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Abstract 

Purpose: Investigation of the feasibility of the *
2R  mapping techniques by using latest theoretical models 

corrected for confounding factors and optimized for signal to noise ratio. 

Theory and Methods: The improvement of the performance of state of the art magnetic resonance 

imaging (MRI) relaxometry algorithms is challenging because of a non-negligible bias and still unresolved 

numerical instabilities. Here, *
2R  mapping reconstructions, including complex-fitting with multi-spectral 

fat-correction by using single-decay and double-decay formulation, are deeply studied in order to 

investigate and identify optimal configuration parameters and minimize the occurrence of numerical 

artifacts. The effects of echo number, echo spacing, and fat/water relaxation model type are evaluated 

through both simulated and in-vivo data. We also explore the stability and feasibility of the fat/water 

relaxation model by analyzing the impact of high percentage of fat infiltrations and local transverse 

relaxation differences among biological species. 

Results: The main limits of the MRI relaxometry are the presence of bias and the occurrence of artifacts 

which significantly affect its accuracy. Chemical-shift complex *
2R -correct single-decay reconstructions 

exhibit a large bias in presence of a significant difference in the relaxation rates of fat and water and with 

fat concentration larger than 30%. We find that for fat-dominated tissues or in patients affected by 
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extensive iron deposition, MRI reconstructions accounting for multi-exponential relaxation time provide 

accurate *
2R  measurements and are less prone to numerical artifacts. 

Conclusions: Complex fitting and fat-correction with multi-exponential decay formulation outperforms 

the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of 

numerical stability which requires model enhancement and support from spectroscopy, it offers promising 

perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and 

monitoring of neuromuscular disorders. 

 

Keywords: Fat-Water, Chemical Shift, Multi Echo, Multi-Peak, *
2R  relaxometry, TRID, Neuromuscular 

Disease; 

 

1. Introduction 
Potentially, relaxometry [1] offers multiple applications in MRI. Above all, fat/water quantification is 

considered a promising tool in modern healthcare and the premier non-invasive method for measuring 

both the amount and the distribution of lipids in biological tissues. Particularly in the last decade, MRI 

demonstrated its importance as a cost effective solution for diagnosis and monitoring of nonalcoholic fatty 

liver disease (NAFLD) [2,3,4,5], neuromuscular disorders (NMD) [6] (such as Duchenne Muscular 

Dystrophy (DMD) [7] and Pompe pathology [8]). To this end, it is well acknowledged that for a correct 

evaluation of the fat/water percentage it is necessary to take into account the right intrinsic relaxation 

properties *
2R . As known, *

2R  relaxation includes effects induced by spin-spin relaxation ( 2R ) and by B0 

inhomogeneities ( '
2R ), so that * '

2 2 2R R R  . Nowadays, transverse relaxation times can be computed in 

many ways, such as via fast spin-echo (FSE), multiple spin-echo imaging [9,10], driven-equilibrium 

single-pulse observation time (DESPOT) [11] or spoiled gradient recalled (SPGR) multi-pulse 

acquisitions. Recent attempts to obtain an *
2R  map considered the use of models which implement voxel-

wise [12] or pixel-wise measurements [13]. For a given model, the parameter sensitivity and the reliability 

in species quantification depend on the repetition time (TR), the slice thickness, the number N of images 

acquired with different inter-echo spacings (ΔTE), and the macroscopic B0 inhomogeneity [14,15]. 

Currently, main chemical shift-based approaches can be broadly classified into: magnitude-based [16] and 

complex-based [4,17]. In the former, phase information is discarded and thus the contribution related to 

the field map inhomogeneity is not estimated. Therefore, water-fat ambiguity cannot be fully resolved and 

Fat Fraction (FF) can be uniquely estimated in a 0-50% range [18]. In the latter, the complex-based 

approach aims to mitigate more confounding effects, preserves the Gaussianity of the noise statistics of 
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MR images [19] and enables measurement of the signal fat-fraction over a theoretical range of 0–100%. 

To improve the *
2R  measurement in term of robustness, accuracy, precision [16,20,21,] and signal-to-

noise ratio (SNR) [22], different numerical formulations have been implemented [23,24]. The most 

sophisticated ones include a complex-based multi-peak fat signal representation [25] with *
2R  correction 

that is modeled by using a single (1D) [26] or double decay (2D) approximation for the water and the fat 

species. 

It has been recently demonstrated that 1D complex-fitting model [27] can provide results with high noise 

stability over a wide range of *
2R  values (0÷600s-1) and TE combinations. On the other hand, the accuracy 

of *
2R  quantification at larger rates [28,29] is currently debated because it is strongly sensitive to the type 

and timings (ΔTE) of the echo sequence. In addition, relaxometry methods have still notable limitations in 

obtaining reliable measurements in patients with iron overload in the liver [30,31] and in the myocardium 

[32,33,34], because of the significant different decay times of water and fat species. Hence, an optimized 

set of parameters is required to avoid biased reconstructions. 

Latest achievements show the possibility to model separate decay rates for water and fat (2D model) 

[23,35] in order to improve the accuracy of relaxometry mapping and fat quantification [36]. However, 

they point out how this approach currently suffers of an increased noise sensitivity. For example, it is well 

known that, the inclusion of fat in tissues can lead to remarkable alterations in the signal amplitude of 

images acquired at increasing TE [37,38,39,40,41,42]. Although most of such infiltration in organs usually 

does not exceed 50%, this is not true in degenerative muscle diseases, where higher FF values can be 

reached up to the complete substitution of the muscular tissue with fat and fibrosis [43,44,45,46]. 

To this end, *
2R -corrected fat quantification is particularly important in subjects affected by progressive 

Neuromuscular Disorders (NMD) for the careful assessment of disease severity at the time of diagnosis 

and for longitudinal monitoring of their response to therapy [47]. The purpose of this study is to analyze 

the ability of MRI to obtain robust *
2R  quantification by investigating the use of a complex multi-echo 

chemical-shift based *
2R  estimation method that contemporarily evaluates independent relaxation rates for 

biological species. 

A comparison between 2D and 1D decay models is presented in order to focus on the following 

challenges: (i) reproducibility of results across different FFs, (ii) dependence on imaging parameters and 

protocols, (iii) identification of numerical artifacts, (iv) requirements to achieve optimal performance. The 

approach employed concerns to an attempt to extend investigation on previously reported techniques for 

1D *
2R  mapping [27] following a systematic approach [48] where the effects of parameter changes are 
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independently investigated. In details, we evaluate the performance of different complex multi-peak fat-

corrected relaxometry models in terms of SNR and bias in order to study the limits of each theoretical 

formulation, such as the weaknesses in *
2R  mapping associated with increasing fat infiltration and for 

different relaxation rates. In any case, the unknown parameters (e.g. water and fat signal amplitudes, 0B  

field inhomogeneity, relaxation rates) are evaluated at the same time via the nonlinear least-squares 

(NLLS) estimation algorithm for simulated and in vivo data. Systematic analyses ranging from the 

theoretical characterization of different models to simulations and clinically significant examples are 

presented. 

