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Abstract
In this study,we establish a new regularity criterion ofweak solutions to the three-dimensional
micropolar fluid flows by imposing a critical growth condition on the pressure field.
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1 Introduction and themain result

In this paper we consider the following Cauchy problem for the incompressible micropolar
fluid equations in R

3:
⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �u + (u · ∇) u + ∇π − ∇ × ω = 0,
∂tω − �ω − ∇∇ · ω + 2ω + (u · ∇)ω − ∇ × u = 0,
∇ · u = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x),

(1.1)

where u = u(x, t) ∈ R
3,ω = ω(x, t) ∈ R

3 andπ = π (x, t) denote the unknown velocity of
the fluid, the micro-rotational velocity of the fluid particles and the unknown scalar pressure
of the fluid at the point (x, t) ∈ R

3 × (0, T ), respectively, while u0, ω0 are given initial data
satisfying ∇ · u = 0 in the sense of distributions.

This model for micropolar fluid flows proposed by Eringen [6] enables to consider some
physical phenomena that cannot be treated by the classical Navier–Stokes equations for the
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viscous incompressible fluids, such as for example, themotion of animal blood,muddy fluids,
liquid crystals and dilute aqueous polymer solutions, colloidal suspensions, etc.

When the micro-rotation effects are neglected or ω = 0, (1.1) reduces to the incompress-
ibleNavier–Stokes equations, and it iswell known that the regularity criteria forweak solution
for the fluid dynamical models attracts more and more attention. There are many important
results on the velocity or vorticity or pressure blow-up criteria for Navier–Stokes equations,
micropolar fluid equations and MHD equations and so on (see e.g., [1–4,7–10,14,16,17] and
the references therein).

As for the pressure criterion, let us first recall some interesting results on pressure regularity
of Navier–Stokes equations. In Ref. [13], He and Gala proved regularity of weak solutions
under the condition ∫ T

0
‖π(·, t)‖2

Ḃ−1∞,∞
dt < ∞. (1.2)

Here and thereafter, Ḃ−1∞,∞ stands for the homogeneous Besov space, (for the definition see
e.g. [12,13]). Later on, Guo and Gala [12] refined the condition (1.2) to

∫ T

0

‖π(·, t)‖2
Ḃ−1∞,∞

1 + log
(
e + ‖π(·, t)‖Ḃ−1∞,∞

) dt < ∞. (1.3)

Motivated by the paper ofGuo andGala [12], the aimof this paper is to give a new regularity
criterion for weak solutions to the 3Dmicropolar fluid flows in terms of the pressure in critical
Besov spaces. More precisely, our main result reads as follows.

Theorem 1.1 Let T > 0 and (u0, ω0) ∈ L2(R3) ∩ L4(R3) with ∇ · u0 = 0 in the sense of
distributions. Assume that (u, ω) is a weak solution of the 3D micropolar fluid flows (1.1) on
(0, T ). If the pressure π satisfies the following condition :

∫ T

0

‖π(·, t)‖2
Ḃ−1∞,∞(

e + log
(
e + ‖π(·, t)‖Ḃ−1∞,∞

))
log

(
e + log

(
e + ‖π(·, t)‖Ḃ−1∞,∞

)) dt < ∞, (1.4)

then (u, ω) is regular on (0, T ], i.e., (u, ω) ∈ C∞(R3 × (0, T ]).
Remark 1.1 This result provides a new information concerning the question of the regularity
of weak solutions of the micropolar fluid equations and extends those of [13] and [12]. In
particular, the double-logarithm estimate (1.4) is sharper than any other results [12,13].

Before stating our result, let us recall what we mean by a weak solution.

Definition 1.2 ([14]) Let (u0, ω0) ∈ L2
(
R
3
)
and ∇ · u0 = 0. A measurable function

(u(x, t), ω(x, t)) is called a weak solution to the 3D micropolar flows equations (1.1) on
(0, T ) if (u, ω) satisfies the following properties :

(1) (u, ω) ∈ L∞ (
(0, T ) ; L2

(
R
3
)) ∩ L2

(
(0, T ) ; H1

(
R
3
))

for all T > 0;
(2) (u(x, t), ω(x, t)) verifies (1.1) in the sense of distribution;
(3) The following energy inequality holds :

‖u(·, t)‖2L2 + ‖ω(·, t)‖2L2 + 2
∫ t

0
(‖∇u(·, τ )‖2L2 + ‖∇ω(·, τ )‖2L2 + ‖∇ · ω(·, τ )‖2L2)dτ

≤ ‖u0‖2L2 + ‖ω0‖2L2 ,

for all 0 ≤ t ≤ T .
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By a strong solution we mean a weak solution (u, ω) such that

(u, ω) ∈ L∞ (
(0, T ) ; H1 (

R
3)) ∩ L2 (

(0, T ) ; H2 (
R
3)) .

