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Abstract
We construct new examples of rational Gushel-Mukai fourfolds, givingmore evidence for the
analog of the Kuznetsov Conjecture for cubic fourfolds: a Gushel–Mukai fourfold is rational
if and only if it admits an associated K3 surface.

1 Introduction

A Gushel-Mukai fourfold is a smooth prime Fano fourfold X ⊂ P
8 of degree 10 and index 2

(see [21]). These fourfolds are parametrized by a coarse moduli space MG M
4 of dimension

24 (see [5, Theorem 5.15]), and the general fourfold [X ] ∈ MG M
4 is a smooth quadratic

section of a smooth hyperplane section of the Grassmannian G(1, 4) ⊂ P
9 of lines in P4.

In [3] (see also [4–6]), following Hassett’s analysis of cubic fourfolds (see [12,13]), the
authors studied Gushel-Mukai fourfolds via Hodge theory and the period map. In particu-
lar, they showed that inside MG M

4 there is a countable union
⋃

d GMd of (not necessarily
irreducible) hypersurfaces parametrizing Hodge-special Gushel-Mukai fourfolds, that is,
fourfolds that contain a surface whose cohomology class does not come from the Grass-
mannian G(1, 4). The index d is called the discriminant of the fourfold and it runs over all
positive integers congruent to 0, 2, or 4 modulo 8 (see [3]). However, as far as the authors
know, explicit geometric descriptions of Hodge-special Gushel-Mukai fourfolds in GMd are
unknown for d > 12. In Theorem 3.3, we shall provide such a description when d = 20.

As in the case of cubic fourfolds, all Gushel-Mukai fourfolds are unirational. Some rational
examples are classical and easy to construct, but no examples have yet been proved to be
irrational. Furthermore, there are values of the discriminant d such that a fourfold in GMd

admits an associated K3 surface of degree d . For instance, this occurs for d = 10 and d = 20.
The hypersurface GM10 has two irreducible components, and the general fourfold in each of
these two components is rational (see [3, Propositions 7.4 and 7.7] and Examples 2.1 and 2.2).
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Some of these fourfolds were already studied by Roth in [22]. As far as the authors know,
there were no other known examples of rational Gushel-Mukai fourfolds. In Theorem 3.4,
we shall provide new examples of rational Gushel-Mukai fourfolds that belong to GM20.

A classical and still open question in algebraic geometry is the rationality of smooth
cubic hypersurfaces in P

5 (cubic fourfolds for short). An important conjecture, known as
Kuznetsov’s Conjecture (see [1,14,18,19]) asserts that a cubic fourfold is rational if and only
if it admits an associated K3 surface in the sense of Hassett/Kuznetsov. This condition can
be expressed by saying that the rational cubic fourfolds are parametrized by a countable
union

⋃
d Cd of irreducible hypersurfaces inside the 20-dimensional coarse moduli space

of cubic fourfolds, where d runs over the so-called admissible values (the first ones are
d = 14, 26, 38, 42, 62). The rationality of cubic fourfolds in C14 was proved by Fano in [8]
(see also [2]), while rationality in the case of C26 and C38 was proved in [23]. Very recently,
in [24], rationality was also proved in the case of C42. The proof of this last result shows a
close relationship between cubic fourfolds in C42 and the Gushel-Mukai fourfolds in GM20

constructed in this paper. This beautiful geometry was discoveredwith the help ofMacaulay2
[10].

2 Generality on Gushel-Mukai fourfolds

In this section,we recall some general facts aboutGushel-Mukai fourfoldswhichwere proved
in [3] (see also [4–6]).

A Gushel-Mukai fourfold X ⊂ P
8, GM fourfold for short, is a degree-10 Fano fourfold

with Pic(X) = Z[OX (1)] and K X ∈ |OX (−2)|. Equivalently, X is a quadratic section of a
5-dimensional linear section of the cone in P10 over the GrassmannianG(1, 4) ⊂ P

9 of lines
in P

4. There are two types of GM fourfolds:

• quadratic sections of hyperplane sections of G(1, 4) ⊂ P
9 (Mukai or ordinary four-

folds, [21]);
• double covers of G(1, 4) ∩ P

7 branched along its intersection with a quadric (Gushel
fourfolds, [11]).

