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Abstract: The approach based on the Wigner function is considered as a viable model of quantum
transport which allows, in analogy with the semiclassical Boltzmann equation, to restore a
description in the phase-space. A crucial point is the determination of the Wigner function at
the equilibrium which stems from the equilibrium density function. The latter is obtained by a
constrained maximization of the entropy whose formulation in a quantum context is a controversial
issue. The standard expression due to Von Neumann, although it looks a natural generalization of the
classical Boltzmann one, presents two important drawbacks: it is conserved under unitary evolution
time operators, and therefore cannot take into account irreversibility; it does not include neither the
Bose nor the Fermi statistics. Recently a diagonal form of the quantum entropy, which incorporates
also the correct statistics, has been proposed in Snoke et al. (2012) and Polkovnikov (2011). Here,
by adopting such a form of entropy, with an approach based on the Bloch equation, the general
condition that must be satisfied by the equilibrium Wigner function is obtained for general energy
dispersion relations, both for fermions and bosons. Exact solutions are found in particular cases.
They represent a modulation of the solution in the non degenerate situation.

Keywords: Wigner function; quantum entropy; transport of bosons and fermions

1. Introduction

The use of the Wigner function is one of the way to study quantum transport. Its main advantage is
that a description similar to the classical or semiclassical transport is obtained in a suitable phace-space.
For example the mean values are expectation values with respect to the Wigner function as it would
be a probability density. Moreover, the semiclassical limit of the Wigner transport equation recovers,
at least formally, the Boltzmann transport one. There is a huge body of literature regarding the
Wigner equation and the way to numerically solve it (see for example [1–3] and references therein).
However, the most part of the works in the subject consider a quadratic dispersion relation for the
energy. Instead, for several material like semiconductors or semimetal, e.g., graphene, other dispersion
relations must be considered [4–7]. From the Wigner transport equation quantum hydrodynamical
models have been obtained in [8] for charge transport in silicon in the case of parabolic bands,
while in [9] the same has been devised for electrons moving in graphene.

A starting point is the determination of the equilibrium Wigner function. It can be obtained
by using the Jaynes approach [6,10–12] of maximizing the entropy under suitable constraints on the
expectation values. A crucial issue is the expression of the entropy in the quantum case. In [8,9] the
standard prescription proposed by von Neumann has been adopted but it leads to a semiclassical limit
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represented by the Maxwell–Boltzmann distribution. For dilute gases this can constitute an acceptable
approximation but for strongly degenerate gases it is necessary to include the appropriate statistics as
for example done in [13] where expansions of the equilibrium Wigner functions were determined by
using the Moyal formalism.

Moreover, in a closed system the von Neumann entropy is conserved (see the papers [14,15])
because the evolution is described by unitary operators. Arguing on such a remark, in [15] it has
suggested to use as entropy only the diagonal contribution and has proved that it increase in time
according to the second law of thermodynamics.

Here, similarly to what already considered in [10] and more recently pointed out in [14] and
employed in [13], we adopt a diagonal form of the entropy which incorporates also the correct statistics
but we use an approach based on the Bloch equation to get the equilibrium Wigner function for a
general dispersion relation. Both the case of fermions and bosons are treated. The general solution
is very difficult to get analytically and a numerical approach is the only viable approach. Here,
exact solutions are obtained in particular cases. They represent a modulation of the solution in the non
degenerate situation.

The plan of the paper is as follows. In Section 2 the general features of the quantum transport based
on the Wigner function are recalled. In Section 3 the general problem of determining the equilibrium
density matrix is tackled while in Section 4 the general equation for determining the equilibrium
Wigner equation is deduced. In the last section examples of solutions in the spatially homogeneous
case are given both for fermions and bosons. Some details are postponed in the Appendix A.