 

2. Methods 
2.1 Theoretical models 

 The fat/water quantification from a signal sn measured on a given voxel at TEn  1,...,n N  is 

achieved by considering a theoretical model. The complex formulation of a single *
2R  decay (1D) 

including 0B  field inhomogeneity is given by: 

                          *
, 0 22 2*

0 2
1

, , , , F p n B n C n

P
i f TE i f TE R TE

n W F B C W F p n
p

s f R e e e         



 
   
 

                  (1) 

where W  and F  are the amplitudes of water and fat signals, respectively, with initial phase 0 , Bf  is 

the frequency shift due to local magnetic field 0B  inhomogeneities, * *
2 21C CR T  is the common decay 

for both species, while ,F pf  are the known frequencies for the multiple spectral peaks of the fat signal 

relative to the water peak and p  are the relative amplitudes of the fat signal that satisfy the condition 

1

1
P

p
p




 . The values of p  and ,F pf  can be directly estimated from the data by means of spectrum self-

calibration algorithms [2] or well known multipeak spectral configurations [49,50]. It has been recently 

demonstrated that fat quantification techniques using multipeak fat models [51] provide comparable 

results. Therefore we will use the method proposed in Ref. [25], using the data as reported in Ref. [49] 

where the relative amplitudes (%) are p = (4.7, 3.9, 0.6, 12, 70, 8.8) whereas the relative frequencies 

(expressed in ppm) of fat peaks are (0.6, 0.5, 1.95, 2.6, 3.4, 3.8), respectively. The noise n  can be 

modeled as a complex white Gaussian distribution. Relaxation rate *
2CR  can be estimated from Eq. (1) 

using NLLS that, according to Ref. [52], provides the maximum-likelihood estimation. Above equation 
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assumes a common decay rate for the water and fat signals which has been shown to be effective for fat 

quantification [12,21,27] in previous phantom [53], and clinical studies [4]. 

Nonetheless, we stress the fact that a 1D *
2R  model is intuitively not appropriate for an accurate estimation 

of water and fat compound percentages when they exhibit very different decay rates, such as in the 

presence of a non negligible iron concentration in muscular tissues [54] or liver [55]. 

In general, water and fat have different *
2R  decays (and even the multiple fat peaks will have independent 

decay rates, but this is typically ignored being that it leads to a significant complication of the model [25]). 

This has led to methods that employ independent *
2R  decay rates [23]. Although multiple *

2R  correction 

may reduce bias by more accurately modeling the underlying physics, recent studies pointed out the 

higher numerical instability [25] that requires further investigation. The Eq. (1) can be rewritten for a 2D 

formulation as follows: 

            * *
, 02 2

2 2* *
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           (2) 

In this case, independent relaxation rates for water *
2WR  and fat *

2FR  are considered assuming also the 

same decay rate *
2FR  for all the fat peaks [56]. Thanks to this flexibility, the 2D formulation in Eq. (2) is 

attractive because it aims to investigate large regional variations of transverse decay rate among biological 

species. This is particularly appealing in patients developing extensive iron accumulation or severe fat 

infiltrations in muscles, such as the subjects affected by DMD [57,58] or liver disease [32,53,59]. Besides, 

the signal may contain transient disturbances due to eddy currents [17] which can be minimized by 

discarding the phase information of the initial echoes [60] or by constraining the initial phase of both 

species to be equal at an echo time of zero [61]. To date, the combined effects of 2D relaxometry model 

and above phase error adjustment method have not been investigated using clinical MRI data for the study 

of relaxometry and for its application on the NMD assessment. Therefore, we will evaluate complex, 

multi-peak, 1-decay and 2-decay signal models which also account for phase correction [62]. No field-

map smoothing [63,64] or regularization [65,66] techniques are taken into account in this study. 

 

2.2 Numerical simulations 
Starting from the approach proposed by Hernando et al. [27], we have carried out extensive numerical 

simulations to characterize the behavior of such theoretical models. The estimated mean, bias and standard 

deviation (SD) of *
2R  are used to compare the performances of 2D and 1D models. Intuitively, the mean 

and bias (that quantifies the average difference to be expected between an estimator and the true value of a 
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given parameter) represent an indication of the model mismatch, whereas SD provides information on the 

precision of the estimator (noise stability of results). 

(i) First of all, we have analyzed the performance of 2D and 1D methods using a synthetic signal with 

Gaussian noise having a SNR=50 at TE=0ms and TEinit/ΔTE=1.0/1.0ms. Results are proposed in terms of 

Mean Square Error (MSE) on fitted data as a function of FF. 

(ii) The robustness and accuracy in *
2R  quantification have been also evaluated by fitting the synthetically 

generated signals with known values to Eqs. (1) and (2) using both 2D and 1D algorithms. The estimated 

(EST) relaxation decays under multiple iterations are compared with the 'true' *
2R  data in terms of 

   * *
2 2

1

1 INR

j
j

bias true R EST R
INR 

  . To this end, Monte Carlo simulations have been performed on a 

total of 1024 independent noise realizations (INR) [67] to provide reliable mean and SD on each 

reconstruction. Sequences parameters were: N=15, SNR=50 at TE=0ms, TEinit/ΔTE=1.0/1.0ms. 

(iii) We have investigated on the error sensitivity of relaxometry mapping as a function of *
2R  value and 

TE combination using both models with NLLS estimation. Results of including fat-correction in *
2R  

quantification are considered in terms of bias and SD. Computations have been performed using different 

FFs with *
2CR , *

2WR and *
2FR  ranging within [0-1000s-1] under the following configuration: B0=1.5T, 

TEinit/ΔTE=1.0/1.0 ms, SNR=50 at TE=0 ms and INR=1024. 

(iv) Besides, we have studied the impact of imaging parameters on numerical stability of *
2R  mapping 

because the quantification of relaxation rates is sensitive to the sequence configuration settings (e.g. initial 

echo time, echo spacing, echo number) and to the signal model. Theoretical *
2R  noise performance has 

been investigated by computing mean and standard deviation for 1D ( *
2CR ) and 2D models ( *

2wR , *
2FR ), 

under the following conditions: 

 B0=1.5T; 

 acquisition using N=15 echoes as a function of TEinit and ΔTE within (0-5 ms); 

 two different formulations (1D and 2D fat-corrected complex fitting with phase correction method 

according to Ref. 60); 

 1D model: three relevant rates ( *
2CR =40, 200 and 1000s-1); 

 2D model: independent rates are considered for water-based ( *
2WR =40, 200 and 1000s-1) and fat-

based compounds ( *
2FR =40, 200s-1) according to the clinical evidence [68,69,70,71]. 
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(v) Further Monte Carlo simulations have been completed to determine the optimal echo number that 

maximized the dynamic range of relaxometry mapping by testing the bias and noise performance of both 

decay models using multiple *
2R  combinations with N=[9-20] and TEinit/ΔTE=1.0/1.0ms.  

2.3 Experimental measurements: in vivo validation 

We take into account the numerical robustness of *
2R  quantification in both 1D and 2D fitting models on 

subjects affected by NMD with increasing levels of fat infiltration in muscles. Robustness has been 

assessed by reconstructing experimental data from each subject under different echo combinations. A 

study which includes a cohort of 24 patients is presented. The entire research has been conducted by 

following the guidelines of the local Ethical Committee whereas a written informed consent has been 

obtained from each participant. Candidates were selected with definitive diagnoses of DMD, inclusion-

body myositis (IBM), Pompe and McArdle disease, and underwent MRI on the pelvic girdle and thigh 

muscles for the disease clinical assessment between 03/2009 and 02/2015. Part of the patient population 

included in this study has been also evaluated in prior researches [7,57]. 

