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We identify submodularity as the key ingredient needed to get the
Lewy–Stampacchia inequality in the potential case, by showing how it can be used 
in a simple and effective way to produce a very abstract and general version of such 
estimate.
We then discuss how to reproduce more classical versions of it and, more 
importantly, how it can be used in conjunction with Laplacian comparison estimates 
to produce large class of functions with bounded Laplacian on spaces with a lower 
bound on the Ricci curvature.
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r é s u m é

On identifie la sous-modularité comme ingrédient clé pour l’obtention de l’inégalité 
de Lewy–Stampacchia dans le cas potentiel, en montrant comment elle peut être 
utilisée de manière simple et efficace pour produire une version très abstraite et 
générale de cette estimation.
On discute ensuite une reproduction des versions plus classiques de cette inégalité et, 
plus important encore, comment cet ingrédient peut être utilisé avec les estimations 
de comparaison du laplacien pour produire une grande classe de fonctions avec 
laplacien borné sur des espaces avec courbure de Ricci bornée inférieurement.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Lewy–Stampacchia inequality [21] is a classical inequality concerning the solution of the obstacle 
problem. It can be stated as follows: let Ω ⊂ R

d be a given open bounded set, ϕ ∈ C∞
c (Ω) and u the 

minimum of E(v) := 1
2
∫
|∇v|2 dLd among all v ∈ W 1,2

0 (Ω) with v ≥ ϕ. Then

0 ∧ Δϕ ≤ Δu ≤ 0. (1.1)
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Here the inequality Δu ≤ 0 is obvious because u minimizes the energy among positive perturbations. 
To see why 0 ∧ Δϕ ≤ Δu holds, very informally, notice that where {u > ϕ}, u is harmonic and hence 
Δu = 0, while where {u = ϕ} we have Δu = Δϕ (the precise derivation of (1.1) – which we do not discuss 
in this introduction – must take into account what happens at the boundary of the set {u = ϕ}).

Over time, inequality (1.1) has been generalized in several different directions, among others we mention 
[34] as a general reference for general linear operators and boundary values, [25] for nonlinear Leray–Lions 
operators, [29] for nonlinear p-Laplacian type operators, and [30] for the fractional Laplacian and the 
Laplacian in the Heisenberg group (see also [27] for this latter setting).

The first scope of this paper is to further investigate the structure of the Lewy–Stampacchia inequality 
and to provide an abstract version of it in the context of topological vector lattices (B, τ, ≺), see Theorem 2.4
for the precise formulation. Beside the higher level of abstraction we reach, our approach is new in the sense 
that it does not rely neither on differentiability properties of the convex functional E : B → R ∪ {+∞}
considered, nor on the strict T -monotonicity of its subdifferential, the latter meaning that

〈u∗ − v∗, (u− v) ∨ 0〉 ≥ 0 ∀u∗ ∈ ∂E(u), v∗ ∈ ∂E(v), (1.2a)

〈u∗ − v∗, (u− v) ∨ 0〉 = 0 ⇔ u ≺ v. (1.2b)

In fact, what turns out to be crucial is the submodularity property, also called boolean subadditivity, 
of the functional itself, i.e.:

E(u ∧ v) + E(u ∨ v) ≤ E(u) + E(v), ∀u, v ∈ B. (1.3)

While submodular functions are well established tools in discrete optimization, their rôle in the general 
theory of vector lattices, and in Lewy–Stampacchia type estimates in particular, has not yet, as far as we 
are aware of, been recognized. As we will show, realizing the importance of submodularity in this context 
not only provides a more abstract and general version of the Lewy–Stampacchia inequality, but also greatly 
simplifies the proof.

Being a zeroth-order condition, verifying the submodularity (1.3) for a given functional is a much easier
and a more direct task than obtaining the strict T -monotonicity of its differential, which, especially
for non-differentiable functionals, requires a good knowledge of the subdifferential itself. Moreover, 
submodularity is a weaker condition, since at the derivative level is equivalent to T -monotonicity (1.2a)
of the differential instead of its strict T -monotonicity (1.2a), (1.2b).

Beside recovering the classical Lewy–Stampacchia inequality for the Laplacian and showing how to quickly 
re-obtain the one for the fractional Laplacian (recently proved in [30]), we apply the abstract formulation 
to the double obstacle problem on CD∗(K, N) spaces, which was in fact the main motivation for starting 
this project. CD∗(K, N)/RCD∗(K, N) spaces are metric measure structures which, in a sense, resemble 
Finslerian/Riemannian manifolds with Ricci curvature bounded from below by K and dimension bounded 
from above by N , see [23,31,32,4,12,10] for the relevant definitions.

Being the curvature-dimension condition a second-order notion, one expects the presence of ‘many’ 
functions with some sort of second order regularity. Yet, priori to the present manuscript the only smoothing 
tool available was regularization with the heat flow which, due to fast diffusion, offers little control on the 
local behavior of the regularized functions.

Here we couple the Lewy–Stampacchia inequality with the Laplacian comparison estimates proved in [12]
to produce ‘constrained’ functions with bounded Laplacian. In particular, on CD∗(K, N) spaces we shall 
build cut-off functions and regularized Kantorovich potentials from intermediate times along a geodesic, 
in both cases producing functions with bounded Laplacian. See Theorems 3.12 and 3.13 for the precise 
formulation. The relevance of having smooth cut-off functions is clear, on the other hand having smooth 
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Kantorovich potentials seems crucial in order to be able to differentiate functionals along a W2-geodesic, 
see for instance the discussion at the end of [13].

We remark that cut-off functions were already built in [6] on RCD(K, ∞) spaces, but the technique seems 
not applicable to the class of CD∗(K, N) spaces.

In the stricter RCD∗(K, N) class our construction produces Lipschitz functions. This regularity result has 
little to do with the Lewy–Stampacchia inequality, but is rather based on Lipschitz continuity of harmonic 
functions on RCD∗(K, N) spaces recently obtained in [19] (see also [20] and [17]) together with quite standard 
techniques in the setting of the obstacle problem, see Section 3.3.3.

2. The abstract Lewy–Stampacchia inequality

2.1. Topological vector lattices

Here we briefly introduce the basic notions needed to state the Lewy–Stampacchia inequality in an 
abstract framework, referring to [26] for a detailed discussion about ordered topological vector spaces.

A lattice (S, ≺) is given by a set S with a partial ordering ≺ such that for every x, y ∈ S there exist 
elements x ∨ y, x ∧ y ∈ S satisfying

x ≺ x ∨ y,

y ≺ x ∨ y,

x ≺ z, y ≺ z ⇒ x ∨ y ≺ z,

and
x ∧ y ≺ x,

x ∧ y ≺ y,

z ≺ x, z ≺ y ⇒ z ≺ x ∧ y.

Given two elements x, y of a lattice S with x ≺ y we denote by [x, y] ⊂ S the interval defined by x and y, 
i.e.:

[x, y] := {z ∈ S : x ≺ z ≺ y}.

Similarly, by ]−∞, x] we intend the set {z : z ≺ x} and by [x, +∞[ the set {z : x ≺ z}. Subsets of S
contained in some interval [x, y] are called order-bounded.