There exists a 24-dimensional coarse moduli spaceMG M
4 of GM fourfolds, where the locus

ofGushel fourfolds is of codimension 2.Moreover, we have a period map p : MG M
4 → D to a

20-dimensional quasi-projective varietyD, which is dominantwith irreducible 4-dimensional
fibers (see [5, Corollary 6.3]).

For a very general GM fourfold [X ] ∈ MG M
4 , the natural inclusion

A(G(1, 4)) := H4(G(1, 4),Z) ∩ H2,2(G(1, 4)) ⊆ A(X) := H4(X ,Z) ∩ H2,2(X) (2.1)

of middle Hodge groups is an equality. A GM fourfold X is said to be Hodge-special if the
inclusion (2.1) is strict. This means that the fourfold X contains a surface whose cohomology
class “does not come” from the Grassmannian G(1, 4). Hodge-special GM fourfolds are
parametrized by a countable union of hypersurfaces

⋃
d GMd ⊂ MG M

4 , labelled by the
positive integers d ≡ 0, 2, or 4 (mod 8) (see [3, Lemma 6.1]). The imageDd = p(GMd) is a
hypersurface inD, which is irreducible if d ≡ 0 (mod 4), and has two irreducible components
D′

d and D′′
d if d ≡ 2 (mod 8) (see [3, Corollary 6.3]). The same holds true for GMd .

In some cases, the value of d can be explicitly computed from the geometry of Hodge-
special GM fourfolds (see [3, Section 7]). Indeed, let X ⊂ P

8 be an ordinary GM fourfold
containing a smooth surface S such that [S] ∈ A(X)\A(G(1, 4)). We may write [S] =
aσ3,1 + bσ2,2 in terms of Schubert cycles in G(1, 4) for some integers a and b. We then
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have [X ] ∈ GMd , where d is the absolute value of the determinant (or discriminant) of the
intersection matrix in the basis (σ1,1|X , σ2|X − σ1,1|X , [S]). That is

d =
∣
∣
∣
∣
∣
∣
det

⎛

⎝
2 0 b
0 2 a − b
b a − b (S)2X

⎞

⎠

∣
∣
∣
∣
∣
∣
= ∣

∣4(S)2X − 2(b2 + (a − b)2)
∣
∣ , (2.2)

where
(S)2X = 3a + 4b + 2KS · σ1|S + 2K 2

S − 12χ(OS). (2.3)

For some values of d , the non-special cohomology of the GM fourfold [X ] ∈ GMd looks
like the primitive cohomology of a K3 surface. In this case, as in the case of cubic fourfolds,
one says that X has an associatedK3 surface. The first values of d that satisfy the condition for
the existence of an associated K3 surface are: 2, 4, 10, 20, 26, 34. We refer to [3, Section 6.2]
for precise definitions and results.

In Examples 2.1 and 2.2 below, we recall the known examples of rational GM fourfolds,
which all have discriminant 10. In Sect. 3, we shall construct rational GM fourfolds of
discriminant 20.

Example 2.1 A τ -quadric surface inG(1, 4) is a linear section ofG(1, 3) ⊂ G(1, 4); its class
is σ 2

1 ·σ1,1 = σ3,1 +σ2,2. In [3, Proposition 7.4], it was proved that the closure D′
10 ⊂ MG M

4
of the family of fourfolds containing a τ -quadric surface is the irreducible hypersurface
p−1(D′

10), and that the general member of D′
10 is rational. Furthermore, they are all rational

by [17] or [4, Theorem 4.15].
In [24, Theorem 5.3], a different description of D′

10 and another proof of the rationality
of its general member were given.

The rationality for a general fourfold [X ] ∈ D′
10 also follows from the fact that a τ -quadric

surface S, inside the unique del Pezzo fivefold Y ⊂ P
8 containing X , admits a congruence

of 1-secant lines, that is, through the general point of Y , there passes just one line contained
in Y which intersects S.