Datasets from the subjects have been acquired on a 1.5T MRI scanner (Gyroscan Intera; Philips, Best, The 

Netherlands) using a torso phased-array coil. A multiecho SPGR acquisition has been performed with the 

following parameters: N=20/TR=40ms, TEinit/ΔTE=1.6/1.3ms, FOV=40x40cm, flip angle=5° to minimize 

T1 residual bias [3], matrix=256x128, NSA=8 and slice thickness=10mm. To test the reliability of 

reconstructions, datasets have been evaluated using different echo combinations, for N=9,12,15,20 echoes. 

Again, 2D and 1D complex fitting have been adopted with phase correction [60], for a total of eight *
2R  

reconstructed mappings per dataset. Measurements have been obtained by an experienced radiologist and 

compared with 1H spectroscopy (MRS) data for reference [5]. 

 

3. Results 
3.1 Simulation study 
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Fig. 1. (a) Synthetically generated 1.5T MRI signal (top gray line) with SNR=50, for FF=50% used as reference and 
fitted using both 2D (center blue line) and 1D (bottom red line) methods using N=20 echoes (black circles). 
Reference data are computed by setting water and fat relaxation rates to 200 and 40s-1, respectively. (b) Comparison 

in terms of Mean Square Error (MSE) between chemical shift complex-fitting methods that account for *
2T  decay 

using double (2D, blue curve) and single decay (1D, red curve) formulation. MSE using 1D model is higher and 
exhibit a bell-like shape increasing with FF in water-dominated tissues and decreasing with FF in fat-dominated 
tissues. On the other hand, MSE of 2D model is almost stable among the entire FF range. [Color figure can be 
viewed in the online issue]. 

 

Fig. 1 (a) provides the simulation results of a 1.5T MRI signal (top gray line) with SNR=50, for FF=50%, 

fitted using both 2D (center blue line) and 1D (bottom red line) methods with a GRE pulse sequences of 

N=20 echoes (black circles). We impose that * 1
2 200WR s  and * 1

2 40FR s  which represent values of 

interest in skeletal muscles [72]. In this figure, 2D model provides a closer fitting with the samples if 

compared to 1D formulation. Numerical analysis on simulated data is presented in (b). Here, models 

performance are compared by computing the MSE between synthetically generated data and their 

estimated results under varying FF. We impose that water and fat relaxation rates are 200 and 40s-1, 

respectively. MSE using single-decay (1D) model (red curve) is higher and exhibit a bell-like shape which 

increases with FF in water-dominated tissues and decreases in fat-dominated tissues. On the other hand, 

MSE of double-decay (2D) model (blue curve) is almost stable among the entire range. Data show how 

when water and fat will differ in terms of relaxation properties, so these should be estimated separately, 

leading to the Eq. (2) [23]. In order to discuss noise performance in Fat-Corrected Complex 1D and 2D 

*
2R  relaxometry, we provide results in Fig. 2. 

 

3.2 Numerical artifacts 
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Fig. 2. Comparison of Complex fitting mean (a-d) and standard deviation (e-h) for single and double-decay models 
using simulated data (INR=1024) from low to severe muscle fat infiltrations. Noise performance is evaluated using 

2D model in terms of *
2WR  (blue squares) by letting water species vary in reference signal between [0-600s-1] 

whereas fat compounds relaxation rate is set to a common value (40s-1), and vice versa ( *
2FR , red triangles). With 

the same approach, we analyze 1D numerical stability by investigating on results when water relaxation rate ( *
2CR , 

cyan diamonds) varies in reference signal (and fat decay rate is set to 40s-1) and vice versa ( *
2CR , magenta circles). 

[Color figure can be viewed in the online issue]. 

 

Fig. 2 (a-d) plot mean for single and double-decay models using simulated data (INR=1024) from low to 

severe (67%) muscle fat infiltrations, while (e-h) provide the corresponding standard deviation, 

respectively. In our simulations, we independently evaluate results using 2D model by letting water 

species ( *
2WR , blue squares) vary between [0-600s-1] whereas fat compounds relaxation rate is set to a 

common value (40s-1), and vice versa ( *
2FR , red triangles). With the same approach, we analyze 1D 

accuracy by studying water ( *
2CR , cyan diamonds) and fat ( *

2CR , magenta circles) numerical stability. 

It is interesting to note how 1D model exhibits a mismatch in relaxation rate quantification which 

increases with the FF ratio. We have called this artifact as Transverse Relaxation rate Inter-species 

Diversity (TRID) because its occurrence is originated by the large dissimilarity in terms of decay time 

between independent chemical species in a given region of interest (ROI). Under the same conditions, 2D 

model achieves unbiased results up to large rates (600s-1). To our best knowledge, previous studies have 

been performed when the difference between water and fat relaxation as known [16], but they did not 
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consider the scenario where such difference is large, i.e. when the ratio,  , between the fastest and the 

lowest decaying species is, 5  . In order to investigate on such findings we have analyzed numerical 

stability for each variable in Eqs. (1) and (2) by evaluating its bias. As shown in Fig. 3, for most of the 

clinically relevant fat concentrations, bias curves provide useful insights to enlighten the different 

behavior between 1D and 2D models. Particularly, such achievements suggest a probable relationship 

between the offset exhibited using 1D formulation and by the corresponding error in Bf  quantification 

(cyan and magenta curves) if compared with the 2D model (blue and red curves). 

 

 

Fig. 3. Comparison of Complex fitting bias using 2D and 1D is proposed (INR=1024, SNR=50) by considering the 

impact of the estimation problem due to B0 inhomogeneity, Bf , on the TRID phenomenon. We evaluate bias in Bf  

using 2D model by letting water vary in reference signal whereas fat is fixed to 40s-1 (blue circles), and vice versa 
(red triangles) for three different FF ratios (a-c). 1D model performance are shown on each plot in the same way by 

reproducing Bf  bias, as a result of the estimation problem, when water varies in reference signal (cyan diamonds) or 

fat (magenta circles). [Color figure can be viewed in the online issue]. 

 

For moderate (a), mild (b) and severe (c) fat concentrations 2D model shows very stable predictions of Bf  

for a whole range of relaxation times. Instead, 1D model exhibits a bias which depends on the FF and 

independently affects the estimation of *
2CR . Additional studies have been performed by comparing 

results of 1D and 2D model when Bf  is known. Results (not shown) demonstrate no role of Bf  in TRID 

phenomenon. We believe that such negative aspect of 1D formulation is mainly due to the raw modeling 

of the dynamical evolution of chemical species by using a single exponential (common relaxation rate), 

and that it is an intrinsic limit of such model. In summary, when tissues exhibit very different relaxation 

times, 1D approximation is not recommended due to the observation of a major numerical error which 

significantly perturbates the quantification of transverse relaxation rate. Again, considering FF ratios in 

Fig. 2, if we study tissues having non-negligible adipose infiltrations (b-d) using 1D model we might incur 
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in an estimation problem of *
2R  due to the TRID phenomenon which is mainly influenced by the distinct 

spin-spin interaction properties of real chemical species under investigation. Particularly, it significantly 

affects results in the presence of considerable regional differences among chemical species which might 

be attributable to a non-uniform fat distribution in tissues, a common pattern of abnormality related to the 

disease progression in NMD subjects [73]. 