2. Quantum Transport Based on the Wigner Equation

Let us introduce the single-particle density matrix, ρ(r, s, t) which is related to the wave function
ψ by

ρ(r, s, t) = ψ(r, t)ψ(s, t) for any r, s ∈ Rd,

with d dimension of the space, e.g., for electrons flowing in graphene d = 2 while for charge carriers in
bulk silicon d = 3. It satisfies the relation

ρ(r, r, t) = n(r, t),

where n(r, t) is the position probability density.
The time evolution of the density matrix is described by the quantum Liouville equation

ih̄
∂

∂t
ρ(r, s, t) = (Hr − Hs)ρ(r, s, t)

where Hr and Hs represent the symbols of Hamiltonians acting with respect to the r and s variable
respectively.

If E(p) is the energy band in terms of the crystal momentum p = h̄k, the symbol of the
Hamiltonian reads

H(r, p) = E(p) + Φ(r, t)

where the external potential Φ(r, t) here is assumed to be real. Moreover, we assume that E(p) is a
even function of the modulus of p.

On account of the quantum mechanics correspondence principle p −→ −ih̄∇r, the quantum
Liouville equation reads

ih̄
∂

∂t
ρ(r, s, t) = (E(−ih̄∇r)− E(−ih̄∇s))ρ(r, s, t) + [(Φ(r, t)−Φ(s, t))] ρ(r, s, t). (1)
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Given a function g ∈ L1(Rd) let us denote by F [g](η) its Fourier transform

F [g](η) =
∫
Rd

v

g(v)e−iv·ηdv,

and let us denote by F−1 the inverse Fourier transform

F−1[h(η)] =
1

(2π)d

∫
Rd

η

h(η)eiv·ηdη.

with h(η) = F [g](η).
In order to derive a transport equation, let us introduce the single particle Wigner

quasi-distribution w(x, p, t), depending on the position x, momentum p and time t, defined as

w(x, p, t) = F
[
ρ
(

x +
y
2

, x− y
2

, t
)]

(x, p, t) =
∫
R2

y

ρ
(

x +
y
2

, x− y
2

, t
)

e−ip·y/h̄dy.

That satisfies the following equation obtained from (1) by a Wigner transformation
(see Appendix A for the details)

∂w(x, p, t)
∂t

+ S[E ]w(x, p, t) + θ[E ]w(x, p, t) = C[w]. (2)

which is the quantum counterpart of the semiclassical Boltzmann transport equation and sometimes is
referred to the Wigner–Boltzmann equation.

S[E ] and θ[E ] represent the pseudo-differential operators

S[E ]w(x, p, t) =
i

h̄(2π)d

∫
Rd

x′×R
d
ν

[
E
(

p +
h̄
2

ν, t
)
− E

(
p− h̄

2
ν, t
)]

w(x′, p, t)e−i(x′−x)·νdx′dν, (3)

θ[E ]w(x, p, t) =
i

h̄(2π)d

∫
Rd

p′×R
d
η

[
Φ
(

x +
h̄
2

η, t
)
−Φ

(
x− h̄

2
η, t
)]

w(x, p′, t)ei(p′−p)·ηdp′dη. (4)

and C[w] is a sort of collision term.
In realistic cases the expression of C[w] is rather complex (see for example [1]). A simplified model

is based on the relaxation time approximation

C[w] = −ν
(
w− weq

)
.

where weq is the equilibrium Wigner function and ν plays the role of a collision frequency which in
general can depend on p. Moreover, several hydrodynamical models introduce quantum corrections
just from the equilibrium Wigner function, see for example [8,16]. Therefore, a crucial step is to find
out the expression of weq.