It is well known that strong solutions are regular (say, classical) and unique in the class of
weak solutions.

In order to prove Theorem 1.1, we first establish some estimates between pressure and
velocity. Taking div and ∇div to both sides of the micropolar fluid flows for smooth solution
(u, π), separately, we get the well-known pressure-velocity relation in R

3, given by

π = (−�)−1
3∑

i, j=1

∂2

∂xi∂x j
(uiu j ) and ∇π = (−�)−1

3∑

i, j=1

∂2

∂xi∂x j
(∇(uiu j )).

Then, the Calderón-Zygmund inequality implies that for any 1 < α < +∞ :
‖π‖Lα ≤ C‖u‖2L2α and ‖∇π‖Lα ≤ C‖ |u| ∇u‖Lα . (1.5)

2 Proof of Theorem 1.1

Now we are in the position to prove Theorem 1.1. Firstly, by means of the local existence
result, which is similar to the one of the Navier–Stokes equations (refer to Giga [11], see
also Dong et al. [5]), and the standard local solution extension technique, Eq. (1.1) with
(u0, ω0) ∈ L2(R3) ∩ L4(R3) admits a unique L4-strong solution (u, ω) on a maximal time
interval. For the notation simplicity, we may suppose that the maximal time interval is [0, T ).
Thus, in order to prove Theorems 1.1, it remains to show that

lim
t→T

(‖u(t)‖4 + ‖w(t)‖4) < ∞.

This will lead to a contradiction to the estimates to be derived below.

Proof Before going into the proof, we recall the following inequality established in Ref. [15]
(see also [12]) :

‖ f ‖2L4 ≤ C ‖ f ‖ ·
B

−1

∞,∞
‖∇ f ‖L2 . (2.1)

Testing (1.1)1 by u |u|2 and using ( 1.1)3, we get

1

4

d

dt
‖u‖4L4 + ‖|u| ∇u‖2L2 + 1

2

∥
∥∇ |u|2∥∥2L2

=
∫

R3
(∇ × ω) · u |u|2 dx −

∫

R3
(u · ∇π)|u|2dx

=
∫

R3
ω[∇ × (u |u|2)]dx +

∫

R3
πu · ∇|u|2dx (2.2)

Testing (1.1)2 by ω |ω|2 and using (1.1)3, we infer that

1

4

d

dt
‖ω‖4L4 + ‖|ω| ∇ · ω‖2L2 + 1

2

∥
∥∇ |ω|2∥∥2L2

=
∫

R3
(∇ × u) · ω |ω|2 dx − 2 ‖ω‖4L4

=
∫

R3
u[∇ × (ω |ω|2)dx − 2 ‖ω‖4L4 , (2.3)
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wherewe have used the following identities due to the divergence free property of the velocity
field u : ∫

R3
(u · ∇)u · u |u|2 dx = 0 =

∫

R3
(u · ∇)ω · ω |ω|2 dx .

Summing up (2.2) and (2.3), it follows that

1

4

d

dt
(‖u‖4L4 + ‖ω‖4L4) + ‖|u| ∇u‖2L2 + 1

2

∥
∥∇ |u|2∥∥2L2 + ‖|ω| ∇ · ω‖2L2 + 1

2

∥
∥∇ |ω|2∥∥2L2

=
∫

R3
ω[∇ × (u |u|2)]dx +

∫

R3
u[∇ × (ω |ω|2)dx − 2 ‖ω‖4L4 +

∫

R3
πu · ∇|u|2dx .

