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Abstract

We obtain a pair of nontrivial solutions for a class of concave-linear-
convex type elliptic problems that are either critical or subcritical.
The solutions we find are neither local minimizers nor of mountain
pass type in general. They are higher critical points in the sense that
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they each have a higher critical group that is nontrivial. This fact is
crucial for showing that our solutions are nontrivial. We also prove
some intermediate results of independent interest on the localization
and homotopy invariance of critical groups of functionals involving
critical Sobolev exponents.

1 Introduction

Consider the concave-linear-convex type problem−∆u = µf(x, u) + λu+ |u|p−2 u in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN , N ≥ 2, p > 2 if N = 2 and 2 < p ≤
2∗ = 2N/(N − 2) if N ≥ 3, λ ≥ 0 and µ > 0 are parameters, and f is a
Carathéodory function on Ω× R satisfying

f(x, t) = |t|σ−2 t+ o(|t|σ−1) as t→ 0 (1.2)

uniformly a.e. in Ω for some σ ∈ (1, 2) and

|f(x, t)| ≤ C(|t|r−1 + 1) ∀(x, t) ∈ Ω× R (1.3)

for some C > 0 and 2 < r < p. Ambrosetti et al. studied the special case
λ = 0 of this problem in the pioneering paper [1], and showed, among other
things, that there are two positive solutions for all sufficiently small µ > 0.
The first solution is a local minimizer of the associated energy functional

E0(u) =

∫
Ω

(
1

2
|∇u|2 − µF (x, u)− 1

p
|u|p
)
dx, u ∈ H1

0 (Ω),

where F (x, t) =
∫ t

0
f(x, s) ds, and the second solution is a mountain pass

point.
Their result is easily extended to the case 0 < λ < λ1, where λ1 > 0 is

the first Dirichlet eigenvalue of −∆ on Ω. When λ ≥ λ1, we cannot expect
to find positive solutions in general, but we may ask if the problem still has
a pair of nontrivial solutions for small µ > 0. In the present paper we show
that this is indeed the case if

F (x, t) ≥ 0 ∀(x, t) ∈ Ω× R (1.4)

in the following cases:
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(i) N = 2 and p > 2,

(ii) N = 3 and 2 < p < 6,

(iii) N ≥ 4 and 2 < p ≤ 2∗.

However, the solutions we find here are neither local minimizers nor of moun-
tain pass type in general. They are higher critical points in the sense that
they each have a higher critical group that is nontrivial. This fact is crucial
to showing that our solutions are themselves nontrivial.

First we have the following theorem in the critical case p = 2∗.

Theorem 1.1. If N ≥ 4, (1.2)–(1.4) hold, and λ ≥ λ1, then there exists
µ∗ > 0 such that the problem−∆u = µf(x, u) + λu+ |u|2∗−2 u in Ω

u = 0 on ∂Ω
(1.5)

has two nontrivial solutions for all µ ∈ (0, µ∗).

In the subcritical case we replace the linear term λu with a more general
nonlinearity g(x, u) and consider the problem−∆u = µf(x, u) + g(x, u) + |u|p−2 u in Ω

u = 0 on ∂Ω,
(1.6)

where p > 2 if N = 2 and 2 < p < 2∗ if N ≥ 3, µ > 0 is a parameter, f
satisfies (1.2)–(1.4), and g is a Carathéodory function on Ω× R satisfying

g(x, t) = o(|t|σ−1) as t→ 0 (1.7)

uniformly a.e. in Ω and

|g(x, t)| ≤ C(|t|r−1 + 1) ∀(x, t) ∈ Ω× R. (1.8)

Let G(x, t) =
∫ t

0
g(x, s) ds, and let λ1 < λ2 ≤ λ3 ≤ · · · be the Dirichlet

eigenvalues of −∆ on Ω, repeated according to multiplicity. We assume that

G(x, t) ≥ 1

2
λl t

2 ∀(x, t) ∈ Ω× R (1.9)

for some l ≥ 1 and

G(x, t) ≤ 1

2
λ t2 ∀x ∈ Ω, |t| ≤ δ (1.10)

for some δ > 0 and λ < λl+1. We have the following theorem.
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Theorem 1.2. If (1.2)–(1.4) and (1.7)–(1.10) hold, then there exists µ∗ > 0
such that problem (1.6) has two nontrivial solutions for all µ ∈ (0, µ∗).

Although Theorems 1.1 and 1.2 apply to the model case f(x, t) = |t|σ−2 t,
f is not assumed to be odd in t in these theorems, so symmetry does not
play a role here. We also note that (1.7)–(1.10) hold for g(x, t) = λt when
λl ≤ λ < λl+1.

Weak solutions of problem (1.6) coincide with critical points of the C1-
functional

E(u) =

∫
Ω

(
1

2
|∇u|2 − µF (x, u)−G(x, u)− 1

p
|u|p
)
dx, u ∈ H1

0 (Ω).

