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A tensor T , in a given tensor space, is said to be h-identifiable if 
it admits a unique decomposition as a sum of h rank one tensors. 
A criterion for h-identifiability is called effective if it is satisfied 
in a dense, open subset of the set of rank h tensors. In this 
paper we give effective h-identifiability criteria for a large class 
of tensors. We then improve these criteria for some symmetric 
tensors. For instance, this allows us to give a complete set of 
effective identifiability criteria for ternary quintic polynomials. 
Finally, we implement our identifiability algorithms in Macaulay2.
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1. Introduction

A tensor rank decomposition of a tensor T , lying in a given tensor space over a field k, is an 
expression of the type

T = λ1U1 + ... + λhUh (1.1)

where the Ui ’s are linearly independent rank one tensors, λi ∈ k∗ , and k is either the real or complex 
field. The rank of T , denoted by rank(T ), is the minimal positive integer h such that T admits a 
decomposition as in (1.1).
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Tensor decomposition problems and techniques are of relevance in both pure and applied mathe-
matics. For instance, tensor decomposition algorithms have applications in psycho-metrics, chemo-
metrics, signal processing, numerical linear algebra, computer vision, numerical analysis, neuro-
science and graph analysis (Kolda and Bader, 2009; Comon and Mourrain, 1996; Comon et al., 2008;
Landsberg and Ottaviani, 2015; Massarenti and Raviolo, 2013, 2014). In pure mathematics tensor 
decomposition issues naturally arise in constructing and studying moduli spaces of all possible ad-
ditive decompositions of a general tensor into a given number of rank one tensors (Dolgachev, 2004;
Dolgachev and Kanev, 1993; Massarenti and Mella, 2013; Massarenti, 2016; Ranestad and Schreyer, 
2000; Takagi and Zucconi, 2011).

We say that a tensor rank one decomposition has the generic identifiability property if the expression 
(1.1) is unique, up to permutations and scaling of the factors, on a dense open subset of the set of 
tensors admitting an expression as in (1.1). This uniqueness property is useful in several application, 
we refer to Chiantini et al. (2017a) and Hauenstein et al. (2016) for an account.

We would like to mention that in Hauenstein et al. (2016), using new numerical methods and 
higher order flattenings the authors discovered several new cases of identifiability, and furthermore 
they proposed a conjecture on generic identifiability.

Given a tensor rank one decomposition of length h as in (1.1) the problem of specific identifiability
consists in proving that such a decomposition is unique. Following Chiantini et al. (2017a) we call 
an algorithm for specific identifiability effective if it is sufficient to prove identifiability on a dense 
open subset of the set of tensors admitting a decomposition as in (1.1). Therefore, an algorithm is 
effective if its constraints are satisfied generically, in other words if the same algorithm proves generic 
identifiability as well.

In this paper we consider symmetric tensors, mixed skew-symmetric tensors, and mixed symmet-
ric tensors. The corresponding rank one tensors are parametrized respectively by Veronese varieties, 
Segre–Grassmann varieties, and Segre–Veronese varieties. We provide h-identifiability effective crite-
ria for these spaces, under suitable numerical assumptions on h. Our algorithms are based on the 
existence of suitable flattenings of a given tensor admitting a decomposition as in (1.1). We would 
like to stress that we do not need to know an explicit decomposition but just the fact that such a 
decomposition exists.

Recall that the border rank rank(T ) of a tensor T is the smallest integer r > 0 such that T is in 
the Zariski closure, in the tensor space where T belongs, of the set of tensors of rank r. In partic-
ular rank(T ) ≤ rank(T ). Roughly speaking, our methods require that suitable linear spaces, defined 
in terms of flattenings, intersect the relevant varieties parametrizing rank one tensors in a zero-
dimension scheme of a given length. Such a zero dimensional scheme is not required to be reduced 
and then our criteria can be applied also in border rank identifiability problems, see Remark 3.7.