Definition 2.1 (Topological vector lattice). A topological vector lattice (B, τ, ≺) is a Hausdorff locally convex 
topological vector space (B, τ) endowed with a lattice structure compatible with the vector one in the sense 
that for given x, y ∈ B with x ≺ y we have

x + z ≺ y + z, ∀z ∈ B,

λx ≺ λy, ∀λ ∈ R, λ ≥ 0.

The positive cone P ⊆ B is the convex cone {x ∈ B : 0 ≺ x}, and x ≺ y iff x − y ∈ P .

At this level of generality, there is no connection between the topology and the lattice structure on B. 
Notice that this may be in contrast with some terminology, where a topological vector lattice usually requires 
that there is a neighborhood basis for 0 consisting of solid sets (solid sets A are those such that if x ∈ A

and |y| ≺ |x| then y ∈ A, where |x| := max{x, −x}).
Let us recall that P ∩−P = {0} (i.e. P is proper) due to the antisymmetry of ≺ and P −P = B (i.e. P is 

generating) due to (B, ≺) being a lattice. The order dual of B is denoted by B′
≺ and consists of all the real 

valued linear functionals on B which are bounded on order-bounded sets. Being B a lattice, B′
≺ is a vector 

lattice w.r.t. to the ordering induced by the dual cone P ′ = {l ∈ B′
≺ : l(x) ≥ 0 ∀x ∈ P}. In particular, 

for any l, m ∈ B′
≺, the Riesz–Kantorovich formulae hold for any x ∈ P :

l ∨m(x) := sup {l(z) + m(x− z)}, l ∧m(x) := inf
z∈[0,x]

{l(z) + m(x− z)}. (2.1)

z∈[0,x]
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We shall denote by B∗ the topological dual of (B, τ) and by 〈·,·〉 : B∗ × B → R the corresponding duality 
pairing. The topological dual convex cone P ∗ ⊂ B∗ of P is

P ∗ := {x∗ ∈ B∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ P},

and we will still denote by ≺ the partial order structure induced by P ∗ on B∗. We then define the topological 
lattice dual as

B∗
≺ := P ∗ − P ∗.

Any x∗ ∈ P ∗ is bounded on order bounded sets, so that in general it holds

B∗
≺ ⊆ B∗ ∩B′

≺. (2.2)

It is obvious by definition that P ∗ is weakly∗-closed in B∗. On the other hand, if P is closed then B∗
≺ is 

weakly∗-dense in B∗. Indeed, if x ∈ B is such that 〈x∗, x〉 = 0 for any x∗ ∈ B∗
≺, then in particular 〈x∗, x〉 ≥ 0

for every x∗ ∈ P ∗, which by the bipolar theorem gives x ∈ P , and 〈x∗, x〉 ≥ 0 for any x∗ ∈ −P ∗, so that 
x ∈ −P and hence x ∈ P ∩ −P = {0}.

It turns out that B∗
≺ is also a vector lattice. To check this, it suffices to show that the Riesz–Kantorovich 

formulae (2.1) provide continuous linear functionals. If x∗ = x∗
1 − x∗

2 and y∗ = y∗1 − y∗2 with x∗
i , y∗i ∈ P ∗ for 

i = 1, 2, then for any 0 ≺ z ≺ x it holds

〈x∗, z〉 + 〈y∗, x− z〉 ≤ 〈x∗
1, z〉 + 〈y∗1 , x− z〉 ≤ 〈x∗

1 + y∗1 , x〉

and similarly

〈x∗, z〉 + 〈y∗, x− z〉 ≥ −〈x∗
2 + y∗2 , x〉.

Therefore both x∗ ∨ y∗ and x∗ ∧ y∗ are (topologically) bounded linear functionals on P , which have unique 
continuous extension to the whole B due to P being generating.

Although unnecessary in our discussion, we remark that if P ′ ⊆ B∗, then B′
≺ ⊆ B∗ and thus equality 

holds in (2.2). By Proposition 2.16, Chapter 2 in [26] this is the case, for example, if (B, τ) is a complete 
metrizable t.v.s. of second category and P is closed, as in the applications we will propose.

Given a convex function E : B → R ∪ {+∞} we shall denote by domE ⊂ B the set {x : E(x) < ∞}. 
For x0 ∈ B, the subdifferential ∂E(x0) ⊂ B∗ of E at x0 is defined to be the empty set if x0 /∈ domE and 
otherwise as the (possibly empty) set of elements x∗ ∈ B∗ such that

〈x∗, x− x0〉 ≤ E(x) −E(x0) ∀x ∈ B.

The domain of ∂E is defined as dom(∂E) = {x ∈ B : ∂E(x) �= ∅}.
Given a lattice (S, ≺), a function E : (S, ≺) → R ∪ {+∞} is said to be submodular provided

E(x ∧ y) + E(x ∨ y) ≤ E(x) + E(y), ∀x, y ∈ S. (2.3)

We shall be interested in topological vector lattices and functionals E which are both convex and 
submodular. Notice that for such E’s the subdifferential satisfies the following variant of the classical 
monotonicity property, known as T -monotonicity:

〈x∗ − y∗, (x− y) ∨ 0〉 ≥ 0 ∀x∗ ∈ ∂E(x), y∗ ∈ ∂E(y) (2.4)
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(one says that ∂E is strictly T -monotone provided equality in (2.4) implies x ≺ y). Indeed, by definition of 
subdifferential we have

〈x∗, (y − x) ∧ 0〉 ≤ E(x + (y − x) ∧ 0) −E(x) = E(x ∧ y) − E(x),

〈y∗, (x− y) ∨ 0〉 ≤ E(y + (x− y) ∨ 0) − E(y) = E(x ∨ y) −E(y),

so that adding up the inequalities and noticing that

〈x∗, (y − x) ∧ 0〉 + 〈y∗, (x− y) ∨ 0〉 = 〈x∗ − y∗, (y − x) ∧ 0〉

we get the claim. The same argument shows that for convex E’s with dom(∂E) = B, the T -monotonicity 
property (2.4) yields the submodularity (2.3).

Remark 2.2. It might be useful to recall that if f is a smooth function defined on Rd and the latter is endowed 
with its natural lattice structure given by x ≺ y if all the components of x are ≤ than the corresponding 
ones of y, then f is submodular if and only if

∂2f

∂xi∂xj
(x) ≤ 0, ∀x ∈ R

d, i, j = 1, . . . , d, i �= j.

We conclude this section recalling a basic result in convex analysis we shall use in our proof of the 
Lewy–Stampacchia inequality, see Theorem 2.9.1 in [36] for a proof.

Theorem 2.3. Let B be a Hausdorff locally convex topological vector space, C ⊂ B a convex set and
E : B → R ∪ {+∞} a convex function. Assume that either domE ∩ intC �= ∅ or that there exists
x ∈ domE ∩ C where E is continuous.

Then x̄ ∈ C realizes the minimum of E in C if and only if there exists x∗ ∈ ∂E(x̄) such that

〈x∗, x− x̄〉 ≥ 0, ∀x ∈ C.

2.2. Abstract formulation of the Lewy–Stampacchia inequality

We can now prove a general version of the Lewy–Stampacchia inequality.

