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Abstract In this work, we present a quadrilateral plate element for the Kirchhoff plate bending model that
satisfies the continuity requirements in implicit way. The element is designed on the basis of the rational
Gregory’s enhancement of the bi-cubic Coons patch. This Coons-Gregory patch is based on the boundary
data set of a surface, that accounts for both the displacement and the edge rotation along the sides of the
element. In this way, an implicitly conforming interpolation with 20-dofs per element is obtained. The Coons-
Gregory patch ensures G1-conformity only for the case of structured meshes. Numerical examples show that
the proposed formulation is highly efficient with respect to accuracy, rate of convergence and robustness.

Keywords Conforming plate element · Kirchhoff plate model · Gregory’s patch · G1 continuity

1 Introduction

1.1 Motivation of the work

The development of efficient finite elements for thin plates and shells is still an active field of research in
computational mechanics and engineering applications. One of the main issues with finite elements discretiza-
tion of plates and shells is the geometrical continuity of the normal across elements in any configuration.
Many formulations have been proposed and are currently adopted for plates, as will be briefly reviewed in
the following sections. Recently, a strong emphasis has been given to develop plate and shell models based
on isogeometric analysis (IGA) that, employing B-spline (and NURBS) representations with high degree of
continuity, allows to meet the requirements for the slope across adjacent elements [1].

Most of the numerical formulations use independent interpolations for displacements and rotations, accord-
ing to Mindlin’s plate theory. Displacement formulations, whose kinematics according to Kirchhoff’s theory
is defined by one field only, the displacement of the middle plane, are less common, but have the advantage
that are free of the shear locking, so they can be safely used also for very thin plates. Furthermore, lower com-
putational efforts are needed with respect to the numerical formulation based on displacements and rotations.
Numerical formulation for Kirchhoff’s plates requires C1-continuity for the displacement field. Finite element
formulations that exactly fulfill the continuity requirement along the element sides are known as conforming
formulations. The continuity requirement implies that there exists a unique tangent plane to the deformed
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configuration at any point along the element boundaries, a condition known as geometric G1-continuity (the
exact definition of G1-continuity will be discussed in Sect. 3).

Strongly conforming Kirchhoff plate elements are more efficient form the computational point of view and
allow in a simple way the coupling with high order elements like beams. In this work, we develop a conforming
formulation for Kirchhoff’s plate, which implicitly satisfies G1-continuity at any point. Since this condition
is independent on the parametrization adopted for the element, we formulate the element directly in absolute
coordinates, through a map from the intrinsic coordinates, rather than using parent elements as commonly
done in FEM.

Conforming interpolations for the plate bending problem have long been investigated. The construction
of a C1-conforming space can be very difficult for general patch geometries, for a complete overview see [2].
Among the oldest formulations, the complete compatible bi-cubic BFS-interpolation, proposed by Bogner,Fox
and Schmit in [3], results in a conforming element for regular quadrilateral meshes. The ACM-element (Adini-
Clough-Melosh) without twisting degrees of freedom, on the contrary does not respect conformity. DeVeubeke
succeeded in building a conforming element for general quadrilateral mesh decomposing the quadrilateral in
four triangular sub-elements and combining the displacement interpolations [4]. In [5], the suitability of the
BFS-interpolation on theC1-conformingmeshes is shown.Other kinds of conforming elements can be obtained
including additional degrees of freedom (the higher derivatives of the displacement), as done in [6] for the
triangular and quadrilateral case. In [7], the quintic triangular Argyris’ element is adopted for second gradient
numerical applications. In [8], many conforming elements are discussed in the framework of the second
gradient elasticity.

In the framework of the Kirchhoff model, the continuity conditions for the boundary of the element can
be relaxed in a weak sense, or alternatively the Kirchhoff constraint can be collocated obtaining a discrete
version of the conformity condition. The latter class of elements is known as Discrete Kirchhoff constrained
elements. The Kirchhoff constraint is imposed at a discrete number of points, (generally the integration points
of the edges), obtaining a linear set of equations, that solved allows the reduction of the degrees of freedom,
see [9–12]. Analogous to this idea is the formulation of the semi-Loof elements, see [13]. A triangular element
having the normal derivative of the displacement along the edges as degree of freedom was first introduced
by Clough and Tocher (HCT element) [14]. The latter class of elements have proved to be very effective in
convergence rate and accuracy, but their combination with other elements is in general difficult.

Although not the subject of this paper, it is useful to recall that the difficulties related to the continuity
requirements are relaxed using elements based on the Reissner-Mindlin theory, since only a C0-continuity
for the kinematic fields is needed, but the finite element can suffer of shear locking in the thin limit. Mixed
strategies can be adopted to obtain locking free formulations, among the oldest those proposed by de Veubeke
and Herrmann [15,16]. Many other elements have been proposed since (see for instance [17–19]; within this
context, Bathe developed the Assumed Natural Strain Formulation in the MITC family of elements [20]. The
elements were extensively analyzed in [21,22]. The MITC elements at the moment probably constitute the
reference Finite Elements for shells and plates see [23], at least for what concerns quadrilateral elements. For
this reason in the numerical examples, we will compare the performance of the proposed element with the
results obtained with plate MITC elements.

1.2 Objectives of the work

In this work, we discuss a finite element, based on a rational approximant, that implicitly accounts for strong
G1-continuity. A quadrilateral element employing a modified bi-Hermitian interpolation is developed.

The proposed G1-conforming formulation is based on the rational Coons-Gregory approximant on the
quadrilateral element of a structured mesh. An overlook to this methodology for CAD can be found in [24].
The idea consists in introducing an ad hoc parametrization of the edge tangent manifold called the ribbon,
see [24,25], that has the same configuration space of a Kirchhoff rod, see [26–29]. It will be shown that
this approach in the case of cubic interpolation consists in a particular generalization of the bi-Hermitian
interpolation in which the twist degrees of freedom are substituted by two independent edge rotations.

A quadrilateral conforming finite element with 20-dofs is obtained, in which the basis functions are
enhanced with rational combinations. This introduces discontinuity on the second derivatives that do not
have an unique value at the corners. In the case of structured meshes of quadrilateral elements, the element
will be shown to present good properties of accuracy and rate of convergence, comparable to the most efficient
elements used in FE analysis. The moments also are accurate, and the indeterminacies at the corners can be
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overcome by means of stress recovery strategies, like those described in [30,31]. The presentation of this paper
is restricted to meshes that have a G1-continuous parametrization (i.e., structured meshes).