Recall that critical groups of E at an isolated critical point u0 are defined by

Cq(E, u0) = Hq(E
c ∩ U,Ec ∩ U \ {u0}), q ≥ 0,

where c = E(u0), Ec = {u ∈ H1
0 (Ω) : E(u) ≤ c}, U is a neighborhood of u0,

and H∗ denotes singular homology. First we will show that E has of critical
points u1, u2 with

Cl(E, u1) 6= 0, Cl+1(E, u2) 6= 0

if µ > 0 is sufficiently small. This will be based on the following abstract
result adapted from Perera [9].

Theorem 1.3. Let E be a C1-functional on a Banach space X. Assume
that there are a direct sum decomposition X = Y ⊕ Z, u = v + w, with
l = dimY <∞, z0 ∈ X \ Y , 0 < ρ < R, and a < b such that, setting

A = {u = v + tz0 : v ∈ Y, t ≥ 0, ‖u‖ ≤ R} , B = {w ∈ Z : ‖w‖ ≤ ρ}

and denoting by ∂A and ∂B the relative boundaries of A and B, respectively,
we have

a < inf
B
E, sup

∂A
E < inf

∂B
E, sup

A
E < b.

Assume further that E satisfies the (PS)c condition for all c ∈ (a, b) and has
only a finite number of critical points in E−1((a, b)). Then E has a pair of
critical points u1, u2 with

inf
B
E ≤ E(u1) ≤ sup

∂A
E, inf

∂B
E ≤ E(u2) ≤ sup

A
E

and

Cl(E, u1) 6= 0, Cl+1(E, u2) 6= 0.
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To show that u1 and u2 are nontrivial and complete the proof of Theorem
1.2, we will show that Cq(E, 0) = 0 for all q ≥ 0. This will be based on two
intermediate results of independent interest on the critical groups of the
functional

E(u) =

∫
Ω

(
1

2
|∇u|2 −H(x, u)− 1

p
|u|p
)
dx, u ∈ H1

0 (Ω)

at 0, where p > 2 if N = 2 and 2 < p ≤ 2∗ if N ≥ 3, H(x, t) =
∫ t

0
h(x, s) ds,

and h is a Carathéodory function on Ω× R satisfying

|h(x, t)| ≤ C(|t|r−1 + 1) ∀(x, t) ∈ Ω× R (1.11)

for some C > 0 and 2 < r < p. The first is the following localization result.

Theorem 1.4. Assume that (1.11) holds. Let δ > 0, let ϑ : R → [−δ, δ] be
a smooth nondecreasing function such that ϑ(t) = −δ for t ≤ −δ, ϑ(t) = t
for −δ/2 ≤ t ≤ δ/2, and ϑ(t) = δ for t ≥ δ, and set

Ẽ(u) =

∫
Ω

(
1

2
|∇u|2 −H(x, ϑ(u))− 1

p
|ϑ(u)|p

)
dx, u ∈ H1

0 (Ω).

If 0 is an isolated critical point of E, then it is also an isolated critical point
of Ẽ and

Cq(E, 0) ≈ Cq(Ẽ, 0) ∀q ≥ 0.

Henceforth, ≈ will denote the group isomorphism. This result is some-
what surprising given that H1

0 (Ω) is not embedded in L∞(Ω) when N ≥ 2.
Our second intermediate result is the following critical group computation.

Theorem 1.5. Assume that (1.11) holds and

h(x, t) = µ |t|σ−2 t+ o(|t|σ−1) as t→ 0 (1.12)

uniformly a.e. in Ω for some µ > 0 and σ ∈ (1, 2). If 0 is an isolated critical
point of E, then

Cq(E, 0) = 0 ∀q ≥ 0.

The rest of this paper is organized as follows. The preliminary results
in Theorems 1.3–1.5 will be proved in the next section. Our main results in
Theorems 1.1 and 1.2 are proved in Section 3.
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2 Proofs of intermediate results

Let E be a C1-functional on a Banach space X. We recall that E satisfies
the (PS)c condition if every sequence (uj) ⊂ X such that E(uj) → c and
E ′(uj) → 0, called a (PS)c sequence of E, has a convergent subsequence.
The proof of Theorem 1.3 is based on the following well-known result from
Morse theory (see Chang [6, Chapter II, Theorem 1.5]).

Proposition 2.1. Assume that Hl(E
b, Ea) 6= 0, where a < b are regular

values of E and l ≥ 0. If E satisfies the (PS)c condition for all c ∈ [a, b]
and has only a finite number of critical points in E−1((a, b)), then E has a
critical point u0 with

a < E(u0) < b, Cl(E, u0) 6= 0.

We now prove Theorem 1.3. For the sake of simplicity we only consider
the case where X is infinite dimensional.

Proof of Theorem 1.3. Since B ∩ ∂A and ∂B ∩ A are nonempty,

inf
B
E ≤ sup

∂A
E, inf

∂B
E ≤ sup

A
E.