Theorem 2.4 (Abstract Lewy–Stampacchia inequality). Let (B, τ, ≺) be a topological vector lattice,
and E : B → R ∪ {+∞} a convex and submodular functional. Furthermore, let ϕ, ψ ∈ B with ϕ ≺ ψ

and ū ∈ B a minimizer for E on [ϕ, ψ].
Assume that either domE ∩ int [ϕ, ψ] �= ∅ or that there exists u ∈ domE ∩ [ϕ, ψ], where E is continuous.
Then

∀w∗
1 ∈ ∂E(ϕ) ∩B∗

≺ ∃x∗
1 ∈ ∂E(ū) ∩B∗

≺ such that x∗
1 ≺ w∗

1 ∨ 0,

∀w∗
2 ∈ ∂E(ψ) ∩B∗

≺ ∃x∗
2 ∈ ∂E(ū) ∩B∗

≺ such that w∗
2 ∧ 0 ≺ x∗

2. (2.5)

Proof. We start proving the first assertion in (2.5). Without loss of generality we assume that
∂E(ϕ) ∩B∗

≺ �= ∅ (thus in particular E(ϕ) < +∞) and pick w∗
1 ∈ ∂E(ϕ) ∩B∗

≺. Consider the convex functional
A1 : B → R ∪ {+∞} defined by

A1(u) := E(u) − 〈w∗
1 ∨ 0, u〉, ∀u ∈ B.
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We claim that

inf
]−∞,ū]

A1 = inf
[ϕ,ū]

A1. (2.6)

The inequality ≤ is obvious. To prove the other one, it suffices to prove that for any u ≺ ū it holds 
A1(u) ≥ A1(u ∨ ϕ). Suppose not: then for some u ≺ ū it holds

E(u ∨ ϕ) − 〈w∗
1 ∨ 0, u ∨ ϕ〉 > E(u) − 〈w∗

1 ∨ 0, u〉. (2.7)

In particular E(u) < +∞ and using (2.3) we get E(u ∨ ϕ), E(u ∧ ϕ) < +∞. Moreover

E(ϕ) − E(u ∧ ϕ) ≥ E(u ∨ ϕ) − E(u)
(2.7)
> 〈w∗

1 ∨ 0, u ∨ ϕ− u〉 ≥ 〈w∗
1 , u ∨ ϕ− u〉,

where in the last inequality we used the fact that u ∨ ϕ − u � 0. Recalling that u − u ∨ ϕ = u ∧ ϕ − ϕ

we deduce

E(u ∧ ϕ) < E(ϕ) + 〈w∗
1 , u ∧ ϕ− ϕ〉,

which contradicts w∗
1 ∈ ∂E(ϕ). Thus (2.6) is proved. Now we claim that

inf
[ϕ,ū]

A1 = A1(ū), (2.8)

and again we argue by contradiction. Hence suppose that for some u ∈ [ϕ, ̄u] it holds

E(u) − 〈w∗
1 ∨ 0, u〉 < E(ū) − 〈w∗

1 ∨ 0, ū〉.

Then, being u ≺ ū we get

E(ū) − E(u) > 〈w∗
1 ∨ 0, ū− u〉 ≥ 0,

which, since u ∈ [ϕ, ̄u] ⊆ [ϕ, ψ], contradicts the minimality of ū in [ϕ, ψ].
From (2.6) and (2.8) we deduce that ū is a minimum for A1 on the convex set ]−∞, ̄u], therefore by 

Theorem 2.3 we deduce the existence of y∗1 ∈ ∂A1(ū) such that

〈y∗1 , u− ū〉 ≥ 0, ∀u ∈ ]−∞, ū]. (2.9)

Since y∗1 ∈ ∂A1(ū) = ∂E(ū) −w∗
1 ∨ 0, there exists x∗

1 ∈ ∂E(ū) such that y∗1 = x∗
1 −w∗

1 ∨ 0. Letting u = ū− v

for arbitrary v ∈ P in (2.9), we get

〈x∗
1 − w∗

1 ∨ 0, v〉 ≤ 0, ∀v ∈ P,

proving that x∗
1 − w1 ∨ 0∗ ∈ −P ∗, which is the first inequality in (2.5).

To prove the other one we consider, for any w∗
2 ∈ ∂E(ψ), the functional

A2(u) := E(u) − 〈w∗
2 ∧ 0, u〉,

and arguing as before we prove that ū minimizes A2 over [ū, +∞[, thus getting the conclusion along the 
same lines just used. �
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3. Applications

3.1. Recovering the classical case

Here we show how the general Theorem 2.4 yields the classical formulation of the Lewy–Stampacchia 
inequality. Let Ω ⊂ R

d be an open set and observe that the Hilbert space W 1,2
0 (Ω) endowed with the 

standard ordering given by pointwise a.e. inequality

u ≺ v
def⇐⇒ u(x) ≤ v(x), a.e. x ∈ Ω,

is a topological vector lattice. Its topological dual is denoted by W−1,2(Ω) and its topological lattice dual 
by W−1,2

≺ (Ω) ⊂ W−1,2(Ω).
The distributional Laplacian Δu of a function u ∈ W 1,2

0 (Ω) acts on smooth compactly supported 
functions as

C∞
c (Ω) � η �→ 〈Δu, η〉 :=

∫
Ω

Δη u dLd,

and since u ∈ W 1,2
0 (Ω) we have

∣∣∣∣∣∣
∫
Ω

Δη u dLd

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

∇η · ∇u dLd

∣∣∣∣∣∣ ≤ ‖∇η‖L2‖∇u‖L2 ≤ ‖η‖W 1,2
0 (Ω)‖u‖W 1,2

0 (Ω),

which shows that the distributional Laplacian uniquely extends to the element in W−1,2(Ω), still denoted 
by Δu, given by

W 1,2
0 (Ω) � η �→ 〈Δu, η〉 := −

∫
Ω

∇η · ∇u dLd.

In this sense, it has a meaning to ask whether Δu ∈ W−1,2
≺ (Ω) for some u ∈ W 1,2

0 (Ω). The Lewy–Stampacchia 
inequality can then be stated as follows:

Theorem 3.1 (Classical Lewy–Stampacchia inequality). Let Ω ⊂ R
d be a bounded open set and ϕ, ψ ∈ W 1,2

0 (Ω)
with ϕ ≤ ψ a.e. and such that Δϕ, Δψ ∈ W−1,2

≺ (Ω).
Let ū be the minimum of u �→

∫
Ω |∇u|2 dLd among all functions u ∈ W 1,2

0 (Ω) such that ϕ ≤ u ≤ ψ a.e. 
(whose existence and uniqueness follows by standard means in calculus of variations). Then we have
Δū ∈ W−1,2

≺ (Ω) as well with

Δϕ ∧ 0 ≺ Δū ≺ Δψ ∨ 0. (3.1)

Proof. The functional E : W 1,2
0 (Ω) → [0, ∞) given by E(u) := 1

2
∫
Ω |∇u|2 dLd is clearly convex and 

continuous. Moreover, E is submodular (actually, with equality holding in (2.3) for every u, v ∈ W 1,2
0 (Ω)) 

as a consequence of the locality property of the gradient:

∇u = ∇v, Ld-a.e. on {u = v}.