3. Equilibrium Density Function

Let us denote with ρ̂ the density matrix operator. It is related to ρ by

(ρ̂ φ)(x, t) =
∫
R2

ρ(x, y, t)φ(y)dy,

for any suitable test function φ. In other words, ρ(x, y, t) is the kernel of ρ̂. The latter solves the
operatorial quantum Liouville equation

ih̄
∂

∂ t
ρ̂ = [Ĥ, ρ̂],
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where Ĥ is the Hamiltonian and [Ĥ, ρ̂] = Ĥρ̂ − ρ̂Ĥ is the commutator. In a steady state, and in

particular at equilibrium,
∂

∂t
ρ̂ = 0 and therefore [Ĥ, ρ̂] = 0.

The equilibrium density matrix can be obtained by employing a generalisation of the Maximum
Entropy Principle (hereafter MEP) in a quantum context [10,17,18] (for the semiclassical case
see [6,9,12,19–22]). According to the quantum version of MEP the equilibrium density matrix is
obtained by maximising the quantum entropy Sq under suitable constraints on the expectation values.

If we consider particles moving in a thermal bath, e.g., electrons in a semiconductor keeping
phonons at equilibrium with temperature T, the equilibrium density matrix has to satisfy the constraints

trρ̂ = 1, < Ĥ >= tr(ρ̂Ĥ), (5)

where tr is the trace operator. Since at equilibrium Ĥ commutes with ρ̂, there exists an orthonormal
basis such that both Ĥ and ρ̂ have a diagonal representation (for the sake of simplicity we assume that
the spectrum is discrete)

Ĥ = ∑
i
Ei|ψi >< ψi|, ρ̂ = ∑

i
ρi|ψi >< ψi|.

A controversial question is the appropriate expression of Sq. The standard formulation is that of
von Neumann [23]

Sq = −kB tr(ρ̂ ln ρ̂), (6)

which is the natural generalization to a quantum context of the Maxwell–Boltzmann one or,
in information theory, the generalization of the Shannon entropy. Maximizing the entropy (6) under
the constraints (5) means maximizing the objective function

−∑
i

kB ρi ln ρi + α

(
1−∑

i
ρi

)
+ β

(
< Ĥ > −∑

i
ρiEi

)
,

with α and β Lagrange multipliers. One gets, after an obvious renormalization of the
Lagrange multipliers,

ρi = exp (−β(Ei − φF))) (7)

where φF is the quasi-Fermi potential and β =
1

kBT
.

Therefore, the equilibrium density matrix operator is given by the following. We recall that if Â is
a Hermitian operator and f a function regular enough, f (Â) is defined as follows. In a basis where Â
has a diagonal representation

Â = ∑
i

ai|ψi >< ψi|,

with ai eigenvalues of Â, we set
f (Â) = ∑

i
f (ai)|ψi >< ψi|,

provided f (ai) makes sense.

ρ̂eq = exp(−β(Ĥ − φF)),

which appears as the natural counterpart of the Maxwell–Boltzmann density.
Now, we have to face two important problem related to the von Neumann entropy. In case of

fermions or bosons the equilibrium Wigner function does not include the Fermi or the Bose statistics.
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Moreover (see the papers [14,15]), in a closed system Sq is conserved because the evolution of the
system is described by unitary operators. However, in a open system, like a semiconductor electron
device, there is a fast decay of the off-diagonal terms and practically only the diagonal contribution
to Sq survives. Arguing on such a remark, Polkovnikov [15] has suggested to use as entropy only
the diagonal contribution Sd and has proved that it increase in time according to the second law of
thermodynamics. A further modification, already considered in [10], more recently pointed out in [14]
and employed in [13], which incorporate also the correct statistics is to define the quantum entropy as

S = −kB ∑
k
[ρkk ln ρkk ∓ (1± ρkk) ln(1± ρkk)] , (8)

where the ρkk’s are the expectation values of the diagonal elements of ρ̂ which can be interpreted as
occupation numbers, the upper sign being valid for bosons and the lower one for fermions. This could
solve the problem of the limit of the equilibrium Wigner function even if the needed calculations
become much more involved to carry out analytically [13].