Symmetric tensors can also be interpreted as homogeneous polynomials. By rephrasing (1.1) in 
the symmetric case we say that a polynomial rank one decomposition of a homogeneous degree d
polynomial F ∈ k[x0, ..., xn]d is an expression of the type

F = λ1Ld
1 + ... + λh Ld

h (1.2)

where Li are linearly independent degree 1 polynomials, λi ∈ k∗ , and k is either the real or complex 
field. Let h(n, d) be the minimum integer such that a general F ∈ k[x0, ..., xn]d admits a decomposi-
tion as in (1.2). The number h(n, d) has been determined in Alexander and Hirschowitz (1995) and 
h(n, d)-identifiability very seldom holds (Mella, 2006, 2009; Galuppi and Mella, 2017). Indeed, by 
Galuppi and Mella (2017, Theorem 1) a general polynomial F ∈ k[x0, ..., xn]d is h(n, d)-identifiable 
only in the following cases:

– n = 1, d = 2m + 1, h(n, d) = m (Sylvester, 1904),
– n = d = 3, h(3, 3) = 5 (Sylvester, 1904),
– n = 2, d = 5, h(2, 5) = 7 (Hilbert, 1888).

In Theorem 3.8 we provide effective h-identifiability criteria for these polynomials and combined with 
the previous results this furnishes a complete set of identifiability criteria for these, and few more, 
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polynomials. We would like to stress that the identifiability criteria in Theorem 3.8 give new proves 
of the uniqueness of the decomposition for the general polynomial in the three cases listed above. 
Finally, in Section 3.1 we implemented our identifiability algorithms in Macaulay2 (1992).
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2. Tensors and flattenings

Let n = (n1, . . . , np) and d = (d1, . . . , dp) be two p-uples of positive integers. Set

d = d1 + · · · + dp, n = n1 + · · · + np, and N(n,d) =
p∏

i=1

(
ni + di

ni

)
.

Let V 1, . . . , V p be vector spaces of dimensions n1 + 1 ≤ n2 + 1 ≤ · · · ≤ np + 1, and consider the 
product

Pn = P(V ∗
1 ) × · · · × P(V ∗

p).

The line bundle

OPn (d1, . . . ,dp) =OP(V ∗
1 )(d1)� · · ·�OP(V ∗

1 )(dp)

induces an embedding

σν
n
d : P(V ∗

1 ) × · · · × P(V ∗
p) −→ P(Symd1 V ∗

1 ⊗ · · · ⊗ Symdp V ∗
p) = PN(n,d)−1,

([v1], . . . , [v p]) �−→ [vd1
1 ⊗ · · · ⊗ v

dp
p ]

where vi ∈ V i . We call the image

SVn
d = σν

n
d (Pn) ⊂ PN(n,d)−1

a Segre–Veronese variety. It is a smooth variety of dimension n and degree (n1+···+np)!
n1!...np ! dn1

1 . . .d
np
p in 

PN(n,d)−1.
When p = 1, SVn

d is a Veronese variety. In this case we write Vn
d for SVn

d , and νn
d for the Veronese 

embedding. When d1 = · · · = dp = 1, SVn
1,...,1 is a Segre variety. In this case we write Sn for SVn

1,...,1, 
and σ n for the Segre embedding. Note that

σν
n
d = σ n′ ◦

(
νn1

d1
× · · · × ν

np

dp

)
,

where n′ = (N(n1, d1) − 1, . . . , N(np, dp) − 1).
Similarly, given a p-uple of k-vector spaces (V n1

1 , ..., V np
p ) and p-uple of positive integers d =

(d1, ..., dp) we may consider the Segre–Plücker embedding

σπ
n
d : Gr(d1,n1) × · · · × Gr(dp,np) −→ P(

∧d1 V n1
1 ⊗ · · · ⊗ ∧dp V

np
p ) = PN(n,d)−1,

([H ], . . . , [H ]) �−→ [H ⊗ · · · ⊗ H ]
1 p 1 p
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where N(n, d) = ∏p
i=1

(ni
di

)
. We call the image

SGn
d = σπ

n
d (Gr(d1,n1) × · · · × Gr(dp,np)) ⊂ PN(n,d)

a Segre–Grassmann variety.
The h-secant variety Sech(X), of an irreducible, non-degenerate n-dimensional variety X ⊂ PN , is 

the Zariski closure of the union of the linear spaces spanned by collections of h points on X . The 
expected dimension of Sech(X) is

expdim(Sech(X)) := min{nh + h − 1, N}.