Example 2.2 A quintic del Pezzo surface is a two-dimensional linear section of G(1, 4); its
class isσ 4

1 = 3σ3,1+2σ2,2. In [3, Proposition 7.7], itwas proved that the closure D′′
10 ⊂ MG M

4
of the family of fourfolds containing a quintic del Pezzo surface is the irreducible hypersurface
p−1(D′′

10).
The proof of the rationality of a general fourfold [X ] ∈ D′′

10 is very classical. Indeed
in [22], Roth remarked that the projection from the linear span of a quintic del Pezzo surface
contained in X induces a dominant map

π : X ��� P
2

whose generic fibre is a quintic del Pezzo surface. By a result of Enriques (see [7,25]), a
quintic del Pezzo surface defined over an infinite field K is K -rational. Thus, the fibration π

admits a rational section and X is rational.

3 A Hodge-special family of Gushel-Mukai fourfolds

Let S ⊂ P
8 be the image of P2 via the linear system of quartic curves through three simple

points and one double point in general position. Then S is a smooth surface of degree 9 and
sectional genus 2 cut out in P8 by 19 quadrics.
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Lemma 3.1 Let S ⊂ P
8 be a rational surface of degree 9 and sectional genus 2 as above.

Then S can be embedded in a smooth del Pezzo fivefold Y = G(1, 4) ∩ P
8 such that in the

Chow ring of G(1, 4), we have
[S] = 6 σ3,1 + 3 σ2,2. (3.1)

Moreover, there exists an irreducible component of the Hilbert scheme parameterizing such
surfaces in Y which is generically smooth of dimension 25.

Proof Using Macaulay2 [10] (see Sect. 4), we constructed a specific example of a surface
S ⊂ P

8 as above which is embedded in a del Pezzo fivefold Y ⊂ P
8 and satisfies (3.1).

Moreover we verified in our example that h0(NS,Y ) = 25 and h1(NS,Y ) = 0. Thus, [S] is a
smooth point in the corresponding Hilbert scheme Hilbχ(OS(t))

Y of subschemes of Y , and the

unique irreducible component of Hilbχ(OS(t))
Y containing [S] has dimension 25. 	


Remark 3.2 After our construction, in a preliminary version of this paper, of an explicit exam-
ple of a surface as in Lemma 3.1, [24, Section 4] provided an explicit geometric description of
an irreducible 25-dimensional family of these surfaces inside a del Pezzo fivefold, confirming
the claim of Lemma 3.1.

Theorem 3.3 Inside MG M
4 , the closure D20 of the family of GM fourfolds containing a

surface S ⊂ P
8 as in Lemma 3.1 is the irreducible hypersurface p−1(D20).

Proof Let Y = G(1, 4) ∩ P
8 be a fixed smooth del Pezzo fivefold and let S be the 25-

dimensional irreducible family of rational surfaces S ⊂ Y of degree 9 and sectional genus
2 described in Lemma 3.1. Let GMY = P(H0(OY (2))) denote the family of GM fourfolds
contained in Y , that is, the family of quadratic sections of Y . The dimension of GMY is
h0(OP8(2)) − h0(IY ,P8(2)) − 1 = 39.

Consider the incidence correspondence

I = {([S], [X ]) : S ⊂ X ⊂ Y } ⊂ S × GMY ,

and let

I
p1 p2

S GMY

be the two natural projections. Then p1 is a surjective morphism and, for [S] ∈ S general, the
fibre p−1

1 (S) � P(H0(IS,Y (2))) is irreducible of dimension h0(IS,P8(2)) − h0(IY ,P8(2)) −
1 = 13. It follows that I has a unique irreducible component I 0 that dominates S and that
component has dimension 25 + 13 = 38.

Using Macaulay2 (see [15]), we verified in a specific example of a GM fourfold X con-
taining a surface [S] ∈ S that H0(NS,X ) = 0. By semicontinuity, we deduce that p2 is a
generically finite morphism onto its image and that p2(I 0) has dimension 38. It is there-
fore a hypersurface in GMY . Since all smooth hyperplane sections of the Grassmannian
G(1, 4) ⊂ P

9 are projectively equivalent, GMY dominates MG M
4 and the fourfolds X that

we have constructed form an irreducible hypersurface in MG M
4 .

Finally, by applying (2.2) and (2.3), we get that a general such [X ] lies in p−1(D20).
This proves the theorem. 	
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Theorem 3.4 Every GM fourfold belonging to the family D20 described in Theorem 3.3 is
rational.