 

3.3 Numerical stability: comparison between 1D and 2D model 

 

Fig. 4. Theoretical noise performance (standard deviation) of *
2R  estimation at 1.5T for N=15, FF=33% using 

various TE combinations and different relaxation rates between chemical species. Plots include two distinct 
reconstruction techniques: (a) Single-decay (1D) and (b, c) Double-decay (2D) complex fitting with multipeak fat 

spectral representation and phase correction. For 1D formulation (a) *
2CR  performance is evaluated under three rates 

(40, 200, 1000s-1). Regarding 2D model, in (b) we estimate noise stability in terms of *
2WR  (by letting water 

relaxation rate vary while fat is set to 40s-1) the other parameter, *
2FR , is set to the following values [40, 200s-1]), 

and in (c) for *
2FR  (when *

2WR  is set to [40, 200, 1000s-1]). The plots depict the numerical influence of the TE 

combinations and different relaxation rates between chemical species on the models noise performance. [Color figure 
can be viewed in the online issue]. 

 

Fig. 4 (a-c) are arranged in three sub-matrices and show data for moderate fat (FF=33%) while additional 

findings are discussed for varying FF in the range (0-100%) but not shown (see Figs. 4.2-4.6 in 
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supplemental materials). Each matrix plots the SNR performance (standard deviation) for a given signal 

model as a function of TEinit and ΔTE under different rate combinations. We calculate the SD of *
2CR  (a) 

for single-decay model, and of *
2WR  (b) and *

2FR  (c) for double-decay model, respectively. 1D model 

results are evaluated by considering three rates (40, 200, 1000s-1) for water whereas fat is set to (40s-1). 

For the 2D model, in (b) we estimate noise performance for varying *
2WR  (while the other parameter, 

*
2FR , is set to the following values [40, 200s-1]), and in (c) for *

2FR  (when *
2WR  is set to [40, 200, 1000s-

1]). On one side, shortened echoes (ΔTE<1.5ms) in 1D model provide the best noise performance from 

low (40s-1) to very high relaxation rates (1000s-1). For increasing FF, numerical stability of *
2CR  increases. 

On the other side, from low to moderate relaxation rates (0-200s-1) 2D model exhibits different 

performance between *
2WR  and *

2FR  estimation. Our results show that *
2WR  and *

2FR  numerical stability is 

higher for ΔTE<1.5ms [74]. In addition, when water relaxes rapidly (1000s-1) the numerical instability 

causes a sensible decrease of SNR. This can be mainly associated with the difficult rate estimation of 

water compound due to the immediate exponential loss of signal strength after few milliseconds. For 

increasing FF, noise performance decreases in 2D model either for *
2WR  and, less markedly, for *

2FR . In 

water-dominated tissues and in the presence of very high decay rates, simulation data highlight how short 

echoes are fundamental for reliable rate predictions for 1D and 2D formulations. In this scenario, *
2CR  

generally exhibits a better noise stability (lower SD). Interestingly, when fat is predominant and for a 

rapid water decay ( *
2WR  = 1000s-1) 2D model shows an apparent reduction of SD near ΔTE≈4.5ms which 

can be explained as the consequence of the combined effect of: (i) loss of signal information caused by the 

rapid decay of water, (ii) large inter-echo time (ΔTE) which is similar to in-phase (IP) acquisitions that 

have been commonly used to avoid the effect of fat in *
2R  mapping [75]. It is interesting to note how 

TRID phenomenon is not evident in the above figure, because it is a prerogative of 1D model. 
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Fig. 5. 2D and 1D *
2R  mapping as a function of N and FF (SNR=50, INR=1024). Plots show the theoretical noise 

performance (standard deviation) under different TEs, for fixed initial TE (TEinit=1 ms) and echo spacing (ΔTE=1 

ms). The optimum number of echoes for fat-corrected *
2R  mapping heavily depends on the model used and on the 

relaxation rate of the biological compounds. The minimum echo train length recommended to support both 
formulation is 9, although N≥15 is considered to be optimal for 2D model. [Color figure can be viewed in the online 
issue]. 

 

Here, we investigate the effects of the number of echoes N acquired during imaging, for different 

relaxation rates. Fig. 5 (a),(b) show the theoretical noise performance (SD) of complex fat-corrected *
2R  

mapping for TEinit/ΔTE=1/1ms as a function of N (6-20) and FF (0-100%). Noise performance is analyzed 

by considering 1D and 2D model (INR=1024). In this figure, the rows depict results for a given FF while 

columns represent SD for (a) water *
2WR , fat, *

2FR  (in 2D model using Eq. (2)), and (b) common *
2CR  (in 

1D model using Eq. (1)), respectively. We highlight that for *
2WR  ( *

2FR ) results are considered by setting 

complementary fat (water) relaxation rate to a reference value (40s-1), whereas for *
2CR  we set both 

species to the same rate. For the sake of completeness, numerical stability is evaluated using three known 

decay values: low 40s-1 (red line), moderate 200s-1 (blue line), high 1000s-1 (gray line). Again, we point 

out that clinically relevant relaxation rates for fat are within (0-200s-1) [45]. In water-dominated tissues 

(FF<50%) and from low to moderate decays (<=200s-1), the SD for water *
2WR  is close to *

2CR  and 

exhibits just a slight reduction when N increases. (b) Although in 1D formulation a value of N = 6÷8 is 
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believed appropriate in most applications [27], we observe that the number of 15 is the minimum 

recommendation for 2D model in order to achieve a better noise performance. As expected, for very rapid 

decay rates (1000s-1), the SD of *
2WR  and *

2FR  in 2D model is higher than *
2CR  in 1D model. This is a 

predictable result because the relaxation rate is evaluated independently on each species and, when water 

signal decays very rapidly, it causes an estimation problem in the *
2WR  quantification of Eq. (2) due to the 

lack of available enough information from the echo sequence. In general, such variability is compensated 

by a reduced bias and an improved accuracy. For a balanced concentration of fat and water compounds 

(FF=50%), a value which is particularly relevant in the study of NMD [7,57], results indicate that for 

N≥15 and from low to moderate decay rates, the standard deviation in the 2D and 1D case have similar 

values. Interestingly, for rapid decay rates (1000s-1) and in fat-dominated voxels, simulations data show 

that the numerical robustness of 1D model is higher than in 2D formulation. 

 

 

Fig. 6. Fat-correction using multipeak fat modeling is necessary for robust *
2R  mapping in the presence of fat. 

Images show *
2R  maps of thigh muscles on a subject affected by DMD with low fatty infiltration (FF = 20%), using 

two different techniques (2D and 1D fat-corrected with multipeak fat) and five different TE combinations (N=9, 12, 

15 and 20 echoes). Note the decrease in *
2R  mapping noise for increasing number of echoes. 2D *

2R  measurements 

show increased accuracy but stronger variability with echo combination, whereas 1D *
2R  estimates demonstrates 

excellent robustness to echo combination. [Color figure can be viewed in the online issue]. 
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3.1 Experimental results: in vivo validation 

Fig. 6 provides *
2R  reconstructions in a Pompe patient with iron overload and moderate muscle fat 

infiltration (MRS PDFF=32%). Results are proposed in terms of bias and SD. Two different fitting 

methods were compared: complex multipeak fat model with 2D (left) and 1D *
2R -correction (right), 

respectively. Each reconstruction has been computed with TEinit/ΔTE=1.6/1.3ms and evaluated using 

N=[9,12,15,20] echoes. A ROI has been circled to show the results obtained by increasing N. Our 

achievements suggest how 2D Complex Fit is more accurate in the *
2R  mapping of fatty infiltrations in 

muscles as well as in the presence of iron accumulation. Such results are qualitatively and quantitatively in 

agreement with experimental findings as shown in Fig. 5. For this analysis, N=9 has been evaluated as the 

minimum number of echoes suitable to provide reproducible results for both 1D and 2D models. However, 

it is suboptimal for 2D modeling due to the increased complexity of the system which leads to numerical 

variability in fat-corrected reconstructions. Using 2D model and for moderate or severe fat accumulation 

in tissues N≥15 is recommended for a better SNR. 