The outline of the paper is as follows. In Sect. 2, the basic equations of Kirchhoff plates are briefly revised,
then in Sect. 3 the newly proposed element is described in details. Finally, some examples will be discussed,
in order to investigate the performance of the element.

2 The Kirchhoff plate problem

Let us consider a plate whose middle plane is defined in an open set Ω ⊂ R
2, with a piecewise continuous

boundary ∂Ω = ⋃
i ∂Ωi , and corners ∂∂Ωi . We shall assume that the region Ω is simply connected, and

homeomorphic to a rectangle. Indeed, since in this work, we develop only quadrilateral elements, it can be
assumed that the region Ω can be subdivided in simply connected non overlapping domains Ωi , each one
continuously mapped from the parametric domain Λ = (0, 1) × (0, 1) and {θ1, θ2} ∈ Λ, such that the map
is continuous everywhere without singularity points. In this way for each region Ωi , four corners are present
on the boundary. Let h be the thickness of the plate, ζ ∈ [−h/2, h/2], and n̂ be the unit normal vector to the
middle plane of the plate. The position of a point of the plate is given by

∗
p(θ1, θ2, ζ ) = p(θ1, θ2) + ζ n̂. (1)

Adopting the intrinsic formulation, see for instance [32,33], the geometry of the middle plane of the plate
is characterized by the covariant tangent vectors defined as tα = ∂ p

∂θα and by the covariant metric tensor
gαβ = tα · tβ . The contravariant basis vectors are given by tα = gαβ tβ .

2.1 Kinematics

In this paper, we analyze Kirchhoff plates. The equilibrium equations will be derived according to the classical
treatment presented by Green [32]. The Kirchhoff hypotheses require that, during the deformation process,
the following constraints be satisfied:

n̂ · tα = 0 α = 1, 2, n̂ · n̂ = 1. (2)

Using a superposed dot for indicating velocities, the tangent version of these constraints states that

˙̂n · tα = −
(

n̂ · ∂ ṗ
∂θα

)

α = 1, 2, ˙̂n · n̂ = 0. (3)

Small deformation and displacements are considered in this work, so that denoting by w : Ω → R the
normal component of the displacement of the middle plane and by φ the rotation vector of the unit normal,
the displacement u of a generic point of the plate is given by

u(θ1, θ2, ζ ) = w(θ1, θ2) n̂ + ζ φ(θ1, θ2) × n̂. (4)

Under the Kirchhoff hypotheses, the rotation vector becomes then

φ × n̂ · tα = −n̂ · ∂u
∂θα

= − ∂w

∂θα
. (5)

2.1.1 Bending curvatures

The curvature of the plate in the hypothesis of infinitesimal deformation, according to the Kirchhoff constraint
(5) is given by:
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χ = −n̂ ·
[(

∂2u
∂θβ∂θα

)

⊗ tα ⊗ tβ
]

, (6)

or, in components,

χ = χαβ tα ⊗ tβ

= −
[

∂

∂θβ

(
∂w

∂θα

)

− ∂w

∂θρ
Γ

ρ
αβ

]

tα ⊗ tβ, Γ
ρ
αβ =

(
∂ tα
∂θβ

· tρ
)

,
(7)

that is, the curvature tensor is given by the second covariant derivative of the scalar function w(θ1, θ2). The
strain tensor is thus E = ζχ .

2.2 Weak formulation

The virtual power identity for the plate is given by

∫ h/2

−h/2

∫

Ω

σ : ζ χ̇ dΩ dζ =
∫ h/2

−h/2

∫

Ω

bzẇdΩ dζ (8)

for any virtual velocity field ẇ and compatible velocity of curvature χ̇ given by (7). In the external power, only
body forces have been considered for brevity. Performing the double contraction, and introducing the moment
resultants

Mαβ =
∫ +h/2

−h/2
ζ σαβ dζ, (9)

the internal power reduces to

Πint =
∫

Ω

Mαβχ̇αβdΩ =
∫

Ω

(
M11χ̇11 + 2M12χ̇12 + M22χ̇22

)
dΩ. (10)

Considering a linear elastic isotropic constitutive behavior and the plane stress approximation valid for thin
plates, the constitutive equations for the moment components become (see [32])

Mαβ = C
αβμρ χμρ,

C
αβμρ = E

2(1 + ν)

(

gαμgβρ + gαρgβμ + 2 ν

1 − ν
gαβgμρ

)

.
(11)

In the numerical formulation, the physical representation of all geometrical objects is considered. In physical
components, the constitutive equations particularize to

Mxx = D
(
χxx + νχyy

)
, Myy = D

(
χyy + νχxx

)
, Mxy = (1 − ν)Dχxy,

D = Eh3

12(1 − ν2)
,

(12)

so that the internal virtual power for the plate model reduces to

Πint = D
∫

Ω

[
χxx χ̇xx + ν

(
χxx χ̇yy + χ̇xxχyy

) + χyy χ̇yy + 2(1 − ν)χxy χ̇xy
]
dΩ. (13)
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Fig. 1 Geometry definitions

2.2.1 Strong formulation

Let dΛ = dθ1dθ2 be the element of area of the parametric space and
√
g = det[gαβ ]. The physical element

of area is dΩ = √
gdΛ. Introducing the definition (7) of the curvature tensor in the Eq. (10) and applying the

Green–Gauss–Ostrogradsky formula, the internal virtual power becomes

Πint =
∫

Λ

(
∂

∂θβ

(√
gMρβ

) + √
gMαβΓ

ρ
αβ

)
dẇ

∂θρ
dΛ

−
∫

∂Ω

Mαβ ∂ẇ

∂θα
(tβ · ν̂) dS.

(14)

where ν̂ is the outgoing unit normal to the boundary of the plate (see Fig. 1). Since
∂
√
g

∂θβ = √
g(Γ 1

1β + Γ 2
2β) =√

g Γ
μ
μβ the equation (14) reduces to

Πint =
∫

Λ

(

Mρβ
|β

∂ẇ

∂θρ

) √
g dΛ −

∑

i

∫

∂Ωi

Mαβ ∂ẇ

∂θα
(tβ · ν̂i ) dSi (15)

where the summation extends to the four sides of the boundary, and the term Mρβ
|β represents the contravariant

components of the divergence of the bending moment tensor, M = Mαβ tα ⊗ tβ , defined as

Mρβ
|β = ∂Mρβ

∂θβ
+ Mμβ Γ

ρ
μβ + Mρμ Γ

β
μβ. (16)

First, we focus on the treatment of the boundary term of the Eq. (15). On each side of the boundary, a local
system of normal and tangent coordinates ν, s is considered, with s arc length. Notice that the outgoing unit
normal ν̂ is given by the unit contravariant vectors