Proof LetY ⊂ P
8 be a del Pezzo fivefold and let S ⊂ Y be a general rational surface of degree

9 and sectional genus 2 belonging to the 25-dimensional family described in Lemma 3.1 and
Remark 3.2.

The restriction to Y of the linear system of cubic hypersurfaces with double points along
S gives a dominant rational map

ψ : Y ��� P
4

whose general fibre is an irreducible conic curve which intersects S at three points. Thus S
admits inside Y a congruence of 3-secant conic curves. This implies that the restriction of
ψ to a general GM fourfold X containing S and contained in Y is a birational map to P

4.
The existence of the congruence of 3-secant conics can be also verified as follows. The

linear system of quadrics through S induces a birational map

φ : Y ��� Z ⊂ P
13

onto a fivefold Z of degree 33 and cut out by 21 quadrics. Let p ∈ Y be a general point.
Then one sees that through φ(p) there pass 7 lines contained in Z . Of these, 6 are the images
of the lines passing through p and which intersect S, while the remaining line come from a
single 3-secant conic to S passing through p.

The claim about the rationality of every [X ] ∈ D20 follows from the rationality of a
general [X ] ∈ D20 and from the main result in [17] or from [4, Theorem 4.15]. 	

Remark 3.5 The inverse map of the birational map ψ : X ��� P

4 described in the proof
of Theorem 3.4 is defined by the linear system of hypersurfaces of degree 9 having double
points along an internal projection to P

4 of a smooth surface T ⊂ P
5 of degree 11 and

sectional genus 6 cut out by 9 cubics. This surface T is an internal triple projection of a
smooth minimal K3 surface of degree 20 and genus 11 in P11.

Actually, this was the starting point for this work. In fact, from the results of [24], we
suspected that a triple internal projection of a minimal K3 surface of degree 20 and genus 11
could be related to a GM fourfold of discriminant 20.

4 Explicit computations

In the proof of Lemma 3.1, we claimed that there exists an example of a rational surface
S ⊂ P

8 of degree 9 and sectional genus 2 which is also embedded in G(1, 4) and satisfies
[S] = 6 σ3,1 + 3 σ2,2. In an ancillary file (see [15]), we provide the explicit homogeneous
ideal of such a surface which contains the ideal generated by the Plücker relations ofG(1, 4).
The class [S] in terms of the Schubert cycles σ3,1 and σ2,2 can be easily calculated using, for
instance, the Macaulay2 package SpecialFanoFourfolds.

In the following, we explain the main steps of the procedure we followed to construct
the surface in G(1, 4). We start by taking a general nodal hyperplane section of a smooth
Fano threefold of degree 22 and sectional genus 12 in P

13 (see [20,26]). The projection of
this surface from its node yields a smooth K3 surface T ⊂ P

11 of degree 20 and sectional
genus 11 which contains a conic (see [16]). Then we take a general triple projection of T
in P

5, which is a smooth surface of degree 11 and sectional genus 8 (this follows from [27,
Proposition 4.1] and [9, Theorem 10] in the case when the K3 surface T is general). Let
T ′ ⊂ P

4 be a general internal projection of this surface in P5. Then T ′ is a singular surface of
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degree 10 and sectional genus 8, cut out by 13 quintics. The linear system of hypersurfaces
of degree 9 having double points along T ′ gives a birational map η : P4 ��� X ⊂ P

8 onto
a GM fourfold X , whose inverse map is defined by the restriction to X of the linear system
of cubic hypersurfaces having double points along a smooth surface S ⊂ X of degree 9
and sectional genus 2. Finally, to determine explicitly the surface S, one can exploit the fact
that the general quintic hypersurface corresponds via η to the general quadric hypersurface
(inside X ) containing S. Indeed, behind the scenes, we have an occurrence of a flop, similar
to the Trisecant Flop considered in [24]. In particular, we have a commutative diagram

M

P
4

m1

η
X

m2

wherem1 andm2 are the birationalmaps defined, respectively, by the linear systemof quintics
through T ′ and by the linear system of quadrics through S. Moreover, M is a fourfold of
degree 33 in P

12 cut out by 21 quadrics.
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