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Abstract. Glioblastoma (GBM) represents the most frequent 
glial tumor, with almost 3 new cases per 100,000 people per 
year. Despite treatment, the prognosis for GBM patients remains 
extremely poor, with a median survival of 14.6 months, and a 
5‑year survival less than 5%. It is generally believed that GBM 
creates a highly immunosuppressive microenvironment, sustained 
by the expression of immune‑regulatory factors, including inhibi‑
tory immune checkpoints, on both infiltrating cells and tumor 
cells. However, the trials assessing the efficacy of current immune 
checkpoint inhibitors in GBM are still disappointing. In the 
present study, the expression levels of several inhibitory immune 
checkpoints in GBM (CD276, VTCN1, CD47, PVR, TNFRSF14, 
CD200, LGALS9, NECTIN2 and CD48) were characterized 
in order to evaluate their potential as prognostic and eventually, 
therapeutic targets. Among the investigated immune checkpoints, 
TNFRSF14 and NECTIN2 were identified as the most promising 
targets in GBM. In particular, a higher TNFRSF14 expression was 
associated with worse overall survival and disease‑free survival, 
and with a lower Th1 response.

Introduction

According to the World Health Organization (WHO) classifica‑
tion of the central nervous system (CNS) tumors, glioblastoma 
(GBM) is defined as a grade IV astrocytoma (1). GBM repre‑
sents the most malignant glioma and it is characterized by 
necrosis, neovascularization and histological heterogeneity (2). 
GBM represents the most frequent glial tumor, with almost 
3 new cases per 100,000 people per year (3). The current stan‑

dard of care for GBM consists of surgical resection, followed 
by radiotherapy and chemotherapy with temozolomide (4). 
Despite treatment, the prognosis for GBM patients remains 
extremely poor, with a median survival period of 14.6 months, 
and the 5‑year survival is less than 5% (4).

In recent years, great progress has been made in the area 
of immunotherapy and accumulating preclinical and clinical 
data seem to suggest potential novel therapeutic avenues for 
GBM patients (5,6). It is generally believed that GBM creates a 
highly immunosuppressive/immuneregulatory microenviron‑
ment. Several checkpoint molecules capable of inhibiting the 
immune responses against neo‑antigens, including CTLA4 and 
PD1/PDL‑1, are expressed on both T cells and cancer cells. 
Immune checkpoint inhibitors, such as nivolumab, ipilimumab 
and pembrolizumab, have strikingly improved patient survival 
in solid tumors, such as non‑small lung cancer and melanoma. 
However, the trials assessing the efficacy of immune checkpoint 
inhibitors in GBM are still disappointing (7). A retrospective 
study of the use of pembrolizumab in the treatment of recur‑
rent CNS tumors, including GBM, demonstrated that patients 
treated with Pembrolizumab did not have improved survival (7). 
Another Phase III randomized trial comparing radiation and 
concomitant temozolomide with or without nivolumab showed 
that no progression‑free survival benefits were obtained by the 
addition of nivolumab. However, in a Phase II trial, preoperative 
administration of nivolumab increased chemokine expression 
and T‑cell receptor clonal diversity, which likely promotes 
immune‑cell infiltration and antitumor immune response (7).

It is reasonable that targeting multiple immune checkpoints 
in combination with cytotoxic drugs could represent a prom‑
ising strategy for GBM. The present study characterized the 
expression levels of several inhibitory immune checkpoints in 
GBM (i.e., CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, 
LGALS9, NECTIN2 and CD48) in order to evaluate their 
prognostic value. Moreover, their potential effects in regu‑
lating immune‑cell infiltration was investigated.

Materials and methods

Profiling of inhibitory immune checkpoints in GBM. In order 
to evaluate the expression levels of inhibitory immune check‑
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points in GBM as compared to lower grade astrocytomas and 
normal brain samples, RSEM‑normalized RNA Seq data were 
downloaded from the The Cancer Genome Atlas (TCGA) 
databank. Selected genes were CD276, VTCN1, CD47, 
PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48. 
Complete clinical data of the patients were retrieved and only 
data from primary tumors, with no neoadjuvant therapy prior 
to excision, were selected. Data were subjected to logarithmic 
transformation and Linear Model for Microarray Analysis 
(LIMMA) was used to assess statistical significance for the 
differences among cancer types. Overall, this study comprised 
153 GBM samples, 130 anaplastic astrocytoma (grade III) 
samples, 63 astrocytoma (grade II) samples and 5 normal 
brain samples. The results shown here are based upon data 
generated by the TCGA Research Network (https://www.
cancer.gov/tcga). TCGA Ethics & Policies were originally 
published by the National Cancer Institute.