ν̂1 = − t1

‖t1‖
∣
∣
∣
(0,θ2)

ν̂3 = t1

‖t1‖
∣
∣
∣
(1,θ2)

ν̂2 = − t2

‖t2‖
∣
∣
∣
(θ1,0)

ν̂4 = t2

‖t2‖
∣
∣
∣
(θ1,1)

(17)

Introducing the moment Mν = Mαβ(tβ · ν̂)tα acting on the boundary of the plate, it is recognized that the
boundary term of the Eq. (15) is given by the dot product betweenMν and the gradient of the vertical velocity,

−
∫

∂Ωi

Mαβ ∂ẇ

∂θα
(tβ · ν̂i ) dSi = −

∫

∂Ωi

Mν · ∇ẇ dSi

=
∫

∂Ωi

Msν
(

−∂ẇ

∂s

)

dSi +
∫

∂Ωi

Mνν

(

−∂ẇ

∂ν

)

dSi , (18)
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with Msν = Mαβ(tβ · ν̂)(tα · ŝ), Mνν = Mαβ(tβ · ν̂)(tα · ν̂). The first term of the right-hand side of equation
(18), followingKirchhoff’s calculations, can be newly integrated by part along the edge curve, while the second
term in the right-hand side represents the work done by the edge bending moment Mνν for the edge rotation
field along side i , φ̇i = − ∂ẇ

∂ν

∣
∣
i = − ∂ẇ

∂θα tα · ν̂
∣
∣
i .

The Kirchhoff’s boundary term gets the final form

−
∫

∂Ωi

Mαβ ∂ẇ

∂θα
(tβ · ν̂i ) dSi =

∫

∂Ωi

∂Msν

∂s
ẇi dSi − [

Msνẇi
]Li
0 +

∫

∂Ωi

Mννφ̇i dSi . (19)

The field integral is elaborated by a further application of theGreen–Gauss–Ostrogradsky formula yielding

∫

Λ

(√
gMρβ

|β
) ∂ẇ

∂θρ
dΛ = −

∫

Λ

Mρβ
|ρβ ẇ

√
gdΛ +

∫

∂Ωi

T ν
i ẇi dSi , (20)

where T ν
i = div[M] · ν̂i = Mρβ

|β(tρ · ν̂)i . Collecting the results, the expression of the internal power reduces
to

Πint = −
∫

Λ

Mρβ
|ρβ ẇ

√
gdΛ −

∑

i

[
Msνẇi

]Li
0

+
∑

i

(∫

∂Ωi

(

T ν
i + ∂Msν

∂s

)

ẇi dSi +
∫

∂Ωi

Mννφ̇i dSi

)

. (21)

The external power, with obvious meaning of the symbols, is given by

Πext =
∫

Λ

q ẇ
√
gdΛ +

∑

j

Fj ẇ j +
∑

i

(∫

∂Ωi

fi ẇi dSi +
∫

∂Ωi

m φ̇i dSi

)

. (22)

where the first sum is extended to the corners ∂∂Ω j , the second to the sides.
Equating Eqs. (21), (22) one gets the strong form of the equilibrium equations as follows:

−Mαβ
|αβ = q, on Ω (23)

with boundary conditions on the generic edge ∂Ωi

T ν
i + ∂Msν

∂s

∣
∣
∣
∣
i
= fi , or wi assigned,

Mνν = m, or φi assigned,
(24)

and on the generic corner ∂∂Ωi

[[Msν]]i = Fi , or wi assigned. (25)

being Fi a concentrated force acting at the corner.
The configuration of the boundary of the Kirchhoff plate turns out to be a two-fields manifold, defined

by the vertical displacement wi of the edge curve and by the rotation φi around the edge, analogously to the
kinematics of an Euler-Bernoulli rod as described in [27,28,34,35]. Therefore, the edge rotation φi must be
considered as an independent field for the model. The theoretical motivation of this fact can be found in the
more general contest of higher gradient continuum theories, see [36–38] for the details of the generalization
of the Green–Gauss–Ostrogradsky formula to higher-order theories on manifolds.

Observation: The torsional curvature, given by the mixed component of the covariant derivative (7), is con-
tinuous in the plate domain, the derivative of the edge rotation along the side on the two edges merging at the
same corner are not equal in general. Indeed evaluating these derivatives along edges 1, 2, that meet at corner
1 (see Fig. 1), we find:
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– for the side 2:

1

‖t1‖
∂φ(θ1, 0)

∂θ1
= 1

‖t1‖
∂

∂θ1

(
∂w

∂θα
tα · ν̂2

)

= 1

‖t1‖
∂2w

∂θα∂θ1
tα · ν̂2 + 1

‖t1‖
∂w

∂θα

∂tα

∂θ1
· ν̂2

= 1

‖t1‖
(

∂2w

∂θα∂θ1
− ∂w

∂θρ
Γ

ρ
1α

)

tα · ν̂2

= 1

‖t1‖
(
χ11t1 · ν̂2 + χ12t2 · ν̂2

)

= −
(

χ11
t1 · t2

‖t2‖‖t1‖ + χ12
‖t2‖
‖t1‖

)

. (26)

– for the side 1:

1

‖t2‖
∂φ(0, θ2)

∂θ2
= 1

‖t2‖
∂

∂θ2

(
∂w

∂θα
tα · ν̂1

)

= 1

‖t2‖
(
χ21t1 · ν̂1 + χ22t2 · ν̂1

)

= −
(

χ21
‖t1‖
‖t2‖ + χ22

t1 · t2
‖t1‖‖t2‖

)

. (27)

Therefore, observing that ‖t1‖
‖t2‖ = ‖t2‖

‖t1‖ = t1×t2 ·n̂, the derivatives of the normal rotation along the edges are

equal at a corner (corner 1 in the example) only if the parametric lines are orthogonal at that corner (t1 · t2 = 0).

3 Numerical formulation

In this section, first we give the definition for the G1-continuity, successively the bi-cubic Coons patch and its
rational Gregory’s enhancement is presented, see [24,25,39,40]. Finally, the CG1-formulation for the rational
approximant of the displacement of the plate is presented.

3.1 Definition of G1-continuity

Two space curves ci (θ) are said to meet with parametric continuity (or C1-continuity), if the parametric tangent

vectors, ti = dci
dθ

, are the same at their junction; therefore, under a generic re-parametrization of the curves
the parametric continuity is destroyed, thus the parametric continuity is not an intrinsic property. Contrarily,
two curves meet with geometric continuity of first degree, G1-continuity, if the unit tangents are the same at
the joint, i.e., if the end rotations are the same [41]. The geometric continuity is an intrinsic property, in the
sense that it is invariant under a generic re-parametrization of the curve.