However, the actual dimension of Sech(X) might be smaller than the expected one. Indeed, this hap-
pens when through a general point of Sech(X) there are infinitely many (h − 1)-planes h-secant to X . 
We will say that X is h-defective if dim(Sech(X)) < expdim(Sech(X)).

The following remark was the starting point of the investigation in Massarenti and Mella (2013).

Remark 2.1. If a polynomial F ∈ k[x0, ..., xn]d admits a decomposition as in (1.2) then F ∈ Sech(Vn
d ), 

and conversely a general F ∈ Sech(Vn
d ) can be written as in (1.2). If F = λ1Ld

1 + ... + λh Ld
h is a de-

composition then the partial derivatives of order s of F can be decomposed as linear combinations of 
Ld−s

1 , ..., Ld−s
h as well.

These partial derivatives are 
(n+s

n

)
homogeneous polynomials of degree d − s spanning a linear 

space H∂,s ⊆ P(k[x0, ..., xn]d−s). Therefore, the linear space 
〈
Ld−s

1 , . . . , Ld−s
h

〉
contains H∂,s .

Our first aim is to generalize Remark 2.1 to tensors. The natural tools to replace partial derivatives 
are flattenings.

2.1. Flattenings

Let V 1, ..., V p be k-vector spaces of finite dimension, and consider the tensor product V 1 ⊗ ... ⊗
V p = (Va1 ⊗ ... ⊗ Vas ) ⊗ (Vb1 ⊗ ... ⊗ Vbp−s ) = V A ⊗ V B with A ∪ B = {1, ..., p}, B = Ac . Then we may 
interpret a tensor

T ∈ V 1 ⊗ ... ⊗ V p = V A ⊗ V B

as a linear map T̃ : V ∗
A → V Ac . Clearly, if the rank of T is at most r then the rank of T̃ is at most r

as well. Indeed, a decomposition of T as a linear combination of r rank one tensors yields a linear 
subspace of V Ac , generated by the corresponding rank one tensors, containing T̃ (V ∗

A) ⊆ V Ac . The 
matrix associated to the linear map T̃ is called an (A, B)-flattening of T .

In the case of mixed tensors we can consider the embedding

Symd1 V 1 ⊗ ... ⊗ Symdp V p ↪→ V A ⊗ V B

where V A = Syma1 V 1 ⊗ ... ⊗ Symap V p , V B = Symb1 V 1 ⊗ ... ⊗ Symbp V p , with di = ai + bi for any 
i = 1, ..., p. In particular, if n = 1 we may interpret a tensor F ∈ Symd1 V 1 as a degree d1 homogeneous 
polynomial on P(V ∗

1 ). In this case the matrix associated to the linear map F̃ : V ∗
A → V B is nothing 

but the a1-th catalecticant matrix of F , that is the matrix whose lines are the coefficient of the partial 
derivatives of order a1 of F . This identifies the linear space H∂,s in Remark 2.1 with P( F̃ (V ∗

A)) ⊆
P(V B), where a1 = s, b1 = d − a1 = d − s.

Similarly, by considering the inclusion

d1∧
V 1 ⊗ ... ⊗

dp∧
V p ↪→ V A ⊗ V B
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where V A = ∧a1 V 1 ⊗ ... ⊗ ∧ap V p , V B = ∧b1 V 1 ⊗ ... ⊗ ∧bp V p , with di = ai + bi for any i = 1, ..., p, 
we get the so called skew-flattenings. We refer to Landsberg (2012) for details on the subject.