Survival analysis. Samples were stratified in quartiles based 
on the expression of the genes of interest and samples in 
the upper and lower quartiles were selected for comparison. 
Kaplan‑Meier curves were constructed for overall survival and 
disease‑free survival and its significance analyzed by log‑rank 
(Mantel‑Cox) test.

Computational deconvolution of infiltrating immune cells. 
In order to evaluate the relative proportions of the infiltrating 
immune cell subsets in GBM samples diverging for the 

expression of the selected immune checkpoints and stratified 
in accordance to survival analysis, we performed a compu‑
tational deconvolution analysis. The web‑based utility, xCell, 
was used. It is a computational tool that is able, by using gene 
signatures, to infer the presence in a sample of various cell 
types, including immature dendritic cells (iDCs), conventional 
DCs (cDCs), active DCs (aDCs), plasmacytoid DCs (pDCs), B 
cells, CD4+ naive T cells, memory B cells, plasma cells, Th1 
cells, Th2 and Treg cells and macrophages (8).

Statistical analysis. Gene expression differences were evalu‑
ated using LIMMA on log‑transformed RSEM‑normalized 
expression values. FDR <0.05 was considered for statistical 
significance. Gene expression was visualized as heatmap, 
using the group mean value. Clustering was performed for 
both sample groups and genes of interest, using Pearson corre‑
lation as distance metrics. Correlation analysis was performed 
using the Pearson's correlation test. Survival analysis was 
performed using Kaplan‑Meier and its significance analyzed 
by the log‑rank (Mantel‑Cox) test. For the analysis, P<0.05 
was considered to indicate a statistically significant difference. 
Statistical analysis was performed with GraphPad Prism 8 
(GraphPad Software, Inc.) and SPSS 24 (IBM Corp.).

Results

Expression of inhibitory immune checkpoints in GBM. A 
significant upregulation in the expression levels of CD276, 

Figure 1. Expression of immune checkpoints in glioblastoma. Relative expression levels of the selected inhibitory immune checkpoints in glioblastoma, lower 
grade astrocytomas and normal brain samples are presented as heatmap (A). Correlation of the selected inhibitory immune checkpoints (B). Pearson correla‑
tion coefficient is presented in blue‑red gradient and significance in yellow gradient.
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VTCN1, TNFRSF14, LGALS9, NECTIN2 and CD48 was 
observed in GBM as compared to normal brain samples 
(Fig. 1A, Table I). On the contrary, a significant downregula‑
tion of CD47 and CD200 was observed in GBM as compared 
to normal brain samples, while a trend of downregulation was 
observed for PVR (Fig. 1A, Table I). Along the same lines, 
with the exception of LGALS9 and CD200, a significant 
modulation in the expression levels of the investigated immune 
checkpoints was observed between the GBM and anaplastic 
astrocytoma groups of samples (Fig. 1A, Table I). Moreover, 
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Figure 2. Effect of immune checkpoint expression on overall survival in 
glioblastoma. Kaplan‑Meier curve for the overall survival of glioblastoma 
patients stratified on the expression levels of TNFRSF14.

Figure 3. Effect of immune checkpoint expression on disease‑free survival 
in glioblastoma. (A) Kaplan‑Meier curve for the disease‑free survival 
of glioblastoma patients stratified on the expression levels of CD276; 
(B) Kaplan‑Meier curve for the disease‑free survival of glioblastoma patients 
stratified on the expression levels of VTCN1; (C) Kaplan‑Meier curve for 
the disease‑free survival of glioblastoma patients stratified on the expression 
levels of TNFRSF14; (D) Kaplan‑Meier curve for the disease‑free survival of 
glioblastoma patients stratified on the expression levels of NECTIN2.
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CD276, TNFRSF14, LGALS9 and CD48 resulted significantly 
upregulated in anaplastic astrocytoma samples as compared 
to grade II astrocytomas (Fig. 1A, Table I). A significant 
direct correlation was observed for CD276, PVR, TNFRSF14, 
NECTIN2 and CD48 (Fig. 1B). Among the GBM samples, a 
significant negative correlation was instead observed between 
VTCN1 and PVR, NECTIN2 and CD48 (Fig. 1B).