On the basis of the previous observations in [28], we have proposed an implicit G1-interpolation for a
Kirchhoff rod model based on the physical concept of the end rotations, yielding a generalization of the
Hermitian interpolation. In this work, we extend the previous idea to the case of surfaces.

Two surfaces with a common boundary curve are called G1-continuous if they have a continuously varying
tangent plane along that boundary curve, see [24,40]. This condition represents the continuity requirement to
the design of a multi-patch approximant of the displacement of a plate element. Unfortunately, such continuity
cannot be achieved with bi-Hermitian interpolation on arbitrarily distorted elements, unless the mesh is C1-
conforming (see [5] who designed a conforming bi-Hermitean plate element under this hypothesis).

Indeed, for an arbitrary quadrilateral mesh, at least 20 degree of freedom are needed for obtaining a G1-
continuous deformation, since on each side has to be guaranteed the continuity of both the position and of the
normal derivative.

Historically, the first contribution for generating G1-continuous multi-patch surfaces was given by S.A.
Coons in the context of CAGD, who in 1967 presented a method that uses as input the boundary data sets



628 M. Cuomo, L. Greco

but that, however, suffers of the same limitation characterizing the bi-Hermitian interpolation, i.e., it fails for
meshes not G1-continuous. In 1974, Gregory presented a generalization of the bi-cubically Coons interpolation
that achieves G1-continuity, consisting in a rational enhancement of the bi-cubic Bezier’s interpolation [25]. In
[40], considering additional constraint conditions, Farin andHansford have extendedGregory’s patch approach
to triangular patches. Next, we describe a procedure for designing a formulation for the plate bending problem
that implicitly satisfies G1-conformity that will be referred to CG1-formulation. The procedure presented in
the paper is limited to G1-continuous meshes, i.e., meshes obtained by the intersection of two family of lines
see [24].

3.2 Bézier’s tensor product surface

Indicating by θ ∈ (0, 1) a parametric coordinate, and with Bn(θ) the vector of the nth-order Bernstein
polynomials, given by:

Bn(θ) = {Bn
j (θ)}, Bn

j (θ) = n!
j !(n − j)! (θ) j (1 − θ)n− j , (28)

with j = 0, .., n, a Bézier’s curve c(θ) is given by the linear combination of the n + 1 basis functions with
n + 1 control points P j ,

c(θ) =
n∑

i=0

Bn
i (θ)Pi . (29)

The Bézier’s representation of a surface is given by the tensor product of two Bézier’s curves:

pm,n(θ1, θ2) = Bm(θ1) P BnT (θ2), (30)

where P is the matrix of the control points with n-columns and m-rows

P =
⎛

⎜
⎝

P00 · · · P0n
...

...
Pm0 · · · Pmn

⎞

⎟
⎠ . (31)

If n = 3, we have the bi-cubic Bernstein (or Bézier) basis functions. A transformation of the Bézier’s basis
leads to the Hermite basis functions:

H(θ) = {H1(θ), H2(θ), H3(θ), H4(θ)}

H1(θ) = B3
0 (θ) + B3

1 (θ) H2(θ) = B3
1 (θ)

3

H3(θ) = − B3
2 (θ)

3
H4(θ) = B3

2 (θ) + B3
3 (θ)

(32)

that allow to represent a curve c(θ) as

c(θ) = H1(θ) c(0) + H2(θ)
∂c
∂θ

∣
∣
∣
∣
0
+ H3(θ)

∂c
∂θ

∣
∣
∣
∣
1
+ H4(θ) c(1). (33)

3.3 The bi-cubical Coons patch

Coons presented his interpolation (Coons patch) for generic surfaces. We adopt the same description, and
successively, we particularize it to the case of plate deformation, characterized only by the normal component
of the displacement.

Coons proposed to interpolate a quadrilateral surface between assigned edges, connecting them by means
of blending functions. The edge curves can be enhanced with more information, as for instance higher-order
derivatives along the edge in order to obtain the required continuity. The Hermite interpolation functions can
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(a) (b)

Fig. 2 Ribbons definitions for a bi-cubic Bezier’s interpolation: a 3D visualization of the ribbons on the deformed configuration,
b numbering of the sides and ribbon in reference configuration

be used as a natural choice for the blending functions when the normal slope along the edges is required to be
continuous.

Coons introduced his interpolation in terms of the boundary ribbons ri defined as (see Fig. 2a)

ri = pi (θ
α) + θβTi (θ

α) i = 1, . . . , 4

α = 1, β = 2 if i = 2, 4

α = 2, β = 1 if i = 1, 3

(34)

with

p1(θ
2) = p(0, θ2), T1(θ

2) = ∂p(θ1, θ2)

∂θ1

∣
∣
∣
∣
θ1=0

,

p2(θ
1) = p(θ1, 0), T2(θ

1) = ∂p(θ1, θ2)

∂θ2

∣
∣
∣
∣
θ2=0

,

p3(θ
2) = p(1, θ2), T3(θ

2) = ∂p(θ1, θ2)

∂θ1

∣
∣
∣
∣
θ1=1

,

p4(θ
1) = p(θ1, 1), T4(θ

1) = ∂p(θ1, θ2)

∂θ2

∣
∣
∣
∣
θ2=1

.

(35)

From (35), the following identities for the boundary ribbons at the corners are obtained

T1(0) = ∂p2(θ
1)

∂θ1

∣
∣
∣
∣
0
, T2(0) = ∂p1(θ

2)

∂θ2

∣
∣
∣
∣
0
,

T2(1) = ∂p3(θ
2)

∂θ2

∣
∣
∣
∣
0
, T3(0) = ∂p2(θ

1)

∂θ1

∣
∣
∣
∣
1
,

T3(1) = ∂p4(θ
1)

∂θ1

∣
∣
∣
∣
1
, T4(1) = ∂p3(θ

2)

∂θ2

∣
∣
∣
∣
1
,

T4(0) = ∂p1(θ
2)

∂θ2

∣
∣
∣
∣
1
, T1(1) = ∂p4(θ

1)

∂θ1

∣
∣
∣
∣
0
.

(36)

The boundary ribbons of the reference configuration (divided by 3 for clearness) are represented in Fig. 2b.
Note that the tangent vectors Ti join the first two interpolating curves of the plate, not the first two control
points. Blending the boundary data sets along the parametric directions two surfaces are obtained, whose
expressions, using the definitions (35), are:

Π1(p)(θ1, θ2) = H(θ2){p2(θ1),T2(θ
1),T4(θ

1),p4(θ
1)}T,

Π2(p)(θ1, θ2) = H(θ1){p1(θ2),T1(θ
2),T3(θ

2),p3(θ
2)}T.