 

 

Fig. 7. Fat-correction using multipeak fat modeling is necessary for robust *
2R  mapping in the presence of fat. A 

cohort of 24 patients affected by NMD has been screened and monitored during this study. (Top) *
2R  measurements 

as a function of PDFF obtained using 2D and 1D techniques, using four different TE combinations (9, 12, 15 and 20 

echoes) . (Bottom) Plot shows *
2R  variability (standard deviation) for each reconstruction, as a function of PDFF. 

1D-model (single-decay) reconstructions result in *
2R  variability decreasing with PDFF. 2D-model (double-decay) 
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*
2R mapping theoretically should result in numerical variability decreasing with PDFF. In practice, 1D model results 

in low variability (good robustness) over the entire range of PDFF. [Color figure can be viewed in the online issue]. 

 

Fig. 7 exhibits noise stability results from co-localized relaxation measurements obtained from all the 

subjects for varying numbers of echoes N=9, 12, 15, and 20. To avoid deviation of the fitting algorithm far 

from the biologically likely solutions, *
2CR  and *

2WR  have been constrained to be greater than 0s-1 and not 

higher than 1000s-1, while *
2FR  has been limited within (0-200s-1). At low fat-fractions and particularly for 

high relaxation rate in tissues (e.g. heavy iron accumulation), methods perform differently. 2D model is 

enough sensitive to capture the intrinsic differences in decay between water and fat species, with a 

stability that increases with N, while 1D model reports a low varying relaxation rate which is a far 

approximation. Robustness is improved in 2D considering N≥15 while single-decay fat-corrected 

modeling remains substantially stable for N≥6. Multipeak complex fat modeling with single-decay (1D) 

results in the best robustness (reduced SD), particularly for low to moderate rate values. Such results are in 

strict agreement with previous findings [25]. Linear regression analysis revealed no statistically significant 

relationship between the SD of relaxation rates *
2WR  (r2=0.22, P=0.01), *

2FR  (r2=0.04, P=0.34), *
2CR  

(r2=0.06, P=0.22) and the fat-fraction, respectively. 

 

4. Discussion 
The potential of *

2R  mapping methods is extremely attractive for the diagnosis of several pathologies and 

is a valuable tool for the continuous monitoring of progressive neuromuscular diseases. It aims to address 

the invasiveness to which traditional biopsy is prone [7] and can contribute to provide robust PDFF 

quantification. However, the reliability of relaxometry measurements need to be completely understood to 

gain wide acceptance. In order to obtain reproducible and low bias estimations, we analyzed state-of-the-

art fat-corrected *
2R  mapping methods using common (1D) or independent decays (2D). Recent advances 

pointed out that the most known factors affecting the accuracy, sensitivity, and reproducibility are the 

imaging parameters, the relaxation properties of tissues and the signal model. For what concerns 

acquisition parameters, shortened image acquisition times (TEinit/ΔTE=1.6/1.3ms or less) generally offer 

significant correlation between estimated relaxation maps and MRS measurements [27], while they are 

compliant with most of the current MRI appliance. Here, we studied the necessary conditions to improve 

*
2R  quantification to analyze tissues having very different *

2R  decay rates of water and fat compounds 

[55,76], and abnormal fat infiltrations. Latest enhancements of 1D and 2D models have been taken into 

account, such as the adoption of a multi-peak fat signal representation [77] with phase correction [60], 
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self-calibration [2]. Analysis using the 2D model is more accurate (reduced bias) than 1D, and more 

appropriate to deal with different transverse relaxation properties [78] for water and fat, especially for 

tissues having non-negligible FF. This comes at the expenses of a lower noise stability which requires 

further model enhancements. Simulation data using 1D approach carefully reproduce recent achievements 

and indicate that this formulation is able to maintain the better SNR performance over a broad range of 

*
2R  values and TE combinations. Nonetheless, it is not widely recommended due to the occurrence of 

TRID phenomenon, and generally it provides sub-optimal results in scenarios with moderate to severe fat 

infiltrations. Particularly, it may suffer of a higher bias than 2D model, especially from moderate to 

critical fat concentrations (FF>30%), which are relatively common physiological conditions in long-term 

patients affected by NMD. In addition, under some conditions, our results highlight also that 

measurements of these biomarkers can be significantly altered by biological effects. Specifically, an 

hallmark feature of 1D model is that the bias increases with the difference in relaxation rates between 

water and fat species. Such numerical artifact, TRID, represents a significant confounding factor which 

has been isolated in 1D model whereas it does not affect 2D formulation. 

We find that the most favorable combination of acquisition parameters depends also on fat concentration 

and intrinsic relaxation properties of chemical species. For high decay rates, short TEs are fundamental to 

minimize bias and standard deviation. In water(fat)-dominated tissues, *
2R  quantification can be improved 

on 1D method by using a rapid TEinit [32] and small (long) ΔTE with N≥9 whereas the best results with 

2D model can be achieved for N≥15. In single-decay formulation, the occurrence of the TRID effect gives 

new insights in the understanding of relaxometry and aims to highlight some of the limits related to such 

approximation. 

On the other hand, 2D model provides more accurate and TRID-free estimations, but improvements are 

necessary to reduce its high noise sensitivity. In vivo acquisitions have been performed using a low flip 

angle (5°) to minimize T1 effects in fat quantification. We do not expect T1 effects to directly introduce 

bias on *
2R  mapping. Simulations and in vivo results are consistent, and they demonstrate that *

2R  

mapping can provide predictable performance for the measurement of the relaxation rates and, 

consequently, for the FF ratio. 

 

5. Conclusions 
This article discusses a comparative study of performances of the Multi-Peak Chemical-Shift models with 

*
2R -correction under single and double-decay approximation. We have performed an in-depth analysis to 

understand the current limits of state of the art techniques and how they could be optimized to increase 
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numerical stability. Such aim is accomplished by isolating the effects of: bias, noise, FF, number of 

echoes, N, echo spacing, relaxation rate variability among biological species. 

Our results have pointed out some remarkable characteristics and drawbacks. By considering such 

experimental findings and taking into account the performance of most 1.5T MRI scanners, we argue that 

the combination of TEinit/ΔTE=1/1ms and N=15 is the minimum recommended configuration suitable for 

both 2D and 1D models and able to conciliate between expected performance and exam duration. 