Survival analysis. Samples were stratified in quartiles based 
on the expression of the genes of interest, and samples in 
the upper and lower quartiles were selected for comparison. 
As shown in Table II and Fig. 2, higher expression levels of 
TNFRSF14 in GBM were associated to a significantly lower 
overall survival. No significance was observed for any of the 
other immune checkpoints. Accordingly, higher TNFRSF14 
levels were associated to a shorter disease‑free time (Fig. 3 
and Table III). Lower levels of CD276 and NECTIN2 were 
also significantly associated to better disease‑free time (Fig. 3 
and Table III). Unexpectedly, higher levels of VTCN1 were 
associated to a longer disease‑free time (Fig. 3 and Table III).

Deconvolution analysis. Deconvolution analysis of cell infil‑
tration in GBM was performed on samples dichotomized on 
the expression levels of the immune checkpoints associated 
to a significant modulation of survival, i.e., CD276, VTCN1, 
TNFRSF14 and NECTIN2. As shonw in Fig. 4, higher levels 
of CD276, TNFRSF14 and NECTIN2 were associated with 
a significant lower proportion of infiltrating plasma cells. 
Higher VTCN1 levels were associated to higher proportions 
of infiltrating plasma cells, along with higher infiltration of 
Th1, aDCs and cDCs (Fig. 4B). Samples with high expression 
levels of TNFRSF14 were characterized by a significant lower 
infiltration of Th1 cells and cDC, and higher proportions of 
iDCs, aDCs, pDCs and of macrophages (both M1 and M2) 
(Fig. 4C). A significantly higher infiltration of iDCs, aDCs and 
M1 macrophages, along with reduced proportions of Th1, Th2 
and CD8 T cells, were observed in GBM samples with high 
NECTIN2 expression levels (Fig. 4D).

Discussion

Conventional immune checkpoint inhibitors, Nivolumab/ 
Pembrolizumab for PD‑1/PDL1 blockade or Ipilimumab for 
CTLA4, have proven beneficial effects on the clinical course 
of different cancer types, including metastatic melanoma, 
non‑small cell lung cancer, renal cell carcinoma, and Hodgkin 
lymphoma (9‑11). However, these treatments have often failed 
in gliomas (12‑14). A possible explanation for this outcome 
seems to be due to two main glioma features: the low tumor 
mutational burden (TMB) and a highly immunosuppressive 
microenvironment. Identifying genomic markers of response 
to immune checkpoint may benefit cancer patients by providing 
predictive biomarkers for patient stratification and identifying 
resistance mechanisms for therapeutic targeting.

The present investigation evaluated the potential role 
of a series of inhibitory immune checkpoints not previ‑
ously studied or only marginally characterized in GBM, i.e., 
CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, 
NECTIN2 and CD48. To this aim, a computational analysis of 
RNA‑seq data obtained from the TCGA (The Cancer Genome 
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Atlas) database was performed. Whole‑genome expression 
data was largely used (15) to identify pathogenic pathways and 
therapeutic targets for several disorders, including autoim‑
mune diseases (16‑23) and cancer (24‑29).

We found that VTCN1 and CD200 are highly over‑expressed 
in GBM, anaplastic astrocytoma and astrocytoma grade II 
compared to normal brain. Previously, Yao et al (30) showed 
that VTCN1 has a crucial role in the creation and maintenance 
of the immunosuppressive microenvironment in gliomas, 
correlating with prognosis and malignant grades. Furthermore, 
lower levels of VTCN1 are associated with a higher survival in 
a clinical trial of DC based vaccination (31). This is in contrast 
with our observations, which appears to show a protective role 
for VTCN1 in GBM. The reasons for this counterintuitive data 
is currently object of further exploration.

On the contrary, CD200 expression levels resulted in signif‑
icantly reduced astrocytomas in comparison to normal brain. 
CD200 is a type I transmembrane glycoprotein that plays an 
inhibitory role in the activation of microglia. For this reason, 
many studies have shown that its expression is enhanced in 
brain tumors (32), and especially in higher grade tumors (33). 
However, its role is still controversial, indeed in the same study 
Wang et al (33) found that CD200 down‑expression can lead to 
a particular microglia tumor microenvironment that promotes 
tumor progression, in agreement with our results. Recent 
studies in dogs also showed that targeting CD200, enhanced 
the capacity of antigen‑presenting cells to prime T‑cells to 
mediate an anti‑glioma response (34).