Maximizing the entropy (8) under the constraints (5) means maximizing the objective function

−kB ∑
k
[ρkk ln ρkk ∓ (1± ρkk) ln(1± ρkk)] + α

(
1−∑

k
ρkk

)
+ β

(
< H > −∑

k
ρkkEkk

)
,

with α and β Lagrange multipliers. One gets, after an obvious renormalization of the Lagrange multipliers,

ρkk =
1

exp (β(Ekk − φF))± 1)

where again φF is the quasi-Fermi potential and β =
1

kBT
.

Therefore, the equilibrium density matrix operator is given by

ρ̂eq =
1

exp
(

β(Ĥ − φF)
)
± 1

(9)

4. Equilibrium Wigner Function

Once the equilibrium density function has been determined, the equilibrium Wigner function can
be obtained by a direct evaluation of the following Fourier transform

weq(x, p, t) = F
[
ρeq

(
x +

y
2

, x− y
2

, t
)]

(x, p, t) =
∫
Rd

y

ρeq

(
x +

y
2

, x− y
2

, t
)

e−ip·y/h̄dy.

However, explicit expressions are difficult to find out and in the most part they have been obtained
only in the case of the free particle energy dispersion relation. Usually an expansion based on the
Moyal calculus is employed (see for example [13]). Here, we adopt an alternative approach. We will
write down a differential equation which must be satisfied by the equilibrium Wigner function.

By taking the derivative of (9) with respect to β, one has

∂ρ̂eq

∂β
= −1

2
[(

Ĥ − φF
)

ρ̂eq +
(

Ĥ − φF
)

ρ̂eq
]
± 1

2

[(
Ĥ − φF

)
ρ̂2

eq +
(

Ĥ − φF
)

ρ̂2
eq

]
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where the commutation relation between Ĥ and ρ̂eq has been used. For any suitable test function ϕ,
we have ∫

R2

∂ ρeq(r, s, β)

∂ β
ϕ(s)ds = −1

2

∫
R2
[Hrρeq(r, s, β) + Hsρeq(r, s, β) +

∓ Hrρ2
eq(r, s, β)∓ Hsρ2

eq(r, s, β)− 2φFρeq(r, s, β)± 2φFρ2
eq(r, s, β)]ϕ(s)ds.

From general considerations in quantum mechanics, we require that Ĥ must be self-adjoint∫
R2

ρeq(r, s, β)Hsφ(s) ds =
∫
R2

Hsρeq(r, s, β)φ(s) ds

and therefore from the previous relations we get

∂ ρeq(r, s, β)

∂β
= −1

2
[Hrρeq(r, s, β) + Hsρeq(r, s, β)]

± 1
2
[Hrρ2

eq(r, s, β) + Hsρ2
eq(r, s, β)] + φFρeq(r, s, β)∓ φFρ2

eq(r, s, β),

which is named Bloch equation
Fourier transforming the Bloch equation, one finds the following equation for the equilibrium

Wigner function

∂weq(x, k, β)

∂β
= − 1

2
F
[(

ε(p +
h̄
2

ν) + ε(p− h̄
2

ν)

)
u(x, y, β)

+

(
Φ(x +

1
2

y) + Φ(x− 1
2

y)
)

u(x, y, β)

]
(x, k, β)± 1

2
F
[(

ε(p +
h̄
2

ν) + ε(p− h̄
2

ν)

)
u2(x, y, β)

+

(
Φ(x +

1
2

y) + Φ(x− 1
2

y)
)

u2(x, y, β)

]
(x, k, β) + ΦF weq(x, k, β)

∓ΦF F
[
u2(x, y, β)

]
(x, k, β) . (10)

Since for β = 0 we must have ρ̂eq = 1, it follows∫
Rd

ρ(r, s, 0)φ(s)ds = φ(r),

which implies (δ(r) denotes the Dirac distribution)

ρ(r, s, 0) = δ(s− r),

wherefrom the condition
weq(x, p, 0) = 1. (11)

Equation (10) augmented with the initial condition (11) is the basic relation of this work.
It represents the general condition that the equilibrium Wigner function has to satisfy for a general
dispersion relations in the degenerate case.

