of the CNN and TFL approaches are
included in the dataset. We did not perform any data augmentation,
such as cropping, for any of the approaches for this work. For the
experiments, we split the dataset randomly in two equally sized
subsets (training and testing) containing 250 images per class each.
We also performed two-folded cross-validation by switching the
training and testing and calculated the average. As baselines, we
provide one using the RF classifier with the JCD feature and one
based on the random/majority class.

Table 1 gives and overview of the results, and table 2 contains the
confusion matrix for the best performing approach (6 GF with LMT)
for a more detailed insight into the performance. We can see that
all approaches would outperform the random and majority class
baseline, which is presented in the last row. Our own baseline in
the second last row is only outperformed by three approaches. The
best performing approach is a combination of six global features
and the LMT classifier with an overall F1 score of 0.747 and 80
FPS. The 6 layer CNN outperforms the 3 layer CNN in terms of
detection performance but not in terms of speed. The TFL approach
outperforms the two other deep learning based approaches, which
we expected since our CNN parameters are not optimized and we
trained over a rather small number of epochs. Nevertheless, even
if we use very basic methods, the here presented results can be a
good starting point for other researchers and used as baselines to
benchmark other methods applied to the dataset. In short, we see
that multi-class detection is much more challenging than single
detection, and that some findings are harder to detect than others,
indicating that there are great potentials for improvements and
innovations in future medical multimedia research.

7 CONCLUSION
To enable (reproducible) research in the intersection between multi-
media and medicine, on analysis of images and videos of the human
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GI tract in particular, we have presented the Kvasir dataset. The
dataset has been collected during real endoscopy examinations
and sorted and analyzed by medical experts. Initially, it contains 8
classes of images of important lesions and landmarks found in the
GI tract, but it will be continuously updated. Medical datasets are
hard to find, and such a dataset enables multi-disciplinary retrieval
and detection research in order to improve health care systems all
over the world.
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