(2.4)

Using the Hölder inequality and the Young inequality and integration by parts, we derive the
estimate of the first three terms on the right-hand side of (2.4) as follows:

∫

R3
ω[∇ × (u |u|2)]dx +

∫

R3
u[∇ × (ω |ω|2)dx − 2 ‖ω‖4L4

≤ ‖u‖L4 ‖ω‖L4 (‖|u||∇u‖L2 + ‖|ω||∇ω‖L2) − 2 ‖ω‖4L4

≤ ‖|u||∇u‖2L2 + ‖|ω||∇ω‖2L2 + C ‖u‖4L4 . (2.5)

To estimate the last term of the right-hand side of (2.4), we have after integrating by parts
and employing the Hölder inequality and the Young inequality,

∫

R3
πu · ∇|u|2dx ≤

∫

R3
|π | |u| ∣∣∇|u|2∣∣ dx

≤ C ‖π‖2L4 ‖u‖2L4 + 1

4

∥
∥∇ |u|2∥∥2L2

≤ C ‖π‖Ḃ−1∞,∞ ‖∇π‖L2 ‖u‖2L4 + 1

4

∥
∥∇ |u|2∥∥2L2

≤ C ‖π‖Ḃ−1∞,∞ ‖u‖2L4 ‖|u| ∇u‖L2 + 1

4

∥
∥∇ |u|2∥∥2L2

≤ C ‖π‖2
Ḃ−1∞,∞

‖u‖4L4 + 1

2
‖|u||∇u‖2L2 + 1

4

∥
∥∇ |u|2∥∥2L2 . (2.6)

and hence

d

dt
(‖u(t)‖4L4 + ‖ω(t)‖4L4) + ‖|u| ∇u‖2L2 + ∥

∥∇ |u|2∥∥2L2 + ‖|ω| ∇ · ω‖2L2 + ‖|ω||∇ω‖2L2

≤ C(1 + ‖π‖2
Ḃ−1∞,∞

) ‖u‖4L4

Taking the Gronwall inequality into consideration, one shows that

‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

≤ (‖u0‖4L4 + ‖ω0‖4L4 ) exp

(

C
∫ t

0
(1 + ‖π(·, τ )‖2

Ḃ−1∞,∞
)dτ

)

. (2.7)

Taking the inner product of (1.1)1 with −�u, (1.1)2 with −�ω in L2(R3), and adding
the resulting equations together, we obtain
1

2

d

dt
(‖∇u(·, t)‖2L2 + ‖∇ω(·, t)‖2L2 ) + ‖�u‖2L2 + ‖�ω‖2L2 + ‖∇∇ · ω‖2L2 + 2 ‖∇ω‖2L2

=
∫

R3
(u · ∇)u · �udx −

∫

R3
(∇ × ω) · �udx +

∫

R3
(u · ∇)ω · �ωdx −

∫

R3
(∇ × u) · �ωdx
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≤ ‖u‖L4 ‖∇u‖L4 ‖�u‖L2 + ‖∇ω‖L2 ‖�u‖L2 + ‖u‖L4 ‖∇ω‖L4 ‖�ω‖L2 + ‖∇u‖L2 ‖�ω‖L2

≤ C ‖u‖
6
5
L4 ‖�u‖

9
5
L2 + ‖ω‖

1
2
L2 ‖�ω‖

1
2
L2 ‖�u‖L2 + ‖u‖L4 ‖ω‖

1
5
L4 ‖�ω‖

9
5
L2 + ‖u‖

1
2
L2 ‖�u‖

1
2
L2 ‖�ω‖L2

≤ C ‖u‖12L4 + C ‖ω‖2L2 + C(‖u‖12L4 + ‖ω‖12L4 ) + C ‖u‖2L2 + 1

2
(‖�u‖2L2 + ‖�ω‖2L2 )

≤ C(1 + ‖u‖12L4 + ‖ω‖12L4 ) + 1

2
(‖�u‖2L2 + ‖�ω‖2L2 ),

where we have used the Gagliardo–Nirenberg inequalities:

‖∇u‖L4 ≤ C ‖u‖
1
5
L4 ‖�u‖

4
5
L2 and ‖∇u‖L2 ≤ C ‖u‖

1
2
L2 ‖�u‖

1
2
L2 .

This yields

d

dt
(‖∇u(·, t)‖2L2 + ‖∇ω(·, t)‖2L2) + ‖�u‖2L2 + ‖�ω‖2L2 + ‖∇∇ · ω‖2L2 + 2 ‖∇ω‖2L2

≤ C(1 + ‖u‖12L4 + ‖ω‖12L4).