Now observe that the subdifferential of E at u ∈ W 1,2
0 (Ω) is nothing but −Δu ∈ W−1,2(Ω). Indeed, 

the trivial inequality

E(u) − 〈Δu, η〉 ≤ E(u + η), ∀u, η ∈ W 1,2
0 (Ω),
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shows that −Δu ∈ ∂E(u) and conversely testing the subdifferential inequality with εη for arbitrary 
η ∈ W 1,2

0 (Ω) and then letting ε → 0 we see that −Δu is the only element in ∂E(u).
The conclusion then comes applying Theorem 2.4. �
Some comments:

i) The assumption that the obstacles ϕ, ψ have 0 boundary data has been made to simplify the exposition 
but is in fact unnecessary, see Remark 3.4 for some details on how to remove it.

ii) We stated the thesis in (3.1) as an inequality between linear functionals on W−1,2(Ω). Equivalently,
one can interpret it as inequality between measures, due to the fact that elements of the space W−1,2

≺ (Ω)
can be faithfully represented as Radon measures. This can be achieved either calling into play the 
notions of capacity, polar sets and representatives quasi-everywhere defined of Sobolev functions (see e.g. 
Chapter 3 of [24]), or along the following lines.
Consider a positive functional L ∈ W−1,2

≺ (Ω). By restriction it defines a positive linear functional on 
Lipc(Ω) ⊆ W 1,2(Ω) and since for every non-negative f ∈ Cc(Ω) there exists g ∈ Lipc(Ω) such that 
f(x) ≤ g(x) for every x ∈ Ω, such positive linear functional can be uniquely extended to a positive 
linear functional on Cc(Ω) (see also the general construction in Corollary 2.8, Chapter 2 in [26]). By the 
Riesz representation theorem we get that there exists a non-negative Radon measure μL on Ω such that

L(u) =
∫
Ω

u dμL ∀u ∈ Lipc(Ω),

and such μL is unique by the density of Lipc(Ω) in Cc(Ω). Clearly then, there is a well defined (linear) 
map W−1,2

≺ (Ω) � L �→ μL ∈ M(Ω) where we denoted with M(Ω) the set of Radon measures on Ω.
We say that this representation is faithful in the sense that the map L �→ μL is injective, being Lipc(Ω)
strongly dense in W 1,2

0 (Ω).
Due to this discussion, we will sometime shortly say that the elements of W−1,2

≺ (Ω) “are” measures.
iii) Although the Lewy–Stampacchia inequality can be certainly stated for smooth obstacles, in fact it is 

more natural – and evidently more general – to formulate it as in the statement we gave, i.e. for obstacles
having measure valued distributional Laplacian, the latter being intended as in point (ii) above. It is for 
this reason that the topological vector lattice considered has been W 1,2

0 (Ω) rather than L2(Ω). Indeed, 
convex functionals in L2 have subdifferential which, by definition, must act continuously on L2 functions, 
which is certainly not the case for a generic measure-valued distributional Laplacian of a Sobolev 
function.
In the present case, the version with measure-valued Laplacian could in fact be obtained from the case of 
smooth obstacles with a quite standard approximation/convergence argument, so that this distinction 
might be not so relevant. It becomes instead crucial on metric measure spaces, where approximation 
procedures are not easily available, and in fact the study of the double obstacle problem has as primary 
goal the one of building ‘smooth’ functions.

3.2. The fractional Laplacian

We now show how to deduce from Theorem 2.4 the Lewy–Stampacchia inequality for the fractional 
Laplacian, thus reproducing a result already appeared in [30] with a simplified argument.

Let Ω ⊂ R
d be an open subset, s ∈ (0, 1) and the space W s,2

0 (Ω) be defined as the closure of C∞
c (Ω)

w.r.t. the norm

‖u‖2
W s,2

0 (Ω) := ‖u‖2
L2 +

∫
d d

|u(x) − u(y)|2
|x− y|d+2s dx dy.
R ×R
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Clearly, W s,2
0 (Ω) is a lattice w.r.t. the a.e. ordering and a Hilbert space with the latter norm, with dual 

denoted by W−s,2(Ω) and order dual by W−s,2
≺ (Ω). As a general reference for this space and related ones 

see Chapter 1, Section 5 of [33]. Notice that, with the same arguments of the previous section, one can see 
that functionals in W−s,2

≺ (Ω) can be faithfully represented as integral w.r.t. appropriate Radon measures.
If Ω is bounded, the functional E : W s,2

0 (Ω) → R given by

E(u) := 1
2

∫
Rd×Rd

|u(x) − u(y)|2
|x− y|d+2s dx dy,

is convex, continuous and coercive (i.e. it controls the W s,2
0 -norm – this follows from the fractional Sobolev 

inequality, see [30]). Its subdifferential is related to the fractional Laplacian via the identity

∂E(u) = (−Δ)su, ∀u ∈ W s,2
0 (Ω),

we refer to [9] for the definition and basic properties of the fractional Laplacian.
We claim that E is submodular. To prove this it is sufficient to show that

(x1 − x2)2 + (y1 − y2)2 ≥ (x1 ∨ y1 − x2 ∨ y2)2 + (x1 ∧ y1 − x2 ∧ y2)2,

for any x1, x2, y1, y2 ∈ R. More generally, we shall prove that for every f : R → R convex we have

f(x1 − x2) + f(y1 − y2) ≥ f(x1 ∨ y1 − x2 ∨ y2) + f(x1 ∧ y1 − x2 ∧ y2), (3.2)

for any x1, x2, y1, y2 ∈ R. To this aim, let g : R
2 → R given by g(x1, x2) = f(x1 − x2) and endow 

R
2 with its natural lattice structure given by component-wise ordering. If f is smooth, then the identity 
d2

dx1dx2
g(x1, x2) = − d2

dx2 f(x1 − x2) ≤ 0 and Remark 2.2 show that g is submodular, which is equivalent to 
the validity of (3.2) for any x1, x2, y1, y2 ∈ R. The general case follows by approximation.

Collecting together these observations and using Theorem 2.4 we deduce:

Theorem 3.2 (Lewy–Stampacchia inequality for the fractional Laplacian). Let Ω ⊆ R
d be open,

ϕ,ψ ∈ W s,2
0 (Ω) and ū a minimizer for E over [ϕ, ψ] �= ∅. Assume that (−Δ)sϕ, (−Δ)sψ ∈ W−s,2

≺ (Ω).
Then (−Δ)sū ∈ W−s,2

≺ (Ω) with

(−Δ)sψ ∧ 0 ≺ (−Δ)sū ≺ (−Δ)sϕ ∨ 0.

Remark 3.3. An analogous statement holds for arbitrary summability index p > 1 on the derivative,
thus giving a Lewy–Stampacchia inequality for the fractional p-Laplacian: inequality (3.2) with f(x) := |x|p
grants the submodularity of the corresponding functional

E(u) := 1
p

∫
Rd×Rd

|u(x) − u(y)|p
|x− y|d+ps

dx dy.

Remark 3.4. The assumption that ϕ, ψ in Theorem 2.4 have 0 boundary data has been made only to 
simplify the statement. For classical obstacle problems with Dirichlet boundary conditions the naturally 
available obstacles need not vanish on the boundary of the domain, and may fail to belong, in our abstract 
setting, to the minimization space B. Nevertheless, a minimizer for E over [φ, ψ] still satisfies a form of 
Lewy–Stampacchia inequality. Suppose that E is naturally defined on a bigger topological vector lattice B̃
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with continuous, order preserving embedding B ↪→ B̃, and ϕ, ψ ∈ B̃. Consider the subdifferential of E w.r.t. 
B defined as

∂BE(u) := ∂Gu(0) ⊆ B∗, B � v �→ Gu(v) := E(v + u).