3. Effective identifiability

In this section we give h-identifiability criteria for tensors, and we derive effective h-identifiability 
criteria, under some constraints on h.

Proposition 3.1. Let T ∈ Symd1 V 1 ⊗ ... ⊗ Symdn Vn be a tensor admitting a decomposition T = ∑h
i=1 λi U i

as in (1.1). Fix an (A, B)-flattening ̃T : V ∗
A → V B of T such that N(n, a) ≥ h, and assume that

i) the linear space P(T̃ (V ∗
A)) has dimension h − 1,

ii) dim(P(T̃ (V ∗
A)) ∩ SVn

b) = 0,

iii) deg(P(T̃ (V ∗
A)) ∩ SVn

b) = h,

where b = (b1, ..., bn). Then T is h-identifiable and it has rank h.
In particular, in the symmetric case we have the following. Let F ∈ k[x0, ..., xn]d be a polynomial admitting 

a decomposition F = ∑h
i=1 λi Ld

i . Fix and integer s such that 
(n+s

n

) ≥ h >
(n+s−1

n

)
. Assume that

i) the linear space H∂,s generated by the partial derivatives of order s of F has dimension h − 1,
ii) dim(H∂,s ∩ Vn

d−s) = 0,
iii) deg(H∂,s ∩ Vn

d−s) = h.

Then F is h-identifiable and it has rank h.

Proof. Assume that T = ∑h
i=1 λi U i = ∑h

i=1 μi W i admits two different decompositions. Since
dim(P(T̃ (V ∗

A))) = h − 1 by Section 2.1 we have P(T̃ (V ∗
A)) = 〈

Ũ1, ..., Ũh
〉 = 〈

W̃1, ..., W̃h
〉
, where Ũ i, ̃W i

are the rank one tensors in P(V B) induced by Ui and W i respectively. Hence there are at least h + 1
points in the intersection P(T̃ (V ∗

A)) ∩ SVn
b , contradicting iii). �

Next, we check when the conditions in Proposition 3.1 define effective criteria.

Proposition 3.2. The criterion in Proposition 3.1 is effective when N(n, b) > h + dim(SVn
b) in the mixed 

symmetric case. In particular, in the symmetric case the criterion is effective when 
(n+d−s

n

)
> h + n.

Proof. Let [T ] ∈ Sech(SVn
d) be a general point. Assume that dim(P(T̃ (V ∗

A))) ≤ h − 2. This condition 
forces the (A, B)-flattening matrix to have rank at most h − 1. On the other hand, by Simis and Ulrich 
(2000, Proposition 4.1) these minors do not vanish on Sech(SVn

d) and therefore define a closed sub-

set of Sech(SVn
d). To conclude observe that by the Trisecant Lemma (Chiantini and Ciliberto, 2002, 

Proposition 2.6), the general h-secant (h − 1)-linear space intersects SVn
b in h points as long as 

N(n, b) > h + n. �
We may slightly improve Proposition 3.2, under suitable numerical assumption.

Proposition 3.3. Let T ∈ Symd1 V 1 ⊗ ... ⊗ Symdp V p be a tensor admitting a decomposition T = ∑h
i=1 λi U i . 

Fix an (A, B)-flattening ̃T : V ∗
A → V B of T such that N(n, a) ≥ h, and assume that

i) the linear space P(T̃ (V ∗
A)) has dimension h − 1,

ii) dim(P(T̃ (V ∗
A)) ∩ SVn

b) = 0,
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iii) h + n = N(n, b),

iv) deg(SVn
b) ≤ h + 1,

v) deg(〈[U1], . . . , [Uh]〉 ∩ SVn
d) = h.