Equation (10) is very difficult to tackle analytically. A form more amenable to sought for analytical
solutions is obtained by introducing the following approximations up to first order in h̄2

ε

(
p +

h̄
2

ν

)
+ ε

(
p− h̄

2
ν

)
≈ 2ε(p) +

h̄2

4
∂2ε

∂pi∂pj
νiνj = 2ε(p) +

1
4

∂2ε

∂ki∂k j
νiνj,

Φ
(

x +
h̄
2

η

)
+ Φ

(
x− h̄

2
η

)
≈ 2Φ(x) +

h̄2

4
∂2Φ

∂xi∂xj
ηiηj = 2Φ(x) +

1
4

∂2Φ
∂xi∂xj

yiyj.
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After substituting into (10), one obtains

∂weq(x, k, β)

∂β
= −ε(p)weq(x, k, β) +

1
8

∂2ε

∂ki∂k j

∂2weq

∂xi∂xj
+

−Φ(x)weq(x, k, β) +
1
8

∂2Φ
∂xi∂xj

∂2weq(x, k, β)

∂ki∂k j

± 1
(2π)d ε(p)

∫
R2

weq(x, k′, β)weq(x, k′ − k, β)dk′

∓ 1
(2π)d

1
8

∂2ε

∂ki∂k j

∂2

∂xi∂xj

∫
R2

weq(x, k′, β)weq(x, k′ − k, β)dk′

± 1
(2π)d Φ(x)

∫
R2

weq(x, k′, β)weq(x, k′ − k, β)dk′

∓ 1
(2π)d

1
8

∂2Φ
∂xi∂xj

∂2

∂ki∂k j

∫
R2

weq(x, k′, β)weq(x, k′ − k, β)dk′ + ΦF weq(x, k, β)

∓ ΦF

(2π)d

∫
R2

weq(x, k′, β)weq(x, k′ − k, β)dk′ + o(h̄2). (12)

Of course the general solution is still difficult to get analytically. However, in order to compare
the results with those already known in the literature, in the next section particular cases will be
considered where explicit analytical solutions are found.

5. Particular Cases

Let us consider the homogeneous case. We have Φ(x) = Φ = constant and the Wigner function
does not depend on x, that is w = w(k, β). Under these assumption the Equation (10) reads

∂weq(k, β)

∂β
= − ε(k)weq(k, β)−Φweq(k, β)± 1

(2π)d ε(k)
∫
R2

weq(k′, β)weq(k′ − k, β)dk′

± qΦ
(2π)d

∫
R2

weq(k′, β)weq(k′ − k, β)dk′ + ΦF weq(k, β)

∓ ΦF

(2π)d

∫
R2

weq(k′, β)weq(k′ − k, β)dk′. (13)

To solve this equation let us consider the Laplace transform of the equilibrium Wigner function

ŵ(k, s) =
∫ +∞

0
e−sβweq(k, β)dβ.

By taking the Laplace transform of the Equation (13), one obtains

s ŵ(k, s)− weq(k, 0+) = −(ε + Φ−ΦF)ŵ(k, s)± 1
(2π)d (ε + Φ−ΦF)ŵ2(k, s) (14)

augmented with the condition weq(k, 0+) = 1.
Now we treat separately the case of fermions and bosons.