We will show that if α < β < γ satisfy

a < α < inf
B
E, sup

∂A
E < β < inf

∂B
E, sup

A
E < γ < b,

then

Hl(E
β, Eα) 6= 0, Hl+1(Eγ, Eβ) 6= 0. (2.1)

Proposition 2.1 then gives a pair of critical points u1, u2 of E with

α < E(u1) < β, β < E(u2) < γ

and

Cl(E, u1) 6= 0, Cl+1(E, u2) 6= 0

if, in addition, α, β, and γ are regular values of E. Since E has only a finite
number of critical values in (a, b), α and β can be chosen so that E has no
critical values in [α, inf E(B)) or (supE(∂A), β], and hence

inf
B
E ≤ E(u1) ≤ sup

∂A
E.
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Similarly, u2 can be chosen to satisfy

inf
∂B

E ≤ E(u2) ≤ sup
A

E.

To prove (2.1), recall that ∂A homologically links ∂B in dimension l in the
sense that the inclusion ξ : ∂A ↪→ X\∂B induces a nontrivial homomorphism

ξ∗ : H̃l(∂A) −−−→ H̃l(X \ ∂B)

between reduced homology groups (see, e.g., Perera and Schechter [10, Propo-
sitions 2.4.2 and 2.4.4]). Since E < β on ∂A and E > β on ∂B, we also have
inclusions ϕ : ∂A ↪→ Eβ and ψ : Eβ ↪→ X \ ∂B, which induce the commuta-
tive diagram

H̃l(∂A)
ϕ∗ //

ξ∗ &&

H̃l(E
β)

ψ∗
��

H̃l(X \ ∂B).

This gives

ψ∗ ϕ∗ = ξ∗ 6= 0,

so both ϕ∗ and ψ∗ are nontrivial homomorphisms.
First we show that Hl(E

β, Eα) 6= 0. Since E > α on B and α < β, we
have the inclusions Eα ↪→ X \B ↪→ X \∂B and Eα ↪→ Eβ ↪→ X \∂B, which
give the commutative diagram

H̃l(E
α)

i∗−−−→ H̃l(E
β)y yψ∗

H̃l(X \B) −−−→ H̃l(X \ ∂B).

Since B is contractible, X \B has the homotopy type of the unit sphere in X,

which is itself contractible since X is infinite dimensional, so H̃l(X \B) = 0.
This together with the commutativity of the square gives

ψ∗ i∗ = 0.

Since ψ∗ is nontrivial, this implies that i∗ is non-surjective. Now consider the
exact sequence of the pair (Eβ, Eα):

· · · ∂∗−−−→ H̃l(E
α)

i∗−−−→ H̃l(E
β)

j∗−−−→ Hl(E
β, Eα)

∂∗−−−→ · · · .
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By exactness,

ker j∗ = im i∗ 6= H̃l(E
β),

so the relative homology group Hl(E
β, Eα) 6= 0.

Finally we show that Hl+1(Eγ, Eβ) 6= 0. Since E < γ on A and β < γ,
we have the inclusions ∂A ↪→ A ↪→ Eγ and ∂A ↪→ Eβ ↪→ Eγ, yielding the
commutative diagram

H̃l(∂A)
ϕ∗−−−→ H̃l(E

β)y yi∗
H̃l(A) −−−→ H̃l(E

γ).

Since A is contractible and hence H̃l(A) = 0, this gives

i∗ ϕ∗ = 0.

Since ϕ∗ is nontrivial, this implies that i∗ is non-injective. Now consider the
exact sequence of the pair (Eγ, Eβ):

· · · j∗−−−→ Hl+1(Eγ, Eβ)
∂∗−−−→ H̃l(E

β)
i∗−−−→ H̃l(E

γ)
j∗−−−→ · · · .

By exactness,

im ∂∗ = ker i∗ 6= 0,

so Hl+1(Eγ, Eβ) 6= 0.

Next we turn to the proof of Theorem 1.4, which will be based on the
following result on the invariance of critical groups under homotopies that
preserve the isolatedness of the critical point (see Chang and Ghoussoub [5]
or Corvellec and Hantoute [7]).

Proposition 2.2. Let Eτ , τ ∈ [0, 1] be a family of C1-functionals on a Ba-
nach space X, and let u0 be a critical point of each Eτ . Assume that there
exists a closed neighborhood U of u0 such that

(i) the map [0, 1]→ C1(U,R), τ 7→ Eτ is continuous,

(ii) U contains no other critical point of any Eτ ,

(iii) each Eτ satisfies the (PS)c condition on U for all c ∈ R.
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Then

Cq(E0, u0) ≈ Cq(E1, u0) ∀q ≥ 0.