Then T is h-identifiable and the criterion is effective.
In particular, in the symmetric case we have the following. Let F ∈ k[x0, ..., xn]d be a polynomial admitting 

a decomposition F = ∑h
i=1 λi Ld

i . Fix an integer s such that 
(n+s

n

) ≥ h >
(n+s−1

n

)
. Assume that:

i) the linear space H∂,s generated by the partial derivatives of order s of F has dimension h − 1,
ii) dim(H∂,s ∩ Vn

d−s) = 0,

iii) h + n = (n+d−s
n

)
,

iv) (d − s)n ≤ h + 1,
v) deg(〈[Ld

1], . . . , [Ld
h]〉 ∩ Vn

d ) = h.

Then F is h-identifiable and the criterion is effective.

Proof. Assume that T = ∑h
i=1 λi U i = ∑h

i=1 μi W i admits two different decompositions. Since
dim(P(T̃ (V ∗

A))) = h − 1 by Section 2.1 we have P(T̃ (V ∗
A)) = 〈

Ũ1, ..., Ũh
〉 = 〈

W̃1, ..., W̃h
〉
, where Ũ i, ̃W i

are the rank one tensors in P(V B) induced by Ui and W i respectively. Assumptions ii), iii), and iv) 
show that P(T̃ (V ∗

A)) intersects SVn
b in at most h + 1 points. Therefore, without loss of generality we 

may assume that Ui = W i , for i = 1, . . . , h − 1. By construction we have

〈W1, . . . , Wh〉 = 〈W1, . . . , Wh−1, T 〉 = 〈U1, . . . , Uh−1, T 〉 = 〈U1, . . . , Uh〉

hence deg(〈U1, . . . , Uh〉 ∩SVn
d) ≥ h + 1 contradicting assumption v). The criterion is effective again by 

the Trisecant Lemma (Chiantini and Ciliberto, 2002, Proposition 2.6). �
Remark 3.4. Propositions 3.1, 3.2, 3.3 can be easily extended to the skew-symmetric case, using the 
skew-flattenings in Section 2.1, and the Segre–Grassmann variety instead of the Segre–Veronese vari-
ety. We leave the details to the reader.

Next, we work out our criterion in some interesting cases, for the readers’ convenience we report 
also the skew-symmetric case.

Corollary 3.5. Let us consider the tensor space Symd1 V n1
1 ⊗ ... ⊗ Symdp V

np
p with n1 = · · · = np = n, and set 

mi = � di
2 �. If

h <

p∏
i=1

(
n − 1 + mi

n − 1

)
− p(n − 1)

then the criterion in Proposition 3.1 is effective, while for tensors in 
∧d1 V n1

1 ⊗ ... ⊗ ∧dp V n1
p with n1 = · · · =

np = n the criterion in Proposition 3.1 is effective when

h <

p∏
i=1

(
n

mi

)
−

p∏
i=1

mi(n − mi).

Now, consider V n1
1 ⊗ .... ⊗ V

np
p with n1 = · · · = np = n and set m = � p

2 �. If

h < nm − m(n − 1)

then the criterion in Proposition 3.1 is effective.
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Finally, let V n1
1 ⊗ .... ⊗ V

np
p be an unbalanced product, that is n1 > 1 + ∏p

i=2 ni − ∑p
i=2(ni − 1). If

h <

p∏
i=2

ni −
p∑

i=2

(ni − 1)

then the criterion in Proposition 3.1 is effective.

Proof. In the mixed symmetric case consider the flattening( p⊗
i=1

Sym� di
2 � V n

i

)∗
→

p⊗
i=1

Sym� di
2 � V n

i

and apply Proposition 3.2.
In the mixed skew-symmetric case it is enough to consider the analogous skew-flattening and 

to argue as in the proofs of Propositions 3.1, 3.2 with the Segre–Grassmann variety instead of the 
Segre–Veronese variety.

Similarly, in the second case we choose the flattening⎛⎝� p
2 �⊗

i=1

V n
i

⎞⎠∗

→
p⊗

i=� p
2 �+1

V n
i

and apply Proposition 3.2.
Finally, in the unbalanced case we consider the flattening

(V n1
1 )∗ →

p⊗
i=2

V ni
i

and again we apply Proposition 3.2. �
Remark 3.6. For Veronese varieties our results are equivalent to the identifiability criterion given in
Iarrobino and Kanev (1999, Theorem 2.6). Recently, L. Chiantini, G. Ottaviani and N. Vannieuwenhoven 
(Chiantini et al., 2017a) improved Kruskal criterion (Kruskal, 1977) by means of the reshaped Kruskal 
criterion (Chiantini et al., 2017a, Section 4).