PVR and CD47 were also found down‑expressed in astro‑
cytomas when compared to normal brain, while higher levels 
of expression were found for LGALS9, TNFRSF14, CD48, 
CD276 and NECTIN2. PVR has been described as regulator 
of cell adhesion in a rat model of GBM (35) and a recent 
study in mice proved that the combination of anti‑PD‑1 and 
anti‑PVR leads to a better survival (36).

CD47 is a member of the immunoglobulin superfamily 
that activates the signal regulatory protein‑α (SIRP‑α) 
expressed on macrophages, preventing phagocytosis. In 
contrast with previous studies (37,38), we found decreased 
levels in gliomas compared to normal brain. We consider that 
this down‑expression can represent an attempt to maintain 
homeostasis. Recent studies have associated CD47 with the 
tumor‑associated macrophages (TAMs) in the GBM microen‑
vironment. Zhang et al (39) have also proven that anti‑CD47 
treatment leads to enhanced tumor cell phagocytosis by both 
M1 and M2 macrophage subtypes with a higher phagocytosis 
rate by M1 macrophages. A combination of anti‑CD47 treat‑
ment and temozolamide has also been reported (40).

TNFRSF14 was found to be elevated in aggressive gliomas 
and its expression seemed to be associated with amplification 
of EGFR and loss of PTEN (41). TNFRSF14 plays an important 
role in the recruitment and activation of immune system in the 
tumor microenvironment. We showed that TNFRSF14 seems 
to have a significant impact on both the overall survival and 
the disease‑free time. Interestingly, in metastatic melanoma, 
TNFRSF14 shows a similar behavior (42), further reinforcing 
our observations and suggesting that similar mechanisms can 
be shared also in glioma and that a combinatory blocking 
strategy can improve patients outcome.

Finally, we performed a deconvolution analysis showing 
that higher levels of CD276, TNFRSF14 and NECTIN2 are 
associated with a significant lower proportion of infiltrating 
plasma cells, while higher levels of VTCN1 were associated 
to higher proportions of infiltrating plasma cells, Th1, aDCs 
and cDCs. Higher levels of TNFRSF14 were associated with 
a major infiltration of iDCs, aDCs, pDCs and macrophages, 
but lower levels of Th1 cells and cDCs. Higher expression of 
NECTIN2, associated with shorter survival, is associated with 
reduced proportions of Th1, Th2 and CD8 T cells. Together 
these findings suggest that the main immune cell types that 

Figure 4. Deconvolution analysis of infiltrating immune cells in glioblastoma. Infiltrating immune cell populations were predicted using the web‑based 
deconvolution analysis utility, xCell, for glioblastoma patients stratified on the expression of (A) CD276, (B) VTCN1, (C) TNFRSF14 and (D) NECTIN2. 
*P<0.05; **P<0.01; ***P<0.001.
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help to reduce the tumor mass and improve the survival are 
Th1 and cDCs, and that their expression is strictly dependent 
on these immune checkpoints. In agreement with our hypoth‑
esis, previous studies have shown that in gliomas, there is a 
prevalent Th2 response and that switching from Th2 to Th1 
can help to block glioma growth (43). Additionally, recent 
studies have proven that combinational therapy that blocks 
more immune checkpoints is a possibility to create a more 
vigorous Th1 antitumor response (44,45) and its association 
with better outcome (46). Future preclinical and clinical 
studies are necessary to ascertain whether, in addition to the 
prognostic value we have highlighted, the dysregulated expres‑
sion of the inhibitory immune checkpoint presently studied 
may translate into clinical applications, as novel immunothera‑
peutic approaches for the treatment of gliomas and possibly 
other types of cancers.

Collectively, in this study, we evaluated the expression of 
several inhibitory immune checkpoints that can play a role in 
glioma progression. Among the investigated immune check‑
points, TNFRSF14 and NECTIN2 were identified as the most 
promising targets in GBM. In particular, TNFRSF14 expres‑
sion is associated with worse overall survival and disease‑free 
survival, correlating with a lower Th1 response and suggesting 
that it could become an interesting biomarker or therapeutic 
target.
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