The subcritical case p < 2∗ of Theorem 1.4 follows from Perera and
Schechter [10, Lemma 3.2.1], so we only consider the critical case p = 2∗,
whose proof requires more careful estimates. We will apply Proposition 2.2
to the family of functionals

Eτ (u) =

∫
Ω

(
1

2
|∇u|2 −H(x, (1− τ)u+ τ ϑ(u))

− 1

2∗
[
(1− τ) |u|2∗ + τ |ϑ(u)|2∗

])
dx, u ∈ H1

0 (Ω), τ ∈ [0, 1]

in a sufficiently small closed ball Bε(0), noting that E0 = E and E1 = Ẽ.
Let

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx(∫
Ω

|u|2∗ dx
)2/2∗

(2.2)

be the best constant in the Sobolev inequality. First we prove the following
lemma on the (PS)c sequences of Eτ .

Lemma 2.3. Let τ ∈ [0, 1], let c ∈ R, and let (uj) be a bounded (PS)c
sequence of Eτ . Then a renamed subsequence of (uj) converges weakly to a
critical point u of Eτ . Moreover, uj → u strongly in each of the following
cases:

(i) τ ∈ [0, 1), c < (1/N)SN/2/(1− τ)(N−2)/2, and u = 0,

(ii) τ = 1.

Proof. We have

Eτ (uj) =

∫
Ω

(
1

2
|∇uj|2 −H(x, (1− τ)uj + τ ϑ(uj))

− 1

2∗
[
(1− τ) |uj|2

∗
+ τ |ϑ(uj)|2

∗])
dx = c + o(1) (2.3)
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and

E ′τ (uj) v =

∫
Ω

(
∇uj ·∇v−h(x, (1− τ)uj + τ ϑ(uj)) (1− τ + τ ϑ′(uj)) v

−
[
(1− τ) |uj|2

∗−2 uj + τ |ϑ(uj)|2
∗−2 ϑ(uj)ϑ

′(uj)
]
v

)
dx = o(‖v‖)

(2.4)

for all v ∈ H1
0 (Ω). Since (uj) is bounded, a renamed subsequence of (uj)

converges to some function u weakly in H1
0 (Ω), strongly in Lσ(Ω) for all

σ ∈ [1, 2∗), and a.e. in Ω. Passing to the limit in (2.4) then shows that u is
a critical point of Eτ .

Suppose τ ∈ [0, 1), c < (1/N)SN/2/(1− τ)(N−2)/2, and u = 0. Then (2.3)
and (2.4) with v = uj imply

1

2

∫
Ω

|∇uj|2 dx−
1

2∗
(1− τ)

∫
Ω

|uj|2
∗
dx = c+ o(1) (2.5)

and ∫
Ω

|∇uj|2 dx− (1− τ)

∫
Ω

|uj|2
∗
dx = o(1), (2.6)

while (2.2) entails∫
Ω

|∇uj|2 dx ≥ S

(∫
Ω

|uj|2
∗
dx

)2/2∗

. (2.7)

A straightforward calculation combining (2.5)–(2.7) gives[
SN/(N−2)

1− τ
− (Nc)2/(N−2)

] ∫
Ω

|∇uj|2 dx ≤ o(1),

and this implies that uj → 0 since c < (1/N)SN/2/(1− τ)(N−2)/2.
If τ = 1, then we are in the subcritical case and a standard argument

shows that uj → u.

Next we show that there is no nonzero critical point of any Eτ in a
sufficiently small closed ball around the origin.

Lemma 2.4. If 0 is an isolated critical point of E and ε > 0 is sufficiently
small, then 0 is the only critical point of Eτ in Bε(0) for all τ ∈ [0, 1].
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Proof. Suppose that the conclusion of the lemma is false. Then there exist
sequences (τj) ⊂ [0, 1] and (uj) ⊂ H1

0 (Ω)\{0} such that E ′τj(uj) = 0 and uj →
0 in H1

0 (Ω). We will show that uj → 0 in C(Ω) for a renamed subsequence.
Then for all sufficiently large j, |uj| ≤ δ/2 and hence E ′(uj) = E ′τj(uj) = 0,
contradicting the assumption that 0 is an isolated critical point of E.

We have−∆uj = hj(x, uj) in Ω

uj = 0 on ∂Ω,
(2.8)

where

hj(x, t) = h(x, (1− τj) t+ τj ϑ(t)) (1− τj + τj ϑ
′(t))

+ (1 − τj) |t|2
∗−2 t + τj |ϑ(t)|2∗−2 ϑ(t)ϑ′(t)

satisfies a growth condition

|hj(x, t)| ≤ C(|t|2∗−1 + 1) ∀(x, t) ∈ Ω× R (2.9)

for some C > 0 independent of j. First we show that (uj) is bounded in
C(Ω). By de Figueiredo et al. [8, Proposition 3.7], it suffices to show that∫

A

|uj|2
∗
dx→ 0 as |A| → 0 (2.10)

uniformly in j. Suppose not. Then there exist ε0 > 0 and a sequence (Ak)
of subsets of Ω with |Ak| → 0 such that∫

Ak

|ujk |2
∗
dx ≥ ε0 (2.11)

for some jk. If the sequence (jk) is bounded, then there exists j0 such that,
for a renamed subsequence, jk ≡ j0 and hence∫