In the p-factor Segre case our results are weaker than reshaped Kruskal (Chiantini et al., 2017a, 
Proposition 16) for p odd but they perform better for p even. For unbalanced Segre our criteria 
perform better than Chiantini et al. (2017a, Proposition 17).

Remark 3.7. The algorithm in Proposition 3.1 works for the border rank as well. Indeed, let T
be a tensor, and Pt = U1,t + · · · + Ur,t , Q t = W1,t + · · · + Wr,t be two sequence of rank r ten-
sors such that limt �→0 Pt = limt �→0 Q t = T , and limt �→0{U1,t , . . . , Ur,t} �= limt �→0{W1,t , . . . , Wr,t}. Fix 
an (A, B)-flattening T̃ : V ∗

A → V B of T such that N(n, a) ≥ r, and let us denote by Ũ i,t, ̃W j,t , 
P̃t , Q̃ t the corresponding flattenings of Ui,t , W j,t , Pt , Q t . Then P( P̃t(V ∗

A)) ⊆ 〈
Ũ1,t , . . . , Ũr,t

〉
and 

P(Q̃ t(V ∗
A)) ⊆ 〈

W̃1,t , . . . , W̃r,t
〉

yield limt �→0 P( P̃t(V ∗
A)) ⊂ �U , limt �→0 P(Q̃ t(V ∗

A)) ⊂ �V , where �U =
limt �→0

〈
Ũ1,t , . . . , Ũr,t

〉
and �V = limt �→0

〈
W̃1,t , . . . , W̃r,t

〉
.

Now, let X ⊂ P(V B) be the variety parametrizing rank one tensors. Since by hypothesis 
dim(P(T̃ (V ∗

A))) = r − 1 we have that P(T̃ (V ∗
A)) = limt �→0 P( P̃t(V ∗

A)) = limt �→0 P(Q̃ t(V ∗
A)) forces 

P(T̃ (V ∗
A)) = �U = �V . Finally, since

lim{Ũ1,t , . . . , Ũr,t} ⊆ X ∩ �U = X ∩ P(T̃ ), lim{W̃1,t , . . . , W̃r,t} ⊆ X ∩ �V = X ∩ P(T̃ (V ∗
A))
t �→0 t �→0
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and limt �→0{Ũ1,t , . . . , ̃Ur,t} �= limt �→0{W̃1,t , . . . , ̃Wr,t} we get that deg(P(T̃ (V ∗
A)) ∩ X) ≥ r + 1, a contra-

diction with hypothesis iii) of Proposition 3.1.

Finally, we give an effective 7-identifiability criterion for plane quintics, and we extend it to the 
cases listed in Section 1 when the uniqueness of decomposition holds for a general polynomial.

Theorem 3.8. Let F ∈ C[x0, ..., xn]d be a polynomial, and H∂,s the linear span of its partial derivatives of 
order s in P(k[x0, ..., xn]d−s).

Assume that:

– (n, d, h, s) ∈ {(1, 2h − 1, h, h − 2), (2, 5, 7, 2), (3, 3, 5, 1)},
– H∂,s has dimension 

(n+s
n

) − 1,
– H∂,s ∩ Vn

d−s is empty.

Then F is h-identifiable.

Proof. Let us consider the case (n, d, h, s) = (2, 5, 7, 2). Assume that F admits two different decom-
positions F = ∑7

i=1 λi L5
i = ∑7

i=1 μil5i . Consider the second partial derivatives of F and their span 
H∂,2 ⊆ P9. By Remark 2.1 a decomposition of F induces a decomposition of its partial derivatives, 
hence we have

H L := 〈L3
1, ..., L3

7〉 ⊃ H∂,2 ⊂ 〈l31, ..., l37〉 =: Hl.