Using this notion, Theorem 2.4 holds with obvious modifications. A similar procedure can be exploited 
to deal with non-homogeneous boundary conditions, see [30] for some examples of this transition from an 
abstract result to concrete applications.

3.3. The case of metric measure spaces

We shall now discuss the case of metric measure structures and how to use the Lewy–Stampacchia 
inequality to build functions with bounded Laplacian on spaces with a lower bound on the Ricci curvature. 
In the next section we are going to recall those concepts and results that we shall need without giving 
full details about relevant definitions. This choice is made to keep the presentation short; we refer to the 
bibliographical references for all the necessary details.

3.3.1. Preliminary notions
For the purpose of the discussion here, a metric measure space is a triple (X, d, m), where (X, d) is a 

proper metric space (i.e. bounded closed sets are compact) and m is a non-negative Radon measure on it 
which gives positive mass to every open set.

Given such an m.m. space, there is an established definition of the Sobolev space W 1,2(X, d, m), 
see for instance [16] and [3] and references therein. To any f ∈ W 1,2(X, d, m) it is associated a function 
|Df | ∈ L2(X,m) called minimal weak upper gradient which reduces to the modulus of the distributional 
differential when the base space is the Euclidean one. Among others, a basic property of minimal weak 
upper gradients is their locality, i.e. for every f, g ∈ W 1,2(X, d, m) we have

|Df | = |Dg|, m-a.e. on {f = g}. (3.3)

On proper spaces, one can use this property to define the space W 1,2
loc (Ω) for Ω ⊂ X open as the subset of 

L2
loc(Ω) made of functions f such that χf ∈ W 1,2(X, d, m) for every χ ∈ Lipc(Ω). For f ∈ W 1,2

loc (Ω) the map 
|Df | ∈ L2

loc(Ω) is then defined by

|Df | := |D(χf)|, m-a.e. on {χ = 1},

and the space W 1,2(Ω) is the space of f ∈ W 1,2
loc (Ω) ∩ L2(Ω) such that |Df | ∈ L2(Ω).

The space W 1,2(X, d, m) is a Banach space w.r.t. the norm ‖f‖2
W 1,2 := ‖f‖2

L2 + ‖|Df |‖2
L2 and the energy 

functional E : W 1,2(X, d, m) → [0, ∞) is given by

E(f) := 1
2

∫
X

|Df |2 dm.

We say that (X, d, m) is infinitesimally strictly convex provided E : W 1,2(X, d, m) → R is differentiable, 
or equivalently provided for every f, g ∈ W 1,2(X, d, m) the limit

lim
ε→0

|D(g + εf)|2 − |Dg|2
2ε

exists in L1(X, m) and infinitesimally Hilbertian provided

E(f + g) + E(f − g) = 2E(f) + 2E(g), ∀f, g ∈ W 1,2(X, d,m),
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or equivalently if W 1,2(X, d, m) is a Hilbert space (see [12]). It is easy to see that infinitesimally Hilbertian 
spaces are infinitesimally strictly convex.

Given Ω ⊂ X open, the space W 1,2
0 (Ω) is the closed subspace of W 1,2(X, d, m) made of functions which 

are m-a.e. 0 outside Ω. Clearly it is canonically and continuously embedded in W 1,2(Ω) and is a lattice 
w.r.t. the usual a.e. ordering. We denote as usual by W−1,2(Ω) its topological dual and by W−1,2

≺ (Ω) its 
topological order dual. As in the Euclidean case, functionals in W−1,2

≺ (Ω) can be represented as measures: 
the discussion is the same we did in point (ii) after Theorem 3.1, the only difference is that at this level of 
generality it is not known whether Lipc(Ω) is dense in W 1,2

0 (Ω), which a priori might raise troubles to prove 
the faithfulness of the representation. Yet, the same argument can be carried out noticing that

a positive continuous functional on W 1,2
0 (Ω) which is 0 on Lipc(Ω) is identically 0. (3.4)

Indeed, for every bounded f ∈ W 1,2
0 (Ω) with compact support (= f is 0 m-a.e. outside a certain compact) 

there are g1, g2 ∈ Lipc(Ω) such that g1 ≤ f ≤ g2 m-a.e., so that any functional as in (3.4) must be 0 on f . 
Then (3.4) follows noticing that, by standard truncation and (Lipschitz) cut-off arguments, the subspace of 
W 1,2

0 (Ω) made of functions bounded and with compact support is strongly dense in W 1,2
0 (Ω).

Given f ∈ W 1,2(X, d, m) and Ω ⊂ X open, the map Ef,Ω : W 1,2
0 (Ω) → R given by

Ef,Ω(g) := 1
2

∫
Ω

|D(f + g)|2 dm

is convex and continuous and, on infinitesimally strictly convex spaces, it is also differentiable. In this latter 
case we say that f ∈ W 1,2(X, d, m) has measure valued distributional Laplacian in Ω provided the only 
element in ∂Ef,Ω(0) ⊂ W−1,2(Ω) belongs to W 1,2

≺ (Ω) and in this case we write f ∈ D(Δ, Ω). The discussion 
made before shows that this definition is equivalent to the one proposed in [12] and we shall denote the 
measure representing −∂Ef,Ω(0) as Δf |Ω, or simply Δf in case Ω = X.

For the definition of the Curvature-Dimension condition CD∗(K, N) we refer to [7] (see also [32] for 
the ‘original’ CD(K, N) condition). One of the main results obtained in [12] (see also [15] for a simplified 
proof in the infinitesimally Hilbertian case) is the Laplacian comparison estimate for the squared distance 
on CD∗(K, N) spaces. For the purposes of the discussion here, it is sufficient to recall it in the following 
suboptimal form. Recall that for given ψ : X → R ∪ {±∞} and t > 0, the function Qtψ : X → R ∪ {−∞}
is defined as

Qtψ(x) := inf
y∈X

d2(x, y)
2t + ψ(y),

that the c-transform ψc is defined as ψc := Q1(−ψ), that ϕ : X → R ∪ {−∞} is said c-concave provided it 
is not identically −∞ and ϕ = ψc for some ψ : X → R ∪ {−∞}.

Theorem 3.5 (Laplacian comparison estimates). For given K ∈ R and N ∈ [1, ∞) there is a continuous 
function �K,N : [0, ∞) → [0, ∞) such that the following holds.

Let (X, d, m) be an infinitesimally strictly convex CD∗(K, N) space. Then for every c-concave function 
ϕ ∈ Lip(X) ∩W 1,2(X, d, m) we have ϕ ∈ D(Δ, X) with

Δϕ ≤ �K,N (Lip(ϕ))m.

This result and the Lewy–Stampacchia inequality are sufficient to build cut-off functions with compact 
support and bounded Laplacian in infinitesimally strictly convex CD∗(K, N) spaces. We shall also recall 
the following fact about evolution of Kantorovich potentials along a W2-geodesic in metric spaces, referring 
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to Theorem 7.36 in [35] or Theorem 2.18 in [1] for a proof. Recall that given μ, ν ∈ P2(X), a function 
ϕ : X → R ∪ {−∞} is said Kantorovich potential from μ to ν provided it is c-concave and a maximizer for 
the dual problem of optimal transport.