Ak

|ujk |2
∗
dx =

∫
Ak

|uj0|2
∗
dx→ 0 as k →∞

since |Ak| → 0, contradicting (2.11). On the other hand, if (jk) is unbounded
then, for a renamed subsequence, jk →∞ as k →∞ and hence∫

Ak

|ujk |2
∗
dx ≤

∫
Ω

|ujk |2
∗
dx→ 0 as k →∞
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since uj → 0 in H1
0 (Ω), again contradicting (2.11). So (2.10) holds and hence

(uj) is bounded in C(Ω).
Next we note that from uj → 0 in H1

0 (Ω) it follows, for a renamed subse-
quence, uj → 0 a.e., whence hj(x, uj)→ h(x, 0) = 0 a.e. Moreover, hj(x, uj)
is bounded, because(uj) is bounded in C(Ω) and hj satisfies (2.9). Thus,
hj(x, uj)→ 0 in Lq(Ω) for any q ∈ [1,∞). Since uj solves (2.8), then uj → 0
in W 2,q(Ω) by the Calderón-Zygmund inequality. The continuous embedding
W 2,q(Ω) ↪→ C(Ω), q > N/2, entails uj → 0 in C(Ω), as desired.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We apply Proposition 2.2 to the family of functionals
Eτ , τ ∈ [0, 1] in Bε(0), where ε > 0 is as in Lemma 2.4, so that Bε(0)
contains no nonzero critical point of any Eτ . Clearly, the map [0, 1] →
C1(Bε(0),R), τ 7→ Eτ is continuous. We will show that each Eτ satisfies the
(PS)c condition on Bε(0) for all c ∈ R if ε is further restricted.

First we note that if ε > 0 is sufficiently small, then

sup
u∈Bε(0)

Eτ (u) <
1

N
SN/2 ∀τ ∈ [0, 1]. (2.12)

To see this, suppose that there exist sequences (τj) ⊂ [0, 1] and uj → 0 in
H1

0 (Ω) such that

Eτj(uj) ≥
1

N
SN/2. (2.13)

For a renamed subsequence, uj → 0 a.e. in Ω and strongly in Lq(Ω) for all
q ∈ [1, 2∗]. Since h satisfies (1.11), then Eτj(uj) → 0, contradicting (2.13).
So (2.12) holds.

Now let ε > 0 be as above, let τ ∈ [0, 1], let c ∈ R, and let (uj) ⊂ Bε(0)
be a (PS)c sequence of Eτ . By Lemma 2.3, a renamed subsequence of (uj)

converges weakly to a critical point u ∈ Bε(0) of Eτ . Since Bε(0) contains
no nonzero critical point of Eτ , u = 0. Since uj ∈ Bε(0) and Eτ (uj)→ c,

c ≤ sup
u∈Bε(0)

Eτ (u),

so (2.12) implies

c <
1

N
SN/2 ≤ 1

N

SN/2

(1− τ)(N−2)/2

if τ ∈ [0, 1). So uj → 0 strongly by Lemma 2.3 and hence Eτ satisfies the

(PS)c condition on Bε(0).
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Finally we prove the proposition below, from which Theorem 1.5 is im-
mediate. Indeed, if (1.12) holds, then

H(x, t) =
µ

σ
|t|σ+o(|t|σ), 2H(x, t)−th(x, t) =

(
2

σ
− 1

)
µ |t|σ+o(|t|σ) as t→ 0

uniformly a.e. in Ω, and (2.14) and (2.15) follow from this since µ > 0 and
σ ∈ (1, 2).

Proposition 2.5. Assume that (1.11) holds,

lim
t→0

H(x, t)

t2
= +∞ uniformly a.e. in Ω, (2.14)

and

2H(x, t)− th(x, t) >

(
1− 2

p

)
|t|p ∀x ∈ Ω, 0 < |t| ≤ δ (2.15)

for some δ > 0. If 0 is an isolated critical point of E, then

Cq(E, 0) = 0 ∀q ≥ 0.

First we prove a localization result for subcritical problems.

Lemma 2.6. For i = 0, 1, let hi be Carathéodory functions on Ω× R satis-
fying

|hi(x, t)| ≤ C(|t|r−1 + 1) ∀(x, t) ∈ Ω× R

for some C > 0 and r > 2 if N = 2 and 2 < r < 2∗ if N ≥ 3, and set

Ei(u) =

∫
Ω

(
1

2
|∇u|2 −Hi(x, u)

)
dx, u ∈ H1

0 (Ω),

where Hi(x, t) =
∫ t

0
hi(x, s) ds. If 0 is an isolated critical point of E0 and

h0(x, t) = h1(x, t) ∀x ∈ Ω, |t| ≤ δ (2.16)

for some δ > 0, then 0 is also an isolated critical point of E1 and

Cq(E0, 0) ≈ Cq(E1, 0) ∀q ≥ 0.
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Proof. We apply Proposition 2.2 to the family of functionals

Eτ (u) =

∫
Ω

(
1

2
|∇u|2 − (1− τ)H0(x, u)− τ H1(x, u)

)
dx, u ∈ H1

0 (Ω), τ ∈ [0, 1]

in a small closed ball Bε(0). Clearly, the map [0, 1]→ C1(Bε(0),R), τ 7→ Eτ
is continuous. Since r < 2∗ if N ≥ 3, each Eτ satisfies the (PS)c condition
on Bε(0) for all c ∈ R. We will show that Bε(0) contains no nonzero critical
point of any Eτ if ε > 0 is sufficiently small.