(37)
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Summing up the two interpolations (37), it is obtained a surface that does notmatch the required values at the
corners (actually they are doubled), and the inconsistency is removed subtracting a bi-Hermitian interpolation
built with the same data set:

Π12(θ
1, θ2) = Π1

(
Π2(p)(θ1, θ2)

) = H(θ1)MHT(θ2) (38)

where the matrix M ruling the tensorial product of the Hermite basis functions, accounting for the identities
(36), takes the form:

M =
⎛

⎜
⎝

p(0, 0) T2(0) T4(0) p(0, 1)
T1(0) τ00 τ01 T1(1)
T3(0) τ10 τ11 T3(1)
p(1, 0) T2(1) T4(1) p(1, 1)

⎞

⎟
⎠ (39)

and

τ00 = ∂T1

∂θ2

∣
∣
∣
∣
θ2=0

= ∂

∂θ2

(
∂p
∂θ1

)∣
∣
∣
∣
0,0

τ10 = ∂T3

∂θ2

∣
∣
∣
∣
θ2=0

= ∂

∂θ2

(
∂p
∂θ1

)∣
∣
∣
∣
1,0

τ01 = ∂T1

∂θ2

∣
∣
∣
∣
θ2=1

= ∂

∂θ2

(
∂p
∂θ1

)∣
∣
∣
∣
0,1

τ11 = ∂T3

∂θ2

∣
∣
∣
∣
θ2=1

= ∂

∂θ2

(
∂p
∂θ1

)∣
∣
∣
∣
1,1

(40)

The Coons’ interpolation is then given by

p(θ1, θ2) = Π1(θ
1, θ2) + Π2(θ

1, θ2) − Π12(θ
1, θ2). (41)

As highlighted in [24,25], the bi-cubic Coons patch (41) in general does not satisfy the G1-continuity
requirements. In order to get continuity of the position and of the edge rotation, the derivative of the edge
rotation along two adjacent side must be independent. In the case of Coons’ patch, this is not possible, since
both rotations are controlled by the same internal control point, as illustrated in Fig. 2a. In 1974, J. Gregory
proposed to modify the definitions of the corner twists (40), blending the twists of the two ribbons meeting at
the same corner with rational weight functions:

τ00 =
(

θ2

θ1 + θ2

)
∂T2(θ

1)

∂θ1

∣
∣
∣
∣
0
+

(
θ1

θ1 + θ2

)
∂T1(θ

2)

∂θ2

∣
∣
∣
∣
0
,

τ10 =
(

θ2

(1 − θ1) + θ2

)
∂T2(θ

1)

∂θ1

∣
∣
∣
∣
1
+

(
1 − θ1

(1 − θ1) + θ2

)
∂T3(θ

2)

∂θ2

∣
∣
∣
∣
0
,

τ01 =
(

1 − θ2

θ1 + (1 − θ2)

)
∂T4(θ

1)

∂θ1

∣
∣
∣
∣
0
+

(
θ1

θ1 + (1 − θ2)

)
∂T1(θ

2)

∂θ2

∣
∣
∣
∣
1
,

τ11 =
(

1 − θ2

(1 − θ1) + (1 − θ2)

)
∂T4(θ

1)

∂θ1

∣
∣
∣
∣
1
+

(
1 − θ1

(1 − θ1) + (1 − θ2)

)
∂T3(θ

2)

∂θ2

∣
∣
∣
∣
1
.

(42)

The new definition is equivalent to split the internal control points of the quadrilateral patch and to combine
them with two rational functions whose sum is 1, so that when the patch has orthogonal edges, the twists of
the ribbons converging at the same corner are equal, and the original Coons’ patch interpolation is recovered.
In Appendix A is reported a proof of the Gregory’s interpolation.

3.4 The bi-cubic Coons-Gregory plate interpolation: CG1-formulation

Considering a plate lying in the plane (x, y) undergoing bending deformation only, the parametric equation of
the deformed middle surface is

p = p0(θ
1, θ2) + w(θ1, θ2)n̂ (43)

p0 is the parametric equation of the (plane) reference configuration, and n̂ is the unit normal to the reference
plane of the plate. The boundary ribbons become then, using the same notation as in equation (34):

ri = pi (θ
α) + θβTi (θ

α) = p0i (θ
α) + wi (θ

α)n̂ + θβ ∂p0i
∂θβ

+ θβ ∂wi

∂θβ
n̂. (44)
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having indicated with wi the displacement of the i-th edge of the plate. Using the result (5) of the Kirchhoff
constraints, we have

∂wi

∂θβ
= φi × tβ · n̂ = φα

i tα × tβ · n̂ (45)

where φα tα is the rotation of the plate around the edge, obtained decomposing the rotation vector along the
parametric directions,

φ = φ1 t1 + φ2 t2 = (φ · t1) t1 + (φ · t2) t2 (46)

Through the latter decomposition, the components of the rotation vector can be related directly to the space
framework. Using Eqs. (44) and (45), the boundary ribbons take the form:

ri = p0i (θ
α) + θβ ∂p0i

∂θβ
+ wi (θ

α)n̂ + θβφα(θα)(tα × tβ · n̂) n̂

α = 2, β = 1 if i = 1, 3

α = 1, β = 2 if i = 2, 4.

(47)

As stated before, in this paper, we formulate a G1-continuous approximation on a G1-conforming geometry
of the plate, that is, it is assumed that the parametrization p0 has continuous tangents along the boundaries of
the elements.