5.1. Fermions

Equation (14) gives

1
(2π)d (ε + Φ−ΦF)ŵ2(k, s)− (s + ε + Φ−ΦF)ŵ(k, s) + 1 = 0
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whose solutions are

ŵ±(k, s) =
(2π)d

2

(s + ε + Φ−ΦF)±
√
(s + ε + Φ−ΦF)2 − 4

(2π)d (ε + Φ−ΦF)

ε + Φ−ΦF

By taking the inverse Laplace transform, we get

w+(k, β) = − e−β(ε+Φ−ΦF)

β
√

ε+Φ−ΦF
(2π)d

I1

(
2β

√
ε + Φ−ΦF

(2π)d

)
+ δ(β) +

1
ε + Φ−ΦF

δ′(β),

w−(k, β) =
e−β(ε+Φ−ΦF)

β
√

ε+Φ−ΦF
(2π)d

I1

(
2β

√
ε + Φ−ΦF

(2π)d

)
(15)

where In(x) is the modified Bessel function of first kind of order n.
Of course, the first solution is not classical but valid in the distributional sense. We disregard it

looking as unphysical. The second solution is a kind of modulation of the Wigner function in the case
of the von Neumann quantum entropy, already found in [24],

w∗ = e−β(ε+Φ−ΦF).

which, of course, is a classical distribution if ε + Φ ≥ ΦF.
We recall the serie expansion of I1(z), valid for every z in the complex plane [25],

I1(z) =
1
2

z
+∞

∑
k=0

(
1
4 z2
)k

k!Γ(k + 2)
(16)

with Γ(z) Euler’ s gamma function.
From (16) it is easy verify that (15) tends to 1 as β 7→ 0+. Moreover, if z is a pure imaginary

complex number then I1(z) is also a pure imaginary complex number. Therefore, by choosing for the
square root the branch

√
ix = i

√
|x| for any x ∈ R, the Wigner function (15) is real.

5.2. Bosons

In this case Equation (14) gives

1
(2π)d (ε + Φ−ΦF)ŵ2(k, s) + (s + ε + Φ−ΦF)ŵ(k, s)− 1 = 0

whose solutions are

ŵ±(k, s) =
(2π)d

2

−(s + ε + Φ−ΦF)±
√
(s + ε + Φ−ΦF)2 + 4

(2π)2 (ε + Φ−ΦF)

ε + Φ−ΦF

By taking the inverse Laplace transform, we get

w+(k, β) =
e−β(ε+Φ−ΦF)

β
√
− ε+Φ−ΦF

(2π)d

I1

(
2β

√
− ε + Φ−ΦF

(2π)d

)
, (17)

w−(k, β) = − e−β(ε+Φ−ΦF)

β
√
− ε+Φ−ΦF

(2π)d

I1

(
2β

√
− ε + Φ−ΦF

(2π)d

)
− δ(β)− 1

ε + Φ−ΦF
δ′(β)
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As in the previous case the second solution is not classical but valid in the distributional sense
and we disregard it looking as unphysical. The first solution is again a kind of modulation of the
Wigner function in the case of the von Neumann quantum entropy. Note that when the argument of

1

β
√
− ε+Φ−ΦF

(2π)d

I1

(
2β

√
− ε + Φ−ΦF

(2π)d

)

is imaginary, the analogous for the (15) is real and vice versa.
We stress that both (15) and (17) are valid for any dispersion relation.
In Figure 1 the Wigner functions (15) and (17) are plotted versus energy for several values of

the parameter β: 1, 10, 20, 30 eV−1. Note that at room temperature (300 K) one has β ≈ 38.61 eV−1.
For comparison, w∗ is also shown. It is evident that by increasing the temperature, that is by decreasing
β, the degeneracy effect becomes negligible and w∗ and the equilibrium Wigner functions (17) and
(15) tend to coincide. This is in according with the general results in statistical mechanics but here it
has been deduced, to the best of our knowledge for the first time, from an analysis of the equilibrium
Wigner function including Boson and Fermion statistics. At low temperature relevant differences
are obtained between the degenerate and non degenerate cases. This indicates that the use of the
standard von Neumann entropy leads to equilibrium Wigner functions which are not suited for a
correct description of physical problems involving the transport of fermions and bosons. Observe that
the Wigner function is not always positive definite because of the Heisenberg uncertainty principle.
However, in the homogeneous case here considered the position is completely uncertain so the
momentum is certain and the Wigner function is positive. Therefore, after a suitable normalization,
it can be regarded as a classical distribution. Although apparently simple, the case of constant potential
has physically relevant applications. If one considers the transport of phonons in a crystal lattice
without any mechanical deformation, they do not undergo any external field but have a dispersion
relation which is not usually quadratic. For example acoustic phonons have a linear dispersion relation
near the center of the first Brillouin zone (the Debye approximation), that is