Suppose that there exist sequences (τj) ⊂ [0, 1] and (uj) ⊂ H1
0 (Ω) \ {0}

such that E ′τj(uj) = 0 and uj → 0 in H1
0 (Ω). We will show that uj → 0 in

C(Ω) for a renamed subsequence. Then for all sufficiently large j, |uj| ≤ δ
and hence E ′0(uj) = E ′τj(uj) = 0 by (2.16), contradicting the assumption that
0 is an isolated critical point of E0.

We have−∆uj = hj(x, uj) in Ω

uj = 0 on ∂Ω,
(2.17)

where hj(x, t) = (1−τj)h0(x, t)+τj h1(x, t) also satisfies the growth condition

|hj(x, t)| ≤ C(|t|r−1 + 1) ∀(x, t) ∈ Ω× R. (2.18)

For a renamed subsequence, uj → 0 a.e. and τj converges to some τ ∈ [0, 1],
and hence

hj(x, uj)→ (1− τ)h0(x, 0) + τ h1(x, 0) = 0 a.e.

So, if uj → 0 in Lq(Ω), then hj(x, uj) → 0 in Lq/(r−1)(Ω) by (2.18). Since
uj solves (2.17), then uj → 0 in W 2,q/(r−1)(Ω) by the Calderón-Zygmund
inequality. Then uj → 0 in LNq/(N(r−1)−2q)(Ω) also by the Sobolev embedding
theorem. Starting with q = 2∗, iterating until q > N(r− 1)/2, and using the
continuous embedding W 2,q/(r−1)(Ω) ↪→ C(Ω) now entails uj → 0 in C(Ω),
as desired.

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. By Theorem 1.4, 0 is also an isolated critical point
of Ẽ and

Cq(E, 0) ≈ Cq(Ẽ, 0) ∀q ≥ 0, (2.19)
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where Ẽ is as in that theorem. Let

h̄(x, t) =


−h(x,−δ) t/δ, t < −δ

h(x, t), |t| ≤ δ

h(x, δ) t/δ, t > δ,

k(t) =

{
|t|p−2 t, |t| ≤ δ

δp−2 t, |t| > δ,

and set

Ē(u) =

∫
Ω

(
1

2
|∇u|2 − H̄(x, u)−K(u)

)
dx, u ∈ H1

0 (Ω),

where H̄(x, t) =
∫ t

0
h̄(x, s) ds and K(t) =

∫ t
0
k(s) ds. Then 0 is also an

isolated critical point of Ē and

Cq(Ẽ, 0) ≈ Cq(Ē, 0) ∀q ≥ 0 (2.20)

by Lemma 2.6. Since Ē(0) = 0,

Cq(Ē, 0) = Hq(Ē
0 ∩B, Ē0 ∩B \ {0}), (2.21)

where Ē0 = {u ∈ H1
0 (Ω) : Ē(u) ≤ 0} and B = {u ∈ H1

0 (Ω) : ‖u‖ ≤ 1}.
We will show that Ē0 ∩ B is contractible to 0 and Ē0 ∩ B \ {0} is a strong
deformation retract ofB\{0} ' ∂B =: S. SinceH1

0 (Ω) is infinite dimensional
and hence S is contractible, the conclusion will then follow from (2.19)–(2.21).

For u ∈ S and 0 < t ≤ 1,

Ē(tu) =
t2

2
−
∫

Ω

(
H̄(x, tu) +K(tu)

)
dx.

Since K ≥ 0,

Ē(tu) ≤ t2
(

1

2
−
∫

Ω

H̄(x, tu)

t2
dx

)
.

Since H̄ = H on Ω× [−δ, δ], (2.14) implies

lim
t→0

H̄(x, t)

t2
= +∞ uniformly a.e. in Ω,

so

lim
t→0

∫
Ω

H̄(x, tu)

t2
dx = +∞
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by Fatou’s lemma. So Ē(tu) < 0 for all sufficiently small t > 0 (depending
on u). Moreover,

d

dt
Ē(tu) = t−

∫
Ω

h̄(x, tu)u dx−
∫

Ω

k(tu)u dx =
2

t
Ē(tu)+

1

t

∫
Ω

P (x, tu) dx,

where P (x, t) = 2H̄(x, t)− th̄(x, t) + 2K(t)− tk(t). A straightforward calcu-
lation shows that