Integrating the above inequality over (0, t), we have

‖∇u(t)‖2L2 + ‖∇ω(t)‖2L2 +
∫ t

0
(‖�u(τ )‖2L2 + ‖�ω(τ)‖2L2 + ‖∇∇ · ω(τ)‖2L2 + 2 ‖∇ω(τ)‖2L2 )dτ

≤ ‖∇u0‖2L2 + ‖∇ω0‖2L2 + C
∫ t

0
(1 + ‖u(τ )‖12L4 + ‖ω(τ)‖12L4 )dτ. (2.8)

On the other hand, by a Sobolev embedding theorem Ḣ1(R3) ↪→ L6(R3), (2.8) and (1.5),
we obtain that

e + ‖π(·, t)‖L3 ≤ e + C ‖u(·, t)‖2L6 ≤ e + C ‖∇u(·, t)‖2L2

≤ e + C(‖∇u0‖2L2 + ‖∇ω0‖2L2) + C
∫ t

0
(1 + ‖u(·, τ )‖12L4)dτ

≤ e + C(‖∇u0‖2L2 + ‖∇ω0‖2L2) + C(e + t) sup
0≤τ≤t

(1 + ‖u(·, τ )‖12L4)

≤ C
(
e + ‖∇u0‖2L2 + ‖∇ω0‖2L2

)
(e + t) sup

0≤τ≤t
(1 + ‖u(·, τ )‖12L4)

≤ C0(e + t) exp

(

C
∫ t

0
(1 + ‖π(·, τ )‖2

Ḃ−1∞,∞
)dτ

)

, (2.9)

where the constant C0 = C(e, ‖∇u0‖L2 , ‖∇ω0‖L2 , ‖u0‖L4 , ‖ω0‖L4). Using the fact that
L3(R3) ⊂ Ḃ−1∞,∞(R3), it follows that

e + ‖π(·, t)‖Ḃ−1∞,∞ ≤ C(e + t) exp

(

C
∫ t

0
(1 + ‖π(·, τ )‖2

Ḃ−1∞,∞
)dτ

)

(2.10)

Now, taking the logarithm on both sides of (2.10), we can conclude that

log(e + ‖π(·, t)‖Ḃ−1∞,∞) ≤ log(C(e + t)) + C
∫ t

0
(1 + ‖π(·, τ )‖2

Ḃ−1∞,∞
)dτ. (2.11)

For simplicity, let
Z(t) = log(e + ‖π(·, t)‖Ḃ−1∞,∞),

E(t) = log(C(e + t)) + C
∫ t

0
(1 + ‖π(·, τ )‖2

Ḃ−1∞,∞
)dτ, (2.12)
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with E(0) = log(Ce). Then, the above inequality (2.11) implies that

0 < Z(t) ≤ E(t)

and we easily get

(e + Z(t)) log(e + Z(t)) ≤ (e + E(t)) log(e + E(t)).

On the other hand, we have

d

dt
log(e + E(t)) = 1

e + E(t)

(
1

e + t
+ C(1 + ‖π(·, t)‖2

Ḃ−1∞,∞
)

)

≤ 1

e2
+ C

1 + ‖π(·, t)‖2
Ḃ−1∞,∞

e + E(t)

= 1

e2
+ C

1 + ‖π(·, t)‖2
Ḃ−1∞,∞

(e + E(t)) ln(e + E(t))
log(e + E(t))

≤ 1

e2
+ C

1 + ‖π(·, t)‖2
Ḃ−1∞,∞

(e + Z(t)) ln(e + Z(t))
log(e + E(t))

Applying the Gronwall inequality to log(e + E(t)), we find

log(e + E(t))

≤ log(e + E(0)) exp

⎛

⎝
T

e2
+ C

∫ t

0

1 + ‖π(·, τ )‖2
Ḃ−1∞,∞

(e + Z(τ )) log(e + Z(τ ))
dτ

⎞

⎠ ,

which yields

e + E(t) ≤ (e + E(0))
exp

⎛

⎝ T
e2

+C
∫ t
0

1+‖π(·,τ )‖2
Ḃ−1∞,∞

(e+Z(τ )) log(e+Z(τ ))
dτ

⎞

⎠

and from (2.12), we deduce that

t∫

0

‖π(·, τ )‖2
Ḃ−1∞,∞

dτ ≤ (e + E(0))
exp

⎛

⎝ T
e2

+ 1
C

∫ t
0

1+‖π(·,τ )‖2
Ḃ−1∞,∞

(e+Z(τ )) log(e+Z(τ ))
dτ

⎞

⎠

< ∞. (2.13)

Hence by virtue of (2.7), (2.8) and (2.13), we conclude that

(u, ω) ∈ L∞ (
(0, T ) ; H1(R3)

) ∩ L2 (
(0, T ) ; H2(R3)

)
,

which completes the proof of Theorem 1.1. 
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