Among the above discussed Multi-Peak Chemical-Shift models the double decay formulation is 

considered to be a preferable choice for the following reasons: (i) it is both theoretically and 

experimentally more appropriate to deal in scenarios when chemical species exhibit significantly different 

decay rates, for example, it is particularly appealing in patients developing iron overload or being affected 

by NMD with severe fatty infiltrations in tissues. (ii) Despite 2D formulation demonstrated higher noise 

sensitivity than 1D model, it provides a lower bias and opens perspectives for future improvements in 

order to overcome its currently limited noise sensitivity. (iii) In addition, it intrinsically corrects for TRID 

artifact by evaluating both fat and water percentage separately and it might in the future deliver a more 

reliable and long-term solution for the systematic management of NMD patients. In conclusion, the 

present work has provided elements to enhance MRI relaxometry by choosing optimal imaging parameters 

for a given expected range of *
2R  values, while progress is still needed to promote a universal 

standardization of the relaxometry techniques as a part of emerging MRI diagnostic tools. In fat-

dominated tissues and for the monitoring of NMD, 2D fitting is necessary to achieve more consistent *
2R  

mapping. Such results have been performed by means of a parallel processing framework which was 

developed for accelerating algorithms computation and recently demonstrated successful results in other 

fields [79,80]. Overall, we believe that the conclusions drawn by this study might be seamlessly extended 

to 3T and to different medical applications where a large transverse relaxation diversity among chemical 

species is still appreciable, although further work is needed to confirm this speculation. Finally, since fat-

quantification is now considered as a necessary measure to perform in MRI studies of all the patients with 

degenerative muscular diseases [81], we believe that the approach described here contributes to a better 

understanding on this non invasive technique and thus draw the guidelines to stimulate a desirable 

progress in future implementations. In the prospect of healthcare applications, such methods could be 

extensively applied on screening programs to track the evolution of NMD. 

 

ACKNOWLEDGMENTS 

The simulations have been performed with the availability of SCL (Scientific Computing Laboratory) of 

the University of Messina, Italy. G. S. acknowledges project entitled “Tecniche innovative di 



19 

 

processamento di segnali per lo sviluppo di sistemi e servizi ICT”. The authors acknowledge Prof. Placido 

Bramanti for his support in this project. 

 

REFERENCES 

 

                                                            
1. Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, Brittain JH. Quantification of hepatic 
steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 2009;29:1332–1339. 
2. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and 
simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122–1134. 
3. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: 
correction of bias from T(1) and noise. Magn Reson Med 2007;58:354–364. 
4. Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of 
low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67–76. 
5. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging 
and spectroscopy. J Magn Reson Imaging 2011;34:729–749. 
6. Triplett WT1, Baligand C, Forbes SC, Willcocks RJ, Lott DJ, DeVos S, Pollaro J, Rooney WD, Sweeney HL, 
Bönnemann CG, Wang DJ, Vandenborne K, Walter GA. Chemical shift-based MRI to measure fat fractions in 
dystrophic skeletal muscle. Magn Reson Med 2014;72(1):8–19. 
7. Gaeta M, Scribano E, Mileto A, Mazziotti S, Rodolico C, Toscano A, et al. Muscle fat fraction in neuromuscular 
disorders: Dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification-a feasibility 
study. Radiology 2011;259(2):487–94. 
8. Musumeci O, Gaeta M, Barca E, Mileto A, Vita G and Toscano A. Quantitative muscle MRI and functional 
measures in a cohort of late onset GSD II patients.BMC Musculoskeletal Disorders 2013;14(Suppl 2):P11. 
9. Sénégas J, Liu W, Dahnke H, Song H, Jordan EK and Frank JA, Fast T2 Relaxometry with an Accelerated Multi-
echo Spin-echo Sequence, NMR Biomed 2010;23: 958-967. 
10. Liu W, Turkbey B, Sénégas J, Remmele S, Xu S,Kruecker J, Bernardo M, Wood BJ, Pinto PA and Choyke PL, 
Accelerated T2 Mapping for Characterization of Prostate Cancer, Magn Reson Med 2011;65:1400-1406. 
11. Deoni SCJ, Rutt BK, Arun T, Pierpaolo C, Jones DK, Gleaning Multicomponent T1 and T2 Information From 
Steady-State Imaging Data. Magn Reson Med 60:1372–1387 (2008). 
12. Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2*-corrected 
MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767–
775. 
13. Marro K, Otto R, Kolokythas O, Shimamura A, Sanders JE, McDonald GB, Friedman SD. A simulation-based 
comparison of two methods for determining relaxation rates from relaxometry images. Magn Reson Imaging 
2011;29:497-506. 
14. Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, Pelc NJ. Multicoil Dixon chemical species separation 
with an iterative least squares estimation method. Magn Reson Med 2004;51:35–45. 
15. Hernando D, Vigen KK, Shimakawa A, Reeder SB. R2* mapping in the presence of macroscopic B0 field 
variations. Magn Reson Med 2012;68:830–840. 
16. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB. Relaxation 
effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347–359. 
17. Yu H, Shimakawa A, Hines CD, et al. Combination of complex-based and magnitude-based multiecho water-fat 
separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199–206. 
18. Yu H, Reeder SB, Shimakawa A, McKenzie CA, Brittain JH. Robust Multipoint Water-Fat Separation Using Fat 
Likelihood Analysis, Magn Reson Med. 2012;67:1065–1076. 
19. McVeigh ER, Henkelman RM, Bronskill MJ. Noise and filtration in magnetic resonance imaging. Med Phys 
1985;12:586–591. 
20. Hu HH, Börnert P, Hernando D, Kellman P, Ma J, Reeder S and Sirlin C. ISMRM Workshop on Fat–Water 
Separation: Insights, Applications and Progress in MRI Magnetic Resonance in Medicine 2012;68:378–388. 
21. Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau ACS, Beatty PJ, Pineda AR, Brittain JH, and Reeder SB. 
Multiecho Reconstruction for Simultaneous Water-Fat Decomposition and T2* Estimation. J Magn Reson Imaging 
2007;26:1153-1161. 



20 

 