P (x, t) =


Q(x,−δ), t < −δ

Q(x, t), |t| ≤ δ

Q(x, δ), t > δ,

where

Q(x, t) = 2H(x, t)− th(x, t)−
(

1− 2

p

)
|t|p > 0 ∀x ∈ Ω, 0 < |t| ≤ δ

by (2.15), so P > 0 on Ω× (R \ {0}). So
d

dt
Ē(tu) >

2

t
Ē(tu) and hence

Ē(tu) ≥ 0 =⇒ d

dt
Ē(tu) > 0. (2.22)

Thus, there is a unique 0 < T (u) ≤ 1 such that E(tu) < 0 for 0 < t < T (u),
E(T (u)u) ≤ 0, and E(tu) > 0 for T (u) < t ≤ 1. We claim that the map
T : S → (0, 1] is continuous. By (2.22) and the implicit function theorem,
T is C1 on

{
u ∈ S : T (u) < 1

}
, so it suffices to show that if uj → u and

T (u) = 1, then T (uj)→ 1. But for any t < 1, Ē(tuj)→ Ē(tu) and Ē(tu) < 0
since t < T (u), so for all sufficiently large j, Ē(tuj) < 0 and hence T (uj) ≥ t.
So T (uj)→ 1.

Thus,

Ē0 ∩B =
{
tu : u ∈ S, 0 ≤ t ≤ T (u)

}
and is radially contractible to 0, and

(B \ {0})× [0, 1]→ B \ {0} ,

(u, t) 7→

{
(1− t)u+ t T (π(u))π(u), u ∈ B \ Ē0

u, u ∈ Ē0 ∩B \ {0} ,

where π is the radial projection onto S, is a strong deformation retraction of
B \ {0} onto Ē0 ∩B \ {0}.
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3 Proofs of Theorems 1.1 and 1.2

First we prove Theorem 1.2.

Proof of Theorem 1.2. We apply Theorem 1.3 to the functional

E(u) =

∫
Ω

(
1

2
|∇u|2 − µF (x, u)−G(x, u)− 1

p
|u|p
)
dx, u ∈ X = H1

0 (Ω).

We may assume that E has only a finite number of critical points, and
hence they are all isolated, since otherwise there is nothing to prove. Since
h(x, t) = µf(x, t) + g(x, t) satisfies (1.11) and (1.12) by (1.2), (1.3), (1.7),
and (1.8), then

Cq(E, 0) = 0 ∀q ≥ 0 (3.1)

by Theorem 1.5.
We have the orthogonal direct sum decomposition X = Y ⊕Z, u = v+w,

where Y is spanned by the eigenfunctions associated with λ1, . . . , λl and Z
by those associated with λl+1, λl+2, . . . . Let z0 ∈ X \ Y and 0 < ρ < R, and
set

A = {u = v + tz0 : v ∈ Y, t ≥ 0, ‖u‖ ≤ R} , B = {w ∈ Z : ‖w‖ ≤ ρ} .
(3.2)

First we show that

sup
∂A

E = 0 < inf
∂B

E (3.3)

if R is sufficiently large and ρ and µ are sufficiently small. By (1.4) and (1.9),

E(v) ≤ 1

2

∫
Ω

(
|∇v|2 − λl v2

)
dx ≤ 0 ∀v ∈ Y.

Moreover, E is anticoercive on the finite dimensional subspace Y ⊕Rz0 of X
since p > r > 2. Since E(0) = 0, it follows that the equality in (3.3) holds
for sufficiently large R. Denoting by C a generic positive constant,

F (x, t) ≤ C(|t|r + 1), G(x, t) ≤ 1

2
λ t2 + C|t|r ∀(x, t) ∈ Ω× R

by (1.3), (1.8), and (1.10), and hence

E(w) ≥ 1

2

∫
Ω

(
|∇w|2 − λw2

)
dx− C

∫
Ω

(µ+ |w|r + |w|p) dx

≥ 1

2

(
1− λ

λl+1

)
‖w‖2 − C (µ+ ‖w‖r + ‖w‖p) ∀w ∈ Z
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since r < p < 2∗ when N ≥ 3. Since λ < λl+1 and 2 < r < p, it follows that
there exist ρ, µ∗ > 0 such that the inequality in (3.3) holds for all µ ∈ (0, µ∗).

Since N = 2, or N ≥ 3 and p < 2∗, E satisfies the (PS)c condition for all
c ∈ R, so Theorem 1.3 now gives a pair of critical points u1, u2 of E with

Cl(E, u1) 6= 0, Cl+1(E, u2) 6= 0.

They are nontrivial in view of (3.1).

In preparation for the proof of Theorem 1.1, next we determine an energy
range where the associated functional

Eλ(u) =

∫
Ω

(
1

2
|∇u|2 − µF (x, u)− λ

2
u2 − 1

2∗
|u|2∗

)
dx, u ∈ X = H1

0 (Ω)

satisfies the (PS)c condition.