Proposition 3.6 (Evolution of Kantorovich potentials). Let (X, d) be a metric space, (μt) ⊂ P2(X)
a W2-geodesic and ϕ : X → R ∪ {−∞} a Kantorovich potential from μ0 to μ1.

Then for every t ∈ [0, 1]:

• the function tQt(−ϕ) is a Kantorovich potential from μt to μ0,
• the function (1 − t)Q1−t(−ϕc) is a Kantorovich potential from μt to μ1.

Furthermore, for every t ∈ [0, 1] it holds

Qt(−ϕ) + Q1−t(−ϕc) ≥ 0, everywhere,

Qt(−ϕ) + Q1−t(−ϕc) = 0, on supp(μt). (3.5)

This proposition, coupled with the Lewy–Stampacchia inequality and the Laplacian comparison estimate, 
allows to produce a sort of regularized Kantorovich potentials from intermediate times along a W2-geodesic 
in infinitesimally strictly convex CD∗(K, N) spaces, see Theorem 3.13 and the discussion after it for precise 
statements.

In general CD∗(K, N) spaces we don’t know whether cut-off functions with bounded Laplacian and 
regularized Kantorovich potentials can be built Lipschitz. In order to get this further property we 
need to work on infinitesimally Hilbertian CD∗(K, N) spaces, also called RCD∗(K, N) spaces [5,12,2,10].
This enhanced regularity can be obtained either as a consequence of the general results established in [18]
and [20] concerning Lipschitz continuity of functions with bounded Laplacian, or, as we will do, from the 
Lipschitz continuity of harmonic functions on RCD∗(K, N) spaces obtained in [19] (see also [20] and [17] and 
references therein) and known techniques in the study of the obstacle problem. The advantage of choosing 
this second approach is that we will obtain Lipschitz continuity of the solution of the obstacle problem 
independently of the Laplacian comparison estimates.

In order to pursue this plan we need to recall some results about non-linear potential theory in metric 
measure spaces. Key facts are that CD∗(K, N), N < ∞, spaces are doubling [32] and support a weak local 
1–2 Poincaré inequality [22,28] and a number of consequences about the behavior of harmonic functions can 
be deduced from these informations, see [8] for an overview on the subject. We shall recall those results we 
need without aiming at any generality, but only focusing in the content relevant for our discussion.

We start noticing that for f ∈ W 1,2(Ω), Ω being an open subset of an infinitesimally strictly convex 
CD∗(K, N) space, to be in D(Δ, Ω) with Δf |Ω ≤ 0 is the same as to have the minimization property

∫
Ω

|Df |2 dm ≤
∫
Ω

|D(f + g)|2 dm, ∀g ∈ W 1,2
0 (Ω), g ≥ 0 (3.6)

see [12] and [14] for the details. Similarly for non-negative Laplacian and non-positive perturbations.
In particular, we can unambiguously define harmonic functions either as those having 0 Laplacian or as 
local minimizers of the energy.

We then have the following results:

Theorem 3.7 (Basic facts about harmonic functions). Let (X, d, m) be a CD∗(K, N) space, N < ∞,
and Ω ⊂ X a bounded open set. Then the following hold.
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i) Harnack inequality. There exist constants c, λ > 1 depending only on K, N and not on Ω such that the 
following holds. Let f ∈ W 1,2(Ω) be harmonic on Ω and non-negative. Then for every x ∈ Ω and r > 0
such that Bλr(x) ⊂ Ω we have

ess sup
Br(x)

f ≤ c ess inf
Bλr(x)

f. (3.7)

In particular, harmonic functions have continuous representatives.
ii) Strong maximum principle. Let f ∈ W 1,2(Ω) be harmonic on Ω and assume that its continuous 

representative has a maximum in a point x0 ∈ Ω. Then it is constant on the connected component 
of Ω containing x0.

iii) Existence and uniqueness of harmonic functions. Assume that m(X \ Ω) > 0 and let f ∈ W 1,2(X).
Then there exists a unique harmonic function g ∈ W 1,2(Ω) in Ω such that f − g ∈ W 1,2

0 (Ω).
iv) Comparison principles. With the same notation and assumptions of the point above, assume furthermore 

that Δf |Ω ≤ 0. Then f ≥ g m-a.e. on Ω. On the other hand, if f ≥ 0 m-a.e. on Ω, then g ≥ 0
m-a.e. on Ω.

All these statements are valid in the broader class of doubling spaces supporting a weak-local 1–2 Poincaré 
inequality, see [8] for the proofs and detailed bibliography.

Similarly, in the theorem below we collect the basic properties of minima of the obstacle problem that we 
shall need later on. We formulate the result for CD∗(K, N) spaces, but in fact the same holds on the more 
general setting of doubling spaces supporting a 1–2 weak local Poincaré inequality, see [11] for the proof.

Theorem 3.8 (Basic properties of minima of the obstacle problem). Let (X, d, m) be a CD∗(K, N) space, 
Ω ⊂ X a bounded open set and ϕ, ψ ∈ W 1,2(Ω) be with ϕ ≤ ψ m-a.e. and f ∈ W 1,2(X). Put

K(ϕ,ψ, f) :=
{
u ∈ W 1,2(Ω) : ϕ ≤ u ≤ ψ m-a.e. and u− f ∈ W 1,2

0 (Ω)
}
,

where we wrote for brevity u − f to intend the function defined as u − f in Ω and as 0 on X \ Ω.
Assume that K(ϕ, ψ, f) is non-empty. Then a minimizer ū of E on [ϕ, ψ] exists. Moreover, if ϕ and ψ

have continuous representatives then ū has a continuous representative as well and if m(X \ Ω) > 0 the 
minimum is unique.

We conclude this introduction recalling the local Lipschitz regularity of harmonic functions on 
RCD∗(K, N) spaces. Unlike Theorems 3.7 and 3.8 above, here the lower Ricci curvature bound plays a 
crucial role:

Theorem 3.9 (Lipschitz continuity of harmonic functions on RCD∗(K, N) spaces). There exists a constant 
C = C(K, N) such that the following holds. Let (X, d, m) be an RCD∗(K, N) space, Ω ⊂ X an open set and 
ū ∈ W 1,2(Ω) harmonic.

Then for every x ∈ Ω and every r ∈ (0, 1) such that B2r(x) ⊂ Ω we have

Lip(ū|Br(x)) ≤
C
r

1
m(B2r(x))

∫
B2r(x)

|ū| dm, (3.8)

having identified ū with its continuous representative.

The proof is given in [19]. We remark that in [19] there is some degree of freedom about the choice 
of the Dirichlet energy: in order to obtain the above theorem it is sufficient to pick the natural Dirichlet 
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energy of the RCD∗(K, N) space and to use the calculus tools developed in [12] to justify the computations 
(see also [20,17] and references therein for further details on the topic).