ε(p) = cs h̄|p|

where cs is the sound speed.
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Figure 1. Plots of the equilibrium Wigner function versus energy (in eV) for several values of the
parameter β: 1 (left top), 10 (right top), 20 (left bottom), 30 (right bottom) 1/eV.

6. Conclusions

By considering an expression of the quantum entropy which takes also into account the Fermi and
the Bose statistics, a general equation for the equilibrium Wigner function, valid for any energy
dispersion relation, has been deduced. Particular solutions have been obtained in the spacial
homogeneous case, generalizing what already known in the literature by assuming as quantum
entropy that proposed by von Neumann.

To find explicit analytical solutions of Equation (10) in the general case is a daunting task. As open
problem it should be interesting to develop appropriate numerical schemes to solve the Equation (10)
or its version up to first order in h̄2, Equation (12). A viable way could be to modify the approach in [26].
The equilibrium Wigner function can be used into the relaxation time approximation of the collision
term in the Wigner–Boltzmann equation or to introduce quantum corrections in the description of
quantum fluids, e.g., to existing drift-diffusion, energy-transport and hydrodynamical models for
charge transport. A possible application could be a generalization of the model for electron transport
in graphene presented in [27]. We mention also that in view of the enhancement of the importance of
the thermal effects in nanoscale devices, the developed formalism can be also adopted for a quantum
description of phonon transport based on the Wigner equation.
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Appendix A

Here the derivation of the Wigner Transport equation is recalled for a general energy dispersion
relation. We have to specify the meaning of the operator E(−ih̄∇r). The operator E(−ih̄∇r)ρ(r, s, t)
is defined as a multiplication operator in the Fourier transform space and then mapped back in the
r-space

E(−ih̄∇r)ρ(r, s, t) =
1

(2πh̄)d

∫
Rd

η×Rd
r′
E(η)ρ(r′, s, t)e−i η

h̄ ·(r
′−r)dηdr′. (A1)

where η is the momentum conjugate to r′.



Entropy 2020, 22, 1023 11 of 13

Now we are denoting with p the momentum conjugate with y. Using the change of coordinates

r = x +
y
2

, s = x− y
2

,

and after observing that

x =
r + s

2
, y = r− s,

the expressions of ∇r and ∇s are

∇r =
1
2
∇x +∇y, ∇s =

1
2
∇x −∇y,

and the symbols associated to E(−ih̄∇r) and E(−ih̄∇s) become

E
(

p +
1
2

η

)
, E

(
p− 1

2
η

)
,

respectively, where the fact that E is an even function has been used.

If we set u(x, y, t) := ρ
(
x + y

2 , x− y
2 , t
)

then w = F [u], where the Fourier transform is respect to
the variable y, and of course

u(x, y, t) = F−1[w] =
1

(2πh̄)d

∫
Rd

p

w(x, p, t)eip·y/h̄dp. (A2)

Fourier transforming Equation (1) gives

ih̄
∂

∂t
F [u](x, p, t) = F

[(
E
(

p +
1
2

η

)
− E

(
p− 1

2
η

))
u(x, y, t) + [(Φ(r, t)−Φ(s, t))] u(x, y, t)

]
(x, p, t).