Lemma 3.1. Let µ ∈ (0, 1) and let S be as in (2.2). Then there exists a
constant κ > 0 such that Eλ satisfies the (PS)c condition for all

c <
1

N
SN/2 − κµ. (3.4)

Proof. Let c ∈ R and let (uj) be a (PS)c sequence of Eλ, so that

Eλ(uj) =

∫
Ω

(
1

2
|∇uj|2 − µF (x, uj)−

λ

2
u2
j −

1

2∗
|uj|2

∗
)
dx = c+o(1) (3.5)

and

E ′λ(uj) v =

∫
Ω

(
∇uj · ∇v − µf(x, uj) v − λuj v − |uj|2

∗−2 uj v
)
dx = o(‖v‖)

(3.6)

for all v ∈ H1
0 (Ω). Taking v = uj in (3.6) gives∫

Ω

(
|∇uj|2 − µf(x, uj)uj − λu2

j − |uj|2
∗)
dx = o(‖uj‖). (3.7)

Since r < 2∗, (3.5) and (3.7) imply that (uj) is bounded, so a renamed
subsequence of (uj) converges to some function u weakly in H1

0 (Ω), strongly
in Ls(Ω) for all s ∈ [1, 2∗), and a.e. in Ω. Setting ũj = uj − u, we will show
that ũj → 0 in H1

0 (Ω).
Equation (3.7) implies

‖uj‖2 = |uj|2
∗

2∗ +

∫
Ω

(
µf(x, u)u+ λu2

)
dx+ o(1), (3.8)
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where |·|2∗ denotes the L2∗(Ω)-norm. Taking v = u in (3.6) and passing to
the limit gives

‖u‖2 = |u|2
∗

2∗ +

∫
Ω

(
µf(x, u)u+ λu2

)
dx. (3.9)

Since

‖ũj‖2 = ‖uj‖2 − ‖u‖2 + o(1) (3.10)

and

|ũj|2
∗

2∗ = |uj|2
∗

2∗ − |u|
2∗

2∗ + o(1)

by the Brézis-Lieb lemma [2, Theorem 1], (3.8), (3.9), and (2.2) imply

‖ũj‖2 = |ũj|2
∗

2∗ + o(1) ≤
‖ũj‖2∗

S2∗/2
+ o(1),

so

‖ũj‖2
(
SN/(N−2) − ‖ũj‖4/(N−2)

)
≤ o(1). (3.11)

On the other hand, (3.5) implies

c =
1

2
‖uj‖2 − 1

2∗
|uj|2

∗

2∗ −
∫

Ω

(
µF (x, u) +

λ

2
u2

)
dx+ o(1),

and a straightforward calculation combining this with (3.8)–(3.10) gives

c =
1

N
‖ũj‖2 +

∫
Ω

K(x, u) dx+ o(1), (3.12)

where

K(x, t) =
1

N
|t|2∗ + µ

(
1

2
f(x, t) t− F (x, t)

)
.

Denoting by C a generic positive constant,

K(x, t) ≥ 1

N
|t|2∗ − µC(|t|r + 1) ∀(x, t) ∈ Ω× R

by (1.3), and since r < 2∗, minimizing the right-hand side over t and using
µ ∈ (0, 1) gives K(x, t) ≥ −µC. So (3.12) implies

‖ũj‖2 ≤ N(c+ κµ) + o(1)

for some constant κ > 0, and (3.11) together with this implies that ũj → 0
when (3.4) holds.
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since λ ≥ λ1, we have λl ≤ λ < λl+1 for some l ≥ 1.
We proceed as in the proof of Theorem 1.2, but will choose z0 ∈ X \ Y so
that

sup
A

Eλ <
1

N
SN/2 − κµ, (3.13)

where A is as in (3.2) and κ is as in Lemma 3.1. The desired conclusion will
then follow from Theorems 1.3 and 1.5 as before.

When Ω = RN , the infimum in (2.2) is attained by the family of functions

Uε(x) =
[N(N − 2) ε](N−2)/4

(ε+ |x|2)(N−2)/2
, ε > 0

(see Brézis and Nirenberg [3]). We may assume without loss of generality
that the ball B1(0) ⊂ Ω. Let η ∈ C∞0 (B1(0)) be a cutoff function such that
η = 1 on B1/2(0), set

uε(x) = η(x)Uε(x), x ∈ Ω,

and let

z0 =

{
uε, λ > λl

uε − Pl uε, λ = λl,

where Pl denotes the projection onto the eigenspace of λl. By (1.4),

sup
u∈A

Eλ(u) ≤ sup
u∈A

∫
Ω

(
1

2
|∇u|2 − λ

2
u2 − 1

2∗
|u|2∗

)
dx,

and by Capozzi et al. [4, Lemma 2.5], the supremum on the right-hand side
is less than (1/N)SN/2 if ε > 0 is sufficiently small. So (3.13) holds for
sufficiently small µ.
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[2] Häım Brézis and Elliott Lieb. A relation between pointwise convergence
of functions and convergence of functionals. Proc. Amer. Math. Soc.,
88(3):486–490, 1983.
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