3.3.2. Lewy–Stampacchia inequality on metric measure spaces
Given a metric measure space (X, d, m) and Ω ⊂ X open, the energy functional E : W 1,2

0 (Ω) → R is clearly 
convex, continuous and, thanks to the locality property (3.3), submodular. Therefore a direct application of 
the general Theorem 2.4 yields the following regularity result for solutions of the double obstacle problem. 
Both for simplicity and in view of the forthcoming applications, we state it on infinitesimally strictly convex 
spaces so that the Laplacian is uniquely defined, but an analogous result holds on every m.m. space:

Theorem 3.10 (Lewy–Stampacchia inequality on metric measure spaces). Let (X, d, m) be an infinitesimally 
strictly convex metric measure space, Ω ⊂ X open and ϕ, ψ ∈ W 1,2

0 (Ω) ∩D(Δ, Ω) with ϕ ≤ ψ m-a.e.
Then for every minimizer ū of E over [ϕ, ψ] ⊂ W 1,2

0 (Ω) we have ū ∈ D(Δ, Ω) with

Δϕ|Ω ∧ 0 ≺ Δū|Ω ≺ Δψ|Ω ∨ 0.

3.3.3. Lipschitz regularity for minima of the obstacle problem on RCD∗(K, N) spaces
Here we shall prove that on RCD∗(K, N) spaces, the minimum of the double obstacle problem for given 

Lipschitz obstacles is Lipschitz itself. This result is independent on the Lewy–Stampacchia inequality: 
its proof is quite standard once Lipschitz continuity of harmonic functions is known.

Proposition 3.11. Let (X, d, m) be an RCD∗(K, N) space, Ω ⊂ X open and bounded and
ϕ, ψ ∈ W 1,2

0 (Ω) ∩ Lip(Ω). Furthermore, let ū ∈ W 1,2
0 (Ω) be a minimizer of E on [ϕ, ψ].

Then ū has a Lipschitz representative, still denoted by ū, and the bound

Lip(ū) ≤ 2Cλ(1 + λ)(1 + c) Lip(ϕ) ∨ Lip(ψ) (3.9)

holds, where c, λ are the constants in the Harnack inequality (3.7) and C > 1 the one appearing in the 
Lipschitz estimate (3.8).

Proof. Observe that ϕ, ψ and ū are functions in W 1,2(X) vanishing m-a.e. in X \Ω. Applying Theorem 3.8
on a bounded neighborhood of Ω with f ≡ 0 we deduce that on such neighborhood, and thus on the whole X, 
ū has a continuous representative. Denoting still by ū this continuous representative, our aim becomes to 
prove that ū : X → R is Lipschitz. Recalling that X is geodesic, to conclude it is sufficient to prove that 
the bound (3.9) holds for the local Lipschitz constant, i.e. that

lip ū(x) ≤ 2Cλ(1 + λ)(1 + c) Lip(ϕ) ∨ Lip(ψ), ∀x ∈ X, (3.10)

where lip ū(x) := limy→x
|u(y)−u(x)|

d(y,x) . Put Cϕ := {ū = ϕ}, Cψ := {ū = ψ}, C := Cϕ ∩ Cψ and define the 
function δ : Cϕ ∪ Cψ → (0, +∞] as

δ(x) =
{

d(x,C)
λ , if x /∈ C,

+∞, if x ∈ C,

and the constant L := λ(1 + c) Lip(ϕ) ∨ Lip(ψ). We claim that

x0 ∈ Cϕ ∪ Cψ, x ∈ Bδ(x0)(x0) ⇒ |ū(x) − ū(x0)| ≤ Ld(x, x0), (3.11)
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which in particular yields (3.10) for x0 ∈ Cϕ ∪ Cψ. This is obvious for x0 ∈ C, thus assume x0 ∈ Cϕ \ C. 
By definition of δ(x0) and the equivalence stated in inequality (3.6) and the discussion preceding it, we deduce
ū ∈ D(Δ, Bλδ(x0)(x0)) with Δū|Bλδ(x0)

≤ 0. Since ū ≥ ϕ, it holds

ū(x) ≥ ϕ(x) ≥ ϕ(x0) − Lip(ϕ)d(x, x0) = ū(x0) − Lip(ϕ)d(x, x0) ∀x ∈ X,

hence it suffices to prove

u(x) ≤ u(x0) + Ld(x, x0), ∀x ∈ Bδ(x0)(x0). (3.12)

Fix x ∈ Bδ(x0)(x0), put ρ := d(x, x0) ≤ δ(x0), v := u −u(x0) +λ Lip(ϕ)ρ and notice that v ∈ D(Δ, Bλρ(x0))
with v|Bλρ(x0)

≥ 0 and Δv|Bλρ(x0)
≤ 0. Let v1 be the harmonic function on Bλρ(x0) with the same 

boundary data as v (point (ii) of Theorem 3.7) and put v2 := v − v1. By point (iii) of Theorem 3.7 we see 
that v ≥ v1 ≥ 0 on Bλρ(x0). Taking into account the Harnack inequality (3.7) we deduce

v1(x) ≤ sup
Bδ(x0)(x0)

v1 ≤ cv1(x0) ≤ cv(x0) = cλLip(ϕ)ρ.

Moreover v ≥ v2 ≥ 0 and v2 ∈ W 1,2
0 (Bλρ(x0)) ∩ D(Δ, Bλρ(x0)) with Δv2|Bλρ(x0)

≤ 0, therefore by the 

maximum principle in point (ii) of Theorem 3.7, it attains its maximum at some x̄ ∈ supp(Δv2|Bλρ(x0)
)

(because v2 is harmonic on Bλρ(x0) \ supp(Δv2|Bλρ(x0)
)). Since Δv2|Bλρ(x0)

= Δv|Bλρ(x0)
= Δū|Bλρ(x0)

and clearly supp(Δu|Bλρ(x0)
) ⊆ Cϕ ∩ B̄λρ(x0), it holds

v2(x) ≤ sup
Bλρ(x0)

v2 = v2(x̄) ≤ v(x̄) = u(x̄) − u(x0) + λLip(ϕ)ρ

= ϕ(x̄) − ϕ(x0) + λLip(ϕ)ρ ≤ 2λLip(ϕ)ρ.

The last two inequalities yield v(x) ≤ (c + 2)λ Lip(ϕ)ρ, i.e. u(x) ≤ u(x0) + (1 + c)λ Lip(ϕ)ρ, which proves 
(3.12), and hence (3.11), for x ∈ Cϕ \ C. The proof for x0 ∈ Cψ \ C is entirely analogous.

It remains to prove (3.10) for x0 ∈ U := X \ (Cϕ ∪ Cψ) and to this aim we shall use the bound (3.11)
just proved and the Lipschitz estimate (3.8). Fix x0 ∈ U , let r := d(x0, Cϕ ∪Cψ) > 0 and find x1 ∈ Cϕ ∪Cψ

such that d(x0, x1) = r. Two cases may occur: either 2r ≤ δ(x1) or 2r > δ(x1).
In the first case, from (3.11) and Br(x0) ⊂ B2r(x1) we deduce that

|u(x) − u(x1)| ≤ Ld(x, x1) ≤ 2Lr, ∀x ∈ Br(x0),

and hence (3.8) applied to the harmonic function u − u(x1) yields (3.10).
In the second case find x2 ∈ C such that d(x1, C) = d(x1, x2), recall the definition of δ(x1) to notice that 

Br(x0) ⊂ B2r(1+λ)(x2), so that

|u(x) − u(x2)| ≤ d(x, x2) Lip(ϕ) ∨ Lip(ψ) ≤ 2r(1 + λ) Lip(ϕ) ∨ Lip(ψ), ∀x ∈ Br(x0),

and hence (3.8) applied to the harmonic function u − u(x2) yields (3.10). �
3.3.4. Two constructions on CD∗(K, N) spaces

We now turn to the two announced constructions on CD∗(K, N) spaces: cut-off functions and 
regularization of Kantorovich potentials along a geodesic.
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Theorem 3.12 (Cut-off functions). Let (X, d, m) be an infinitesimally strictly convex CD∗(K, N) space, 
and C ⊂ Ω ⊂ X with C compact and Ω open. Then there exists a continuous function ω ∈ W 1,2(X, d, m)
identically 1 on C, identically 0 on X \ Ω such that ω ∈ D(Δ, X) with Δω � m with bounded density.