From (A1) and (4), one has

F
[(
E
(

p +
1
2

η

)
− E

(
p− 1

2
η

))
u(x, y, t)

]
(x, p, t) =

=
1

(2πh̄)dF
[∫

Rd
x′×R

d
η

(
E
(

p +
1
2

η

)
− E

(
p− 1

2
η

))
u(x′, y, t)eiη· (x−x′)

h̄ dηdx′
]
=

=
1

(2πh̄)d

∫
Rd

x′×R
d
η×Rd

y

(
E
(

p +
1
2

η

)
− E

(
p− 1

2
η

))
u(x′, y, t)eiη· (x−x′)

h̄ e−ip·y/h̄ dη dx′ dy =

=
1

(2πh̄)d

∫
Rd

x′×R
d
η

(
E
(

p +
1
2

η

)
− E

(
p− 1

2
η

))
w(x′, p, t)eiη· (x−x′)

h̄ dη dx′,

(A3)

and

F
[(

Φ
(

x +
y
2

)
−Φ

(
x− y

2

))
u(x, y, t)

]
(x, p, t) =

=
1

(2πh̄)dF
[∫

Rd
p′

(
Φ
(

x +
y
2

)
−Φ

(
x− y

2

))
w(x, p′, t)eip′ ·y/h̄dp′

]
=

=
1

(2πh̄)d

∫
Rd

y×Rd
p′

(
Φ
(

x +
y
2

)
−Φ

(
x− y

2

))
w(x, p′, t)ei(p′−p)·y/h̄ dp′ dy.

(A4)

Altogether, the Wigner function satisfies the equation

∂w(x, p, t)
∂t

+ S[E ]w(x, p, t) + θ[E ]w(x, p, t) = 0.
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with S[E ] and θ[E ] definited in (3)–(4).
A further generalization includes also the presence of a sort of collision term into the Wigner

function obtaining (2).
Approximating with the Taylor expansion centered at h̄ = 0 we get

E
(

p +
h̄
2

ν, t
)
− E

(
p− h̄

2
ν, t
)
= ∇pE(p) · h̄ν +

1
24

∂3E(p)
∂pi pj pk

h̄3νiνjνk + O(h̄5), (A5)

Φ
(

x +
h̄
2

η, t
)
−Φ

(
x− h̄

2
η, t
)
= ∇xΦ(x) · h̄η+

1
24

∂3Φ(x)
∂xi∂xj∂xk

h̄3ηiηjηk + O(h̄5). (A6)

Substituting the previous relations into (3) and (4) we obtain

S[E ]w(x, p, t) ≈ i
h̄(2π)d

∫
Rd

x′×R
d
˚

[
∇pE(p) · h̄ν +

1
24

∂3E(p)
∂pi∂pj∂pk

h̄3νiνjνk

]
w(x′, p, t)e−i(x′−x)·νdx′dν

=
i

(2π)d∇pE(p) ·
∫
Rd

x′×R
d
ν

νw(x′, p, t)e−i(x′−x)·νdx′dν

+
i

(2π)d
1

24
∂3E(p)

∂pi∂pj∂pk
h̄2
∫
Rd

x′×R
d
˚

νiνjνkw(x′, p, t)e−i(x′−x)· ˚ dx′dν

= ∇pE(p) · ∇xw(x, p, t)− h̄2

24
∂3E(p)

∂pi∂pj∂pk

∂3w(x, p, t)
∂xi∂xj∂xk

(A7)

and

θ[E ]w(x, p, t) ≈ i
h̄(2π)d

∫
Rd

p′×R
d
η

[
∇xΦ(x) · h̄η+

1
24

∂3Φ(x)
∂xi∂xj∂xk

h̄3ηiηjηk

]
w(x, p′, t)ei(p′−p)·ηdp′dη

= −∇xΦ(x) · ∇pw(x, p, t) +
h̄2

24
∂3Φ(x)

∂xi∂xj∂xk

∂3w(x, p, t)
∂pi∂pj∂pk

.

(A8)
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