By hypothesis dim H∂,2 = 5 and H∂,2 ∩ V3
2 = ∅, these yield:

i) H∂,2 = H L ∩ Hl . Indeed, dim H∂,2 = 5 and H∂,2 ∩ V3
2 = ∅ yield dim(H L) = dim(Hl) = 6. Then 

H∂,2 � H L ∩ Hl would imply H L = Hl , and since dim(V2
3 ) + dim(H L) < 9 this would force 

{L1, . . . , L7} = {l1, . . . , l7}. A contradiction.
ii) Li �= l j for any i, j ∈ {1, . . . , 7},

iii) H L ∩ V2
3 and Hl ∩ V2

3 are zero dimensional and 	(H L ∩ V2
3 ) = 	(Hl ∩ V2

3 ) = 7.

Let H := 〈H L, Hl〉 then H intersects V2
3 in at least 14 points and therefore H ∩V2

3 contains a curve 
� of degree 3γ ≤ 6. Let |�| be the pencil of hyperplanes containing H . Then any element of the linear 
system |�|V3

2
| is of the form � ∪ �, where � is an element of a pencil of curves |�|. Let s be the 

degree of the base locus of |�|. The hypothesis H∂,2 ∩ V3
2 = ∅ and iii) yield

s + 6γ = 14.

On the other hand we only have the following possibilities:

– γ = 1 and s = 4,
– γ = 2 and s = 1.

This contradiction proves the statement.
For 4-uples (n, d, h, s) = (1, 2h − 1, h, h − 2), (3, 3, 5, 1) we may argue similarly to derive h-identifi-

ability criteria and we leave the details to the reader. �
For some special values our methods yield a complete set of identifiability criteria.

Corollary 3.9. Let V (n, d) := k[x0, . . . , xn]d be the vector space of homogeneous polynomial of degree d, with 
k a field of characteristic zero. Assume that the pair (n, d) is in the following list

(1,d), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4).
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Then there is an effective criteria for specific s-identifiability for V (n, d) for every s where generic s-identifiabil-
ity holds.

Proof. Let k =C be the complex field. For pairs (1, d), d odd, (2, 5), (3, 3) we apply the identifiability 
conditions expressed in Theorem 3.8 for the generic rank and Proposition 3.2 for subgeneric ranks. 
For (2, 4) Proposition 3.2 applies to ranks less then or equal to 4, and for rank 5 there is not generic 
identifiability due to defectivity. For (3, 4) Proposition 3.2 applies to ranks less than or equal to 6 
and Proposition 3.3 applies to rank 7, while rank 8 is not generically identifiable (Chiantini et al., 
2017b). For (2, 6) we apply Proposition 3.2 for s ≤ 7 and Proposition 3.3 for s = 8, while rank 9 is not 
generically identifiable, due to weak defectivity (Chiantini et al., 2017b).

To conclude we only need to extend the results to a general field k of characteristic zero. For this 
let F = ∑ki

1 λi Ld
i be a polynomial rank one decomposition over k. Then since char(k) = 0 via a field 

extension we may consider it over C and apply the criterion to prove identifiability over C and hence 
over k. �
3.1. Macaulay2 implementation

Finally, we implement our identifiability algorithms in Macaulay2 (1992). The package is in the 
ancillary file Identifiability.m2. After loading this package in Macaulay2, the main method 
available is certifyIdentifiability.

The easiest ways to use this method are either by inputting a mixed symmetric tensor T , rep-
resented by a multihomogeneous polynomial, and a positive integer h, or by inputting one of its 
decompositions T = T1 + · · · + Th into h rank one mixed symmetric tensors. Then the method re-
turns the boolean value true if the constraints of the correspondent h-identifiability criterion are 
satisfied for T . For more details see the documentation (viewHelp certifyIdentifiabil-
ity).