                                                                                                                                                                                                 
22. Reeder SB, Bice EK, Yu H, Hernando D, Pineda AR. On the performance of T2* correction methods for 
quantification of hepatic fat content. Magn Reson Med. 2012;67:389–404. 
23. Chebrolu VV, Hines CDG, Yu H, et al. Independent estimation of T* 2 for water and fat for improved accuracy 
of fat quantification. Magn Reson Med 2010;63:849–857. 
24. Horng DE, Hernando D, Hines CDG, Reeder SB. Comparison of R2* Correction Methods for Accurate Fat 
Quantification in Fatty Liver. J Magn Reson Imaging 2013;37:414–422. 
25. Hernando D, Liang ZP, Kellman P, Chemical Shift-Based Water/Fat Separation: A Comparison of Signal 
Models. Magn Reson Med. 2010;64(3):811–822. 
26. Månsson S, Peterson P, Johansson E. Quantification of low fat contents: a comparison of MR imaging and 
spectroscopy methods at 1.5 and 3 T. Magn Reson Imaging 2012;30:1461-1467. 
27. Hernando D, Kramer JH, Reeder SB. Multipeak Fat-Corrected Complex R2* Relaxometry: Theory, 
Optimization, and Clinical Validation. Magn Reson Med. 2013;70:1319–1331. 
28. Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2 measurement of 
iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging. 2009;30:313–320. 
29. Echeverrìa JMA, Castiella A, Emparanza JI. Quantification of iron concentration in the liver by MRI. Insights 
Imaging 2012;3(2):173–180. 
30. Vasanawala SS, Yu H, Shimakawa A, Jeng M, Brittain JH. Estimation of liver T*2 in transfusion-related iron 
overload in patients with weighted least squares T*2 IDEAL. Magn Reson Med 2012;67:183–190. 
31. Alexopoulou E, Stripeli F, Baras P, Seimenis I, Kattamis A, Ladis V, Efstathopoulos E, Brountzos EN, Kelekis 
AD, Kelekis NL. R2 Relaxometry With MRI for the Quantification of Tissue Iron Overload in β-Thalassemic 
Patients. J Magn Reson Imaging 2006;23:163–170. 
32. Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC. Improved R2* measurements in myocardial 
iron overload. J Magn Reson Imaging 2006;23:9–16. 
33. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker 
JM, Pennel DJ. European Heart Journal 2001;22:2171–2179. 
34. Papanikolaou N, Ghiatas A, Kattamis A, Ladis C, Kritikos N, Kattamis C. Non-invasive myocardial iron 
assessment in thalassaemic patients. T2 relaxometry and magnetization transfer ratio measurements. Acta Radiol 
2000;41:348–351. 
35. Ma J, Wehrli FW, Song HK, Hwang SN. A single-scan imaging technique for measurement of the relative 
concentrations of fat and water protons and their transverse relaxation times. J Magn Reson 1997;125:92–101. 
36. Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson 
Imaging 1991;1:521–530. 
37. Wehrli FW, Ma J, Hopkins JA, Song HK. Measurement of R'2 in the presence of multiple spectral components 
using reference spectrum deconvolution. J Magn Reson 1998;131:61–68. 
38. Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment 
of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010;18:841–847. 
39. Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, Liang ZP, Arai AE. Multiecho dixon fat 
and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 2009;61:215–
221. 
40. Foster MC, Hwang SJ, Porter SA, et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham 
Heart Study. Hypertension. 2011;58:784–790. 
41. Bobulescu IA, Dubree M, Zhang J, McLeroy P, Moe OW. Effect of renal lipid accumulation on proximal tubule 
Na+/H+ exchange and ammonium secretion. Am J Physiol Renal Physiol 2008: 294, F1315–F1322. 
42. Goodpaster BH, Stenger VA, Boada F, McKolanis T, Davis D, Ross R, Kelley DE. Skeletal muscle lipid 
concentration quantified by magnetic resonance imaging. Am J Clin Nutr 2004;79:748–754. 
43. Hollingsworth KG, Garrood P, Eagle M, Bushby K, Straub V. Magnetic Resonance Imaging in Duchenne 
Muscular Dystrophy: Longitudinal Assessment of Natural History over 18-months, Muscle Nerve. 2013 
Oct;48(4):586-8. 
44. Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vanderborne K. Use of skeletal muscle MRI in 
diagnosis and monitoring disease progression in Duchenne Muscular Dystrophy. Phys Med Rehabil Clin N Am. 
2012;23(1):1-10. 
45. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: 
distribution of disease activity and correlation with clinical assessments. Radiology 2010;255:899–908. 



21 

 

                                                                                                                                                                                                 
46. Wokke BH, van den Bergen JC, Versluis MJ, Niks EH, Milles J, Webb AG, van Zwet EW, Aartsma-Rus A, 
Verschuuren JJ, Kan HE. Quantitative MRI and strength measurements in the assessment of muscle quality in 
Duchenne muscular dystrophy. Neuromuscular Disorders 2014;24:409–416. 
47. Willcocks RJ, Arpan IA, Forbes SC, Lott DJ, Senesac CR, Senesac E, Deol J, Triplett WT, Baligand C, Daniels 
MJ, Sweeney HL, Walter GA, Vandenborne K. Longitudinal measurements of MRI-T2 in boys with Duchenne 
muscular dystrophy: Effects of age and disease progression. Neuromuscular Disorders, 2014;24:393:401. 
48. Hansen KH, Schroeder ME, Hamilton G, Sirlin CB, Bydder M. Robustness of fat quantification using chemical 
shift imaging. Magn Reson Imaging 2012;30:151-157. 
49. Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS. In vivo characterization of 
the liver fat (1)H MR spectrum. NMR Biomed 2011;24:784–790. 
50. Wokke BH, Bos C, Reijnierse M, van Rijswijk CS, Eggers H, Webb A, Verschuuren JJ, Kan HE. Comparison of 
dixon and T1-weighted MR methods to assess the degree of fat infiltration in Duchenne muscular dystrophy patients. 
J Magn Reson Imaging 2013;38:619–624. 
51. Wang X, Hernando D and Reeder S. Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of 
Fat MR Spectrum. Magn Reson Med 2016;75:845–851. 
52. Sijbers J, den Dekker AJ. Maximum Likelihood Estimation of Signal Amplitude and Noise Variance From MR 
Data. Magn Reson Med 2004;51:586–594. 
53. Hines CDG, Yu HZ, et al., T1 Independent, T2* Corrected MRI With Accurate Spectral Modeling for 
Quantification of Fat: Validation in a Fat-Water-SPIO Phantom, J Magn Reson Imaging 2009;30(5), 1215-1222. 
54. Ren J, Dimitrov I, Sherry AD, Malloy CR. Composition of adipose tissue and marrow fat in humans by 1H NMR 
at 7 Tesla. J Lipid Res 2008;49:2055–2062. 
55 Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration 
in transfusion dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460–1465. 
56. De Graaf RA, Rothman DL. In vivo detection and quantification of scalar coupled H-1 NMR resonances. 
Concepts Magn Reson 2001;13:32–76. 
57. Gaeta M, Messina S, Mileto A, Vita GL, Ascenti G, Vinci S, Bottari A, Vita G, Settineri N, Bruschetta D, 
Racchiusa S, Minutoli F. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease 
distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol. 2012; 41(8):955-61. 
58. Walter, GA, Cahill, KS, Huard J, Feng, H, Douglas T, Sweeney HL and Bulte JWM. Noninvasive monitoring of 
stem cell transfer for muscle disorders. Magn Reson Med 2004;51:273–277. 
59. Bydder M, Shiehmortez M, Yokoo T, Sugay S, Middleton MS, Girard O, Schroeder ME, Wolfson T, Gamst A, 
Sirlin C. Assessment of liver fat quantification in the presence of iron. Magn Reson Imaging 2010;28:767–776. 
60. Hernando D, Hines CD, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed 
magnitude/complex fitting method. Magn Reson Med 2012;67:638–644. 
61. Bydder M, Yokoo T, Yu H, Carl M, Reeder SB, Sirlin CB. Constraining the initial phase in water–fat separation. 
Magn Reson Imaging 2011;29:216-221. 
62. Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-
squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636–644. 
63. J. Berglund, L. Johansson, H. Ahlstrom, and J. Kullberg. Three-point Dixon method enables whole-body water 
and fat imaging of obese subjects. Magn. Reson. Med. 2010;63:1659–68. 
64. W. Lu and Y. Lu. JIGSAW: Joint inhomogeneity estimation via global segment assembly for water-fat 
separation. IEEE Trans. Med. Imag. 2011;30:1417–1426. 
65. Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image 
optimization—Application in breathhold liver imaging at 1.5 T. Magn. Reson. Med. 2012;67:1684–1693. 
66. Soliman AS, Yuan J, Vigen KK, White JA, Peters TM, and McKenzie CA. Max-IDEAL: A max-flow based 
approach for IDEAL water/fat separation. Magn. Reson. Med. 2014;72:510–521. 
67. Pineda AR, Reeder SB, Wen Z, Pelc NJ. Cramér-Rao bounds for three point decomposition of water and fat. 
Magn Reson Med 2005;54:625–635. 
68. Bottomley PA, Foster TH, Argersinger RE, Pfeiffer LM. A review of normal tissue hydrogen NMR relaxation 
times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, 
species, excision, and age. Med Phys 1984;11(4):425-48. 
69. Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G. A review of 1H nuclear magnetic resonance 
relaxation in pathology: are T1 and T2 diagnostic? Med Phys 1987;14:1–37. 
70. Wattjes MP, Fischer D, Neuromuscular Imaging. Springer, 2013; 424 pages, ISBN-13: 978-1461465515. 