Fromequation (47), it appears that the continuity among adjacent elements is guaranteed if the displacement
and rotation are the same along the common boundary. The G1-formulation is then obtained applying the
Coons-Gregory scheme to the vertical displacement. Setting for convenience:

A(θ1, θ2) = t1 × t2 · n̂ (48)

(that represents the Jacobian, the area of the element formed by the covariant basis vectors) we have:

w1 = H1(θ
2)w00 + H2(θ

2)φ1
00A(0, 0) + H3(θ

2)φ1
01A(0, 1) + H4(θ

2)w01

w2 = H1(θ
1)w00 + H2(θ

1)φ2
00(−A(0, 0)) + H3(θ

1)φ2
10(−A(1, 0)) + H4(θ

1)w10

w3 = H1(θ
2)w10 + H2(θ

2)φ1
10A(1, 0) + H3(θ

2)φ1
11A(1, 1) + H4(θ

2)w11

w4 = H1(θ
1)w01 + H2(θ

1)φ2
01(−A(0, 1)) + H3(θ

1)φ2
11(−A(1, 1)) + H4(θ

1)w11

(49)

and
∂w1

∂θ1
= H1(θ

2) φ2
00 (−A(0, θ2)) + H2(θ

2)
∂φ2

∂θ2

∣
∣
∣
∣
00

(−A(0, θ2))

+ H3(θ
2)

∂φ2

∂θ2

∣
∣
∣
∣
01

(−A(0, θ2)) + H4(θ
2) φ2

01 (−A(0, θ2)),

∂w2

∂θ2
= H1(θ

1) φ1
00 A(θ1, 0) + H2(θ

1)
∂φ1

∂θ1

∣
∣
∣
∣
00

A(θ1, 0)

+ H3(θ
1)

∂φ1

∂θ1

∣
∣
∣
∣
10

A(θ1, 0) + H4(θ
1) φ1

10 A(θ1, 0),

∂w3

∂θ1
= H1(θ

2) φ2
10 (−A(1, θ2)) + H2(θ

2)
∂φ2

∂θ2

∣
∣
∣
∣
10

(−A(1, θ2))

+ H3(θ
2)

∂φ2

∂θ2

∣
∣
∣
∣
11

(−A(1, θ2)) + H4(θ
2) φ2

11 (−A(1, θ2)),

∂w4

∂θ2
= H1(θ

1) φ1
01A(θ1, 1) + H2(θ

1)
∂φ1

∂θ1

∣
∣
∣
∣
01
A(θ1, 1)

+ H3(θ
1)

∂φ1

∂θ1

∣
∣
∣
∣
11
A(θ1, 1) + H4(θ

1) φ1
11A(θ1, 1).

(50)
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The G1-approximation is then given by:

w(θ1, θ2) = Π1(w) + Π2(w) − Π12(w), (51)

in which:

Π1(w) = H(θ2)

{

w2(θ
1),

∂w2

∂θ2
,
∂w4

∂θ2
, w4(θ

1)

}T

,

Π2(w) = H(θ1)

{

w1(θ
2),

∂w1

∂θ1
,
∂w3

∂θ1
, w3(θ

2)

}T

,

Π12(w) = H(θ1)MwHT(θ2).

(52)

The matrix Mw, using (45) for evaluating the derivatives of the displacement as function of the rotations, is

Mw =

⎛

⎜
⎜
⎝

w00 φ1
00A(0, 0) φ1

01A(0, 1) w01
−φ2

00A(0, 0) τ00 τ01 −φ2
01A(0, 1)

−φ2
01A(0, 1) τ10 τ11 −φ2

11A(1, 1)
w10 φ1

01A(0, 1) φ1
11A(1, 1) w11

⎞

⎟
⎟
⎠ (53)

The corner twists are evaluated according to Gregory’s enhancement (42) as:

τ00 =
(

θ1

θ1 + θ2

)
∂φ2

∂θ2

∣
∣
∣
∣
00

(−A(0, 0)) +
(

θ2

θ1 + θ2

)
∂φ1

∂θ1

∣
∣
∣
∣
00
A(0, 0),

τ10 =
(

1 − θ1

(1 − θ1) + θ2

)
∂φ2

∂θ2

∣
∣
∣
∣
10

(−A(1, 0)) +
(

θ2

(1 − θ1) + θ2

)
∂φ1

∂θ1

∣
∣
∣
∣
10
A(1, 0),

τ01 =
(

θ1

θ1 + (1 − θ2)

)
∂φ2

∂θ2

∣
∣
∣
∣
01

(−A(0, 1)) +
(

1 − θ2

θ1 + (1 − θ2)

)
∂φ1

∂θ1

∣
∣
∣
∣
01
A(0, 1),

τ11 =
(

1 − θ1

(1 − θ1) + (1 − θ2)

)
∂φ2

∂θ2

∣
∣
∣
∣
11

(−A(1, 1)) +
(

1 − θ2

(1 − θ1) + (1 − θ2)

)
∂φ1

∂θ1

∣
∣
∣
∣
11
A(1, 1).

(54)

The element so obtained has 20 degrees of freedom, five for each corner, the corner’s displacements, the two
components of the rotation and the two parametric side derivatives of the two edge rotations:

q1 =
{

w00, φx
00, φ

y
00,

∂φ1

∂θ1

∣
∣
∣
∣
0,0

,
∂φ2

∂θ2

∣
∣
∣
∣
0,0

}

,

q2 =
{

w10, φx
10, φ

y
10,

∂φ1

∂θ1

∣
∣
∣
∣
1,0

,
∂φ2

∂θ2

∣
∣
∣
∣
1,0

}

,

q3 =
{

w11, φx
11, φ

y
11,

∂φ1

∂θ1

∣
∣
∣
∣
1,1

,
∂φ2

∂θ2

∣
∣
∣
∣
1,1

}

,

q4 =
{

w01, φx
01, φ

y
01,

∂φ1

∂θ1

∣
∣
∣
∣
0,1

,
∂φ2

∂θ2

∣
∣
∣
∣
0,1

}

,

(55)

and finally: q = {q1,q2,q3,q4}. The rational functions are continuous at the corners and have continuous first
derivatives, but the second derivatives are discontinuous at the corner to which the function is related. On the
basis of the Bézier’s projection, see [42,43], the CG1-formulation can be generalized to the B-spline represen-
tation. The proposed formulation can be useful to design finite element for modeling smoothed localization as
occurs in high gradient damage model, see [44].
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Fig. 3 Initial geometry and G1-shape-functions of the Coons-Gregory’s interpolation for the five degrees of freedom relative to
the first corner node. (MF=Magnification Factor). a Initial geometry. b w1 = 1, (MF=1). c φ1,x = 1, (MF=5). d φ1,y = 1,
(MF=5). e ∂θ2φ

1 = 1, (MF=50). f ∂θ1φ
2 = 1, (MF=50)

3.5 An example of a Coons’ interpolation for a plate

In order to clarify the interpolation presented in the previous section,we consider the plate represented inFig. 3a;
the coordinates of the corners are p01 = {0, 0}, p02 = {0.25, 0}, p03 = {0.5, 0.5} and p04 = {0, 0.5}. In
Fig. 3 are represented the first five shape functions, associated with the degrees of freedom of the first corner.