By Hillar and Lim (2013) we know that tensor problems are usually NP-Hard and we should 
not expect any reasonably fast algorithm for computing tensor decompositions. On the other 
hand, in restricted settings, the existing algorithms like TensorLab (Vervliet et al., 2016), Ten-
sorToolbox in Matlab (Bader and Kolda, 2015) and the homotopy technique in Hauenstein et al.
(2016), work in a reasonable amount of time. The aim of our algorithm is to have a fast iden-
tifiability test avoiding such a computation. In what follows we show how it works in some 
cases.

Macaulay2, version 1.9.2
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "Identifiability";
--** Identifiability (v0.3) loaded **--
-- Example 1 -- Random degree 5 polynomial in 3 variables
i2 : P2 = QQ[x,y,z];
i3 : T = for i in 1..7 list (random(1,P2))^5;
i4 : time certifyIdentifiability(sum T,7)
-- got symmetric tensor of dimension 3 and degree 5
-- applying Theorem 3.8 (7-identifiability for 3-forms of degree 5)...
-- 7-identifiability certified

-- used 0.257789 seconds
o4 = true
i5 : time certifyIdentifiability matrix{T}
-- got symmetric tensor of dimension 3 and degree 5
-- applying Theorem 3.8 (7-identifiability for 3-forms of degree 5)...
-- 7-identifiability certified

-- used 0.228473 seconds
o5 = true
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i6 : -- first 6 summands of T
T’ = T_{0..5};

i7 : time certifyIdentifiability(sum T’,6)
-- got symmetric tensor of dimension 3 and degree 5
-- specific 6-identifiability certified

-- used 0.0363902 seconds
o7 = true
i8 : time certifyIdentifiability matrix{T’}
-- got symmetric tensor of dimension 3 and degree 5
-- 6-identifiability certified

-- used 0.0511795 seconds
o8 = true
-- Example 2 -- the command below creates a random mixed symmetric
-- tensor of dimensions {2,5,4}, multidegree {3,2,3}, rank<=5
i9 : T = multirandom({2,5,4},{3,2,3},5);
i10 : -- number terms of the tensor T

# terms T
o10 = 1200
i11 : time certifyIdentifiability(T,5)
-- got mixed symmetric tensor of dimensions {2, 5, 4}

and multidegree {3, 2, 3}
-- specific 5-identifiability certified

-- used 4.54164 seconds
o11 = true
-- Example 3 -- Random 1 x 7 matrix of degree 4 polynomials in 4 variables
i12 : decomposition = multirandom’({4},{4},7);
i13 : time certifyIdentifiability decomposition
-- got symmetric tensor of dimension 4 and degree 4
-- applying Proposition 3.3...
-- 7-identifiability certified

-- used 1.03492 seconds
o13 = true
-- Example 4 -- Random 1 x 8 matrix of degree 6 polynomials in 3 variables
i14 : decomposition = multirandom’({3},{6},8);
i15 : time certifyIdentifiability decomposition
-- got symmetric tensor of dimension 3 and degree 6
-- applying Proposition 3.3...
-- 8-identifiability certified

-- used 0.440192 seconds
o15 = true
-- Example 5 -- Random degree 3 polynomial in 4 variables of rank<=5
i16 : F = multirandom({4},{3},5);
i17 : time certifyIdentifiability(F,5)
-- got symmetric tensor of dimension 4 and degree 3
-- applying Theorem 3.8 (5-identifiability for 4-forms of degree 3)...
-- 5-identifiability certified

-- used 0.098442 seconds
o18 = true
-- Example 6 -- Random degree 69 polynomial in 2 variables
i19 : P1 = QQ[x,y];
i20 : F = random(69,P1);
i21 : time certifyIdentifiability(F,35)
-- got symmetric tensor of dimension 2 and degree 69
-- applying Theorem 3.8 (35-identifiability for 2-forms of degree 69)...
-- 35-identifiability certified

-- used 469.406 seconds
o21 = true
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsc.
2017.11.006.
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