22 

 

                                                                                                                                                                                                 
71. Virta A, Komu M, Lundbom N, Jääskeläinen S, Kalimo H, Airio A, Alanen A, Kormano M. Low field T1ρ 
imaging of myositis. Magn Reson Imaging 1998; Vol. 16, No. 4: 385–391. 
72. Saab G, Thompson RT, Marsh GD. Multicomponent T2 relaxation of in vivo skeletal muscle. Magn Reson Med 
1999;42:150–157. 
73. Murphy WA, Totty WG and Carroll JE. MRI of normal and pathologic skeletal muscle, American Journal of 
Roentgenology. 1986;146: 565-574. 
74. Hernando D, Kühn JP, Mensel B, Völzke H, Puls R, Hosten N, Reeder SB. R2* Estimation Using "In-Phase" 
Echoes in the Presence of Fat: The Effects of Complex Spectrum of Fat. J Magn Reson Imaging 2013;37:717-726. 
75. Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 
2005;53:1202–1206. 
76. Liu W, Dahnke H, Rahmer J, Jordan EK and Frank JA. Ultrashort T2* image relaxometry for quantitation of 
highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells. Magn Reson Med 2009;61:761–
766. 
77. Kuhn JP, Hernando D, Munoz Del Rio A, Evert M, Kannengiesser S, Volzke H, Mensel B, Puls R, Hosten N, 
Reeder SB. Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy 
with MR imaging results. Radiology 2012;265:133–142. 
78. Träber F1, Block W, Lamerichs R, Gieseke J, Schild HH. 1H Metabolite Relaxation Times at 3.0 Tesla: 
Measurements of T1 and T2 Values in Normal Brain and Determination of Regional Differences in Transverse 
Relaxation. J Magn Reson Imaging 2004;19:537–545. 
79. Siracusano G, Lamonaca F, Tomasello R, Garescì F, La Corte A, Carnì DL, Carpentieri M, Grimaldi D, 
Finocchio G. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform, 
Mech Syst Sig Pr 2016;75:109-122. 
80. Siracusano G, La Corte A, Puliafito V, Finocchio G. A generalized tool for accurate time-domain separation of 
excited modes in spin-torque oscillators, J APPL PHYS 2014;115(17):17D108. 
81. Hollingsworth KG, de Sousa PL, Straub V, Carlier PG. Towards harmonization of protocols for MRI outcome 
measures in skeletal muscle studies: Consensus recommendations from two TREAT-NMD NMR workshops, 2 May 
2010, Stockholm, Sweden, 1–2 October 2009, Paris, France. Neuromuscul Disord. 2012;22(Suppl 2):S54-67. 



23 

 

Supplemental Materials - Caption Descriptions 

 

Fig. 4.2. Theoretical noise performance (standard deviation) of *
2R  estimation at 1.5T for N=15, FF=0% using 

various TE combinations and different relaxation rates between chemical species. Plots include two distinct 
reconstruction techniques: (a) Single-decay (1D) and (b, c) Double-decay (2D) complex fitting with multipeak fat 

spectral representation and phase correction. For 1D formulation (a) *
2CR  performance is evaluated under three rates 

(40, 200, 1000s-1). Regarding 2D model, in (b) we estimate noise stability in terms of *
2WR  (by letting water 

relaxation rate vary while fat is set to 40s-1) the other parameter, *
2FR , is set to the following values [40, 200s-1]), 

and in (c) for *
2FR  (when *

2WR  is set to [40, 200, 1000s-1]). The plots depict the numerical influence of the TE 

combinations and different relaxation rates between chemical species on the models noise performance in the 
absence of fat. [Color figure can be viewed in the online issue]. 
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Fig. 4.3 Theoretical noise performance (standard deviation) of *
2R  estimation at 1.5T for N=15, FF=50% using 

various TE combinations and different relaxation rates between chemical species. Plots include two distinct 
reconstruction techniques: (a) Single-decay (1D) and (b, c) Double-decay (2D) complex fitting with multipeak fat 

spectral representation and phase correction. For 1D formulation (a) *
2CR  performance is evaluated under three rates 

(40, 200, 1000s-1). Regarding 2D model, in (b) we estimate noise stability in terms of *
2WR  (by letting water 

relaxation rate vary while fat is set to 40s-1) the other parameter, *
2FR , is set to the following values [40, 200s-1]), 

and in (c) for *
2FR  (when *

2WR  is set to [40, 200, 1000s-1]). The plots depict the numerical influence of the TE 

combinations and different relaxation rates between chemical species on the models noise performance for a 
balanced ratio water and fat. [Color figure can be viewed in the online issue]. 
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Fig. 4.4 Theoretical noise performance (standard deviation) of *
2R  estimation at 1.5T for N=15, FF=66% using 

various TE combinations and different relaxation rates between chemical species. Plots include two distinct 
reconstruction techniques: (a) Single-decay (1D) and (b, c) Double-decay (2D) complex fitting with multipeak fat 

spectral representation and phase correction. For 1D formulation (a) *
2CR  performance is evaluated under three rates 

(40, 200, 1000s-1). Regarding 2D model, in (b) we estimate noise stability in terms of *
2WR  (by letting water 

relaxation rate vary while fat is set to 40s-1) the other parameter, *
2FR , is set to the following values [40, 200s-1]), 

and in (c) for *
2FR  (when *

2WR  is set to [40, 200, 1000s-1]). The plots depict the numerical influence of the TE 

combinations and different relaxation rates between chemical species on the models noise performance for fat-
dominated tissues. [Color figure can be viewed in the online issue]. 
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Fig. 4.5 Theoretical noise performance (standard deviation) of *
2R  estimation at 1.5T for N=15, FF=100% using 

various TE combinations and different relaxation rates between chemical species. Plots include two distinct 
reconstruction techniques: (a) Single-decay (1D) and (b, c) Double-decay (2D) complex fitting with multipeak fat 

spectral representation and phase correction. For 1D formulation (a) *
2CR  performance is evaluated under three rates 

(40, 200, 1000s-1). Regarding 2D model, in (b) we estimate noise stability in terms of *
2WR  (by letting water 

relaxation rate vary while fat is set to 40s-1) the other parameter, *
2FR , is set to the following values [40, 200s-1]), 

and in (c) for *
2FR  (when *

2WR  is set to [40, 200, 1000s-1]). The plots depict the numerical influence of the TE 

combinations and different relaxation rates between chemical species on the models noise performance in the 
absence of water. [Color figure can be viewed in the online issue]. 

 