4 Numerical investigations

In this section, some plate problemsmodeled byCG1-formulation based on theCoons-Gregory rational approx-
imant space are analyzed. The examples will be used to verify the fulfillment of G1-continuity particularly
on distorted geometries using structured meshes. In addition, the accuracy and the rate of convergence of the
solution will be presented, and compared with efficient finite elements available in the literature. The perfor-
mance of the element will be evaluated calculating the rate of convergence of the energy error. It is recalled
that for a complete interpolation of degree k with a variational index of the problem equal to 2, the theoretic
rate of convergence of the energy norm is k − 1 if no singularities are present. In the plots for convenience
is reported the relative error on the strain energy and not its norm; therefore, the ideal rate of convergence
expected is 2(k −1). Gauss quadrature was used for evaluating the integrals, adopting p+1 = 4 Gauss points
in each direction.

4.1 Square-plate

First, we consider a square plate with a non uniform structured mesh characterized by the mesh distortion
parameter a, as shown in Fig. 4. The length of the edge of the plate is L = 1 [m], Young’s modulus E =
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Fig. 4 Geometry and labels of the square plate problem

h

(a)

h

(b)

h

(c)

Fig. 5 Square plate: considered distorted un-structured meshes. a a = 0.2. b a = 0.3. c a = 0.4

108 [kN/m2] ν = 0.25 and the thickness is 10−4 [m]; in Fig. 4 are shown the labels attributed to the patches
and to the lines between these patches. For each value of the mesh distortion a, we consider several meshes,
obtained dividing each patch in an equal number of elements, and in order to test the G1-continuity several
boundary conditions and different load cases are analyzed. In Fig. 5 are represented the meshes for three values
of the distortion parameter a, and a discretization of 8×8 elements. Notice the severe distortion that is achieved
when a = 0.3 or 0.4.

4.1.1 Simply supported square plate with uniform pressure

First is considered the case of a plate with simply supported boundary conditions loaded by an uniform pressure
q = 1[kN/m2]. The exact value of the strain energy for the case at hand is 95.766217011 [kNm].

The rate of convergence of the energy error for several values of the distortion parameter a ranging in the
interval (0, 0.4) is presented in Fig. 6a. On the abscissa is reported the characteristic value h of the elements,
taken equal to the vertical length of the element at the generic level of refinement. It is found that the rate
of convergence achieves its optimal value for any value of the distortion, confirming the robustness of the
proposed element. Also the accuracy only slightly decreases for increasing distortion. Figure 6b presents the
convergence of the strain energy increasing the number of elements per side of the plate. A convergence from
below is obtained, as it was expected since the element is displacement based.

The robustness of the element can also be evaluated from the analysis of the condition number of the
stiffness matrix, that is reported in Fig. 7a as a function of the number of elements per side of the plate. As it is
expected when the elements are not distorted, the condition number remains constant for all the discretizations.
For larger values of the distortion parameters, the condition number degrades when the element size becomes
smaller. However, it is observed that even for the most distorted mesh considered, the condition number
increases by less than one order of magnitude.
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Fig. 6 Simply supported plate with uniform pressure—convergence properties: a Rate of convergence for the relative energy
error. b Convergence for the energy versus the number of the elements per side
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Fig. 7 Simply supported plate with uniform pressure: a Condition number of the stiffness matrix. b Bending moment Mxx

A sketch of the bending moment in the plate, evaluated at the Gauss points, is presented in Fig. 7b.
The deformed configuration for a 4x4 mesh obtained with the conforming CG1-formulation is shown in

Fig. 8a, b, referring to the cases a = 0, a = 0.4, from which the continuity of the slope at the element
boundaries can be appreciated.

The achievement of the G1-continuity is further verified with the plots of Fig. 9a, b, where the components
of the unit normals to the deformed configuration are plotted along the edge lines 1 and 2, see Fig. 4 using a
black and a white line for elements located on either side of the lines. The severe case a = 0.4 is considered.
The plots perfectly superpose, and the difference in the components of the unit normal vector along the joints
is numerically zero.

4.1.2 Clamped square plate with uniform pressure

The second application concerns a clamped plate loaded by a uniform pressure like in the previous case. The
exact value of the strain energy for this case is 21.8880043 [kNm]. Figure 10a shows the rate of convergence for
different distortions of the mesh. Also, in this case, the optimal rate of convergence is achieved, independently
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Fig. 8 Simply supported square plate with uniform pressure—magnified deformed configurations obtained with the CG1-
formulation: a a = 0.0, b a = 0.4
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Fig. 9 Simply supported square plate with uniform pressure—components of the unit normal vector along a the line 1, b the line
2, (MF = 10−3)

from the distortion. The loss in the accuracy level for distorted meshes is almost negligible, as can also be
observed from the convergence results of Fig. 10b. The deformed configurations of the plate for a = 0, a = 0.4
are represented in Fig. 10c, d, also in this case the slopes at the boundaries between adjacent elements are
perfectly continuous.

4.1.3 Simply supported square plate under central point load

In this subsection, a simply supported square plate is considered subjected to a point force F = {0, 0,−1} [kN ]
at the center. The exact value of the strain energy is 0.652547 ∗ 103 [kNm]. A convergence analysis under
the h-refinement for the CG1-formulation is shown in Fig. 11a, in which h represents the element side, for
the values a = 0, 0.2, 0.3, 0.4. Contrarily to the cases of the plate loaded with an uniform pressure, the
rate of convergence obtained is 2. This is due to the fact that in a point loaded plate there is a logarithmic
singularity in the solution [45]. However, also in this case, there is no degradation of the rate of conver-
gence introducing distortion in the mesh. The accuracy of the solution, however, is more affected by the
distortion with respect to the case of uniform load, as can also been appreciated by the convergence plot
of Fig. 11b.

Figure 12a, c present the convergence of the energy error for the cases a = 0 and a = 0.4, compared with
the results obtained by two plate elements of the MITC plate family, MITC4 and MITC9 [22]. These elements
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Fig. 10 Clamped plate with uniform pressure—convergence properties: a Rate of convergence for the relative energy error, b
Energy versus the number of elements per side. Magnified deformed configurations: c a = 0.0, d a = 0.4
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Fig. 11 Simply supported plate with a central point force —convergence properties: a Rate convergence for the relative energy
error, b Convergence for the energy versus the number of elements side

were chosen for the comparison since they are among the best elements available for plates. Since MITC plate
are shear deformable, a very small thickness was used in the calculation, in order to make the influence of shear
negligible. The rate of convergence of MITC4 is smaller than the one found with the CG1-formulation, as it
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Fig. 12 Simply supported plate with concentrated force—rate of convergence of the energy relative error for the two values of
the mesh distortion: a a = 0.0, c a = 0.4, and respectively deformed configuration: b a = 0.0, d a = 0.4

should be, since MITC4 uses linear interpolations. The rate of convergence of MITC9 is, instead, comparable,
showing that the sub-optimal rate of convergence found with the proposed element is due to the singularity
present in the solution and not to the formulation. The deformation of the plates for a = 0, 0.4 are presented
in Fig. 12b, d, from which slope continuity can be appreciated.