If (X, d, m) is also infinitesimally Hilbertian (i.e. an RCD∗(K, N) space), then ω can be chosen to be 
Lipschitz.

Proof. Without loss of generality we shall assume that Ω is bounded and m(X \Ω) > 0. Let r > 0 be given 
by r2 := infx∈C d2(x, X \ Ω)/2 and define ϕ, ψ : X → R as

ϕ(x) := 1 − 1 ∧ inf
y∈C

d2(x, y)
2r2 , ψ(x) := 1 ∧ inf

y∈X\Ω

d2(x, y)
2r2 .

By construction, ϕ and ψ are Lipschitz with Lip(ϕ), Lip(ψ) ≤ 1/r, they belong to W 1,2
0 (Ω) and satisfy 

ϕ ≤ ψ, ϕ = ψ = 0 in X \ Ω and ϕ = ψ = 1 in C. Moreover,

−r2ϕ(x) = inf
y∈X

d2(x, y)
2 + r2χC(y), r2ψ(x) = inf

y∈X

d2(x, y)
2 + r2χΩ(y),

so that the functions −r2ϕ, r2ψ satisfy the assumption of Theorem 3.5. Therefore the 1-homogeneity of the 
Laplacian (which is a direct consequence of the definition) gives

Δϕ ≥ − 1
r2 �K,N (r)m, Δψ ≤ 1

r2 �K,N (r)m.

The thesis now follows letting ω be the minimum of E on [ϕ, ψ]: existence, uniqueness and continuity 
are granted by Theorem 3.8 (pick f ≡ 0), while the uniqueness of the Laplacian and Theorem 3.10 give 

Δω � m with 
∥∥∥dΔω

dm

∥∥∥
∞

≤ �K,N (r)/r2. The second part of the statement then follows from the first and 

Theorem 3.11. �
We now turn to the regularization of Kantorovich potentials. To keep the discussion simple, we shall 

assume in the next theorem that the given Kantorovich potential ϕ is Lipschitz with bounded support. 
Such a ϕ exists if, for instance, the W2-geodesic considered is made of measures with compact supports.

Theorem 3.13 (Regularization of Kantorovich potentials along a geodesic). Let (X, d, m) be an infinitesimally 
strictly convex CD∗(K, N) space, (μt) ⊂ P2(X) a W2-geodesic and ϕ : X → R a Kantorovich potential 
inducing it. Assume that ϕ is Lipschitz with compact support.

Then for every t ∈ (0, 1) there exists a function ηt ∈ Cc(X) such that

−Qt(−ϕ) ≤ ηt ≤ Q1−t(−ϕc), (3.13a)

(tηt)cc(x) = tηt(x) and (−(1 − t)ηt)cc(x) = −(1 − t)ηt(x), ∀x ∈ suppμt, (3.13b)

belonging to D(Δ, X) with Δηt � m and

∥∥∥dΔηt
dm

∥∥∥
L∞

≤ �K,N (2
√
t‖ϕ‖L∞)
t

∨ �K,N (
√

2(1 − t)‖ϕ‖L∞)
1 − t

(3.14)

If (X, d, m) is also infinitesimally Hilbertian (i.e. an RCD∗(K, N) space), then ηt can be chosen to be 
Lipschitz.

Proof. Directly from the definition we see that if d2(x, suppϕ) ≥ 2‖ϕ‖L∞ , then Qt(−ϕ)(x) = 0 for 
every t ∈ (0, 1). It follows that supp(Qt(−ϕ)) and supp(Qt(−ϕc)) are uniformly bounded for t ∈ (0, 1]. 
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Recalling that CD∗(K, N) spaces are proper (because they are doubling), we conclude that the sets 
supp(Qt(−ϕ)) and supp(Qt(−ϕc)) are all contained in some fixed compact set C for all t ∈ (0, 1).
By definition, it is also easy to check that the minimum in the definition of Qt(−ϕ)(x) is reached at 
a point xt such thatd2(x, xt) ≤ 4t‖ϕ‖L∞ . It follows that Lip(Qt(−ϕ)) ≤ 2

√
‖ϕ‖L∞/t and similarly 

Lip(Q1−t(−ϕc)) ≤ 2
√
‖ϕ‖L∞/(1 − t). Clearly, −Qt(−ϕ), Q1−t(−ϕc) ∈ W 1,2

0 (X) and, by the first equation
in (3.5) we know that −Qt(−ϕ) ≤ Q1−t(−ϕc).

We apply Theorem 3.8 on a bounded neighborhood Ω of C with f ≡ 0: we deduce the existence of a 
minimum ηt ∈ W 1,2

0 (Ω) of E on [−Qt(−ϕ), Q1−t(−ϕc)] ⊂ W 1,2
0 (Ω) which has a continuous representative, 

still denoted by ηt. Moreover supp ηt ⊆ C, so that ηt ∈ Cc(X). To check (3.13b), notice that directly 
from the definition one has that for arbitrary ψ : X → R, the function ψcc is the least c-concave function 
greater than or equal to ψ everywhere on X, so that the claim follows from the c-concavity of tQt(−ϕ) and 
(1 − t)Q1−t(−ϕc) and the second equation in (3.5), which together with (3.13a) gives

−Qt(−ϕ) = ηt = Q1−t(−ϕc) on suppμt.

For (3.14) notice that tQt(−ϕ) is c-concave with Lip(tQt(−ϕ)) ≤ 2
√
t‖ϕ‖L∞ , so that by Theorem 3.5 we 

deduce Δ(tQt(−ϕ)) ≤ �K,N (2
√
t‖ϕ‖L∞). Similarly ΔQ1−t(−ϕc) ≤ �K,N (2

√
(1 − t)‖ϕ‖L∞), so that the 

1-homogeneity of the Laplacian and Theorem 3.10 yield (3.14).
The last statement concerning Lipschitz regularity is then a consequence of the construction and 

Theorem 3.11. �
We remark that in general the function tηt (resp. −(1 − t)ηt) produced by the previous theorem is not 

c-concave, yet (3.13b) grants that, in a sense, it is ‘c-concave in the region of interest’, i.e.:

tηt(x) + (tηt)c(y) ≤
d2(x, y)

2 , ∀(x, y) ∈ X2,

tηt(x) + (tηt)c(y) = d2(x, y)
2 , ∀(x, y) ∈ suppγ,

for every optimal plan γ from μt to μ0 (resp. from μt to μ1).
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