4.1.4 Clamped square plate with central point load

A vertical force of 1[kN ] is applied at the center of the clamped plate. The exact strain energy is 3.15676 ∗
102 [kNm]. The rate of convergence for a = 0, a = 0.2, a = 0.3, a = 0.4 is presented in Fig. 13a. Also in
this case, a rate of 2 is obtained, analogously to the case of the simply supported plate, and also similar is the
slight degradation of the accuracy that is found for the more distorted meshes.

The convergence for the energy error for a = 0, a = 0.4 are also in this case compared with the results
foundwithMITC4 andMITC9 elements (Fig. 14a, c). The rate of convergence foundwith the CG1-formulation
is similar to the one obtained with MITC9, even though the accuracy is somewhat worse.
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Fig. 13 Clamped plate with a central point force—Convergence properties: a Rate of convergence for the relative energy error,
b Convergence of the energy versus the number of elements per side

4.1.5 Square plate: sensitivity to distortion

In this section, the results obtained in the previous sections are summarized in order to evaluate the influence
of the distortion of the structured mesh on the error obtained in the numerical solution. Specifically, the energy
error evaluated with a 8× 8 mesh is reported against the parameter a in Fig. 15a–d for the cases of the simply
supported plate with uniform pressure, clamped plate with uniform pressure, simply supported plate with
concentrated load, clamped plate with concentrated load, respectively.

In order to evaluate the results also the energy errors obtained with MITC4 and MITC9 plate elements,
which are known to be very robust under mesh distortion, are reported. It can be seen that the proposed
element presents a robustness close (in some cases even better) than MITC9, while, at least for plates loaded
with uniformpressure,MITC4 shows a grater insensitivity of the error tomesh distortion. Its accuracy, however,
is smaller, due to the lower degree of the interpolation. From these comparisons appears the robustness of the
proposed CG1-formulation.

4.2 Patch test: a case with constant bending moments

In this section we consider a square plate with only two simply supported edges and subjected to a unit
point force at the free corner. A structured mesh defined by means of the distortion parameter a is considered
analogously to the previous case. The relevant data are L = 1 [m], E = 108 [kN/m2], ν = 0.25 and a
thickness of 10−3 [m]. For this set-up, the bending moments Mxx and Myy are constantly equal to zero while
the twisting moment is constant and equal to 0.5 [kN/m]. The convergence analysis for the relative energy
error is plotted in Fig. 16a for several values of the distortion parameter.

Although the element does not present severe locking and the solution converges to the exact one, the
optimal rate of convergence is not achieved. An enhanced formulation able to pass the patch test will be in
subsequent work. The deformed configuration obtained with the CG1-formulation is depicted in Fig. 16b for
a 4 × 4 mesh.

4.3 Clamped circular plate

In order to show the suitability of the method to treat curved meshes, we consider the case of a circular plate.
Two cases of a clamped circular plate are considered, one subjected to an uniform pressure p = 1 [kN/m2],
the other one subjected to a point force at the center of the plate F = 1 [kN ]. The plate has r = 1 [m],
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Fig. 14 Clamped square plate with concentrate force—Rate of convergence of the energy relative error for the two values of the
mesh distortion: a a = 0.0, c a = 0.4, and respectively deformed configuration: b a = 0.0, d a = 0.4

E = 108 [kN/m2], ν = 0.25, and the thickness is t = 10−4 [m]. The structured mesh for this geometry is
obtained by an ad hoc deformation of a square geometry.

Continuity of the slopes is again satisfied, as shown in Fig. 17c. The convergence of the energy for the two
cases is illustrated in Fig. 17a, b, highlighting the good accuracy obtained in both cases, especially with the
uniform pressure.

5 Conclusions and future developments

In this work, starting from a re-visitation of the Gregory’s enhancement of the Coons patch interpolation, as
in [24,25,39] we have formulated a quadrilateral finite element for the Kirchhoff plate problem that implicitly
achieves G1-continuity strongly, provided that a G1-conforming structured mesh is considered for the plate
geometry description. This has been obtained adopting a rational enhancement of the Hermite interpolation
that however presents discontinuities for the curvatures at the four corners.

Analogously to theG1-strategy presented in [28], in this work the boundary edge rotations are introduced as
degrees of freedom in the formulation of the conforming element. In this work, only the bi-cubic interpolation
case has been investigated. The obtained element shows the theoretical optimal rate of convergence for the
energy error, and appears to be robust and highly accurate also for very distorted structured meshes.
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Fig. 15 Sensitivity of the element to the structured mesh distortions. a Simply supported plate under uniform pressure. bClamped
plate under uniform pressure. c Simply supported plate under a central point force. d Clamped plate under a central point force

The lack of continuity of the bending curvatures at the corners has been shown to reduce somewhat the
rate of convergence for those problems where a constant deformation field is present, i.e., the rational CG1-
formulation does not pass the bending patch test.

Future developments are concerned with the following items:

– Generalization of the proposed CG1-formulation to general C0-conforming un-structured meshes.
– Adapt the CG1-formulation in order to pass the bending patch test.
– Application of the CG1-formulation to more general Isogeometric formulations.
– Generalization of the CG1-formulation for the computation of the non-polar shell models.

The CG1-formulation can be able to design conforming finite elements for the computation in higher
gradient elasticity, analogously to [46,47]. Furthermore, the CG1-formulation naturally take into account
edge beam elements and the presence of second gradient terms, it is particularly suitable for computing two-
dimensional sheet with embedded fibers as introduced and discussed in [48–52].
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Fig. 16 Patch test: a Convergence analysis of the relative energy error for several a. b Deformed configuration obtained for
a = L/4 with a 4 x 4 structured mesh
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Fig. 17 Clamped circular plate: a Convergence of the energy versus the number of element per side (uniform pressure), b
Convergence of the energy versus the number of element per side (concentrated force), c Deformed configuration (concentrated
force)

A Proof of Gregory’s interpolation

The proof of Gregory’s interpolation can be given by direct check. Referring to edge 1, let’s evaluate the
derivative of the surface along the line θ1 = 0 using Coons’ interpolation (41):
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Accounting for the identities (36) and substituting for the corner twists the expressions (42) all the addends in
(56) except the first cancel out. Specifically for the terms involving the twists one has:
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Note that the definitions (42) introduce a discontinuity on the corner torsion, that is

lim
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