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Abstract: The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections, always treated
with vancomycin and daptomycin, has led to the emergence of vancomycin-intermediate (VISA),
heteroresistant vancomycin-intermediate (hVISA) and daptomycin non-susceptible (DNS) S. aureus. Even if
glycopeptides and daptomycin remain the keystone for treatment of resistant S. aureus, the need for
alternative therapies that target MRSA has now become imperative. The in vitro antibacterial and bactericidal
activity of dalbavancin was evaluated against clinically relevant S. aureus showing raised antibiotic
resistance levels, from methicillin-susceptible to Multidrug-Resistant (MDR) MRSA, including hVISA,
DNS and rifampicin-resistant (RIF-R) strains. A total of 124 S. aureus strains were tested for dalbavancin
susceptibility, by the broth microdilution method. Two VISA and 2 hVISA reference strains, as well as a
vancomycin-resistant (VRSA) reference strain and a methicillin-susceptible Staphylococcus aureus (MSSA)
reference strain, were included as controls. Time–kill curves were assayed to assess bactericidal activity.
Dalbavancin demonstrated excellent in vitro antibacterial and bactericidal activity against all S. aureus
resistance classes, including hVISA and DNS isolates. The RIF-R strains showed the highest percentage of
isolates with non-susceptibility, reflecting the correlation between rpoB mutations and VISA/hVISA emergence.
Our observations suggest that dalbavancin can be considered as an effective alternative for the management
of severe MRSA infections also sustained by refractory phenotypes.
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1. Introduction

Reduced susceptibility to glycopeptides in Staphylococcus aureus poses a great threat to antimicrobial
chemotherapy worldwide, and particularly in methicillin-resistant S. aureus (MRSA), it is seriously
challenging to the therapeutic field. Vancomycin-intermediate S. aureus strains with homogeneous (VISA) or
heterogeneous (hVISA) phenotypes are increasingly being reported all over the world, exposing significant
controversies on the present and future role of vancomycin and teicoplanin in the treatment of severe
infections sustained by hVISA-MRSA isolates [1]. In these strains, often with vancomycin minimum
inhibitory concentrations (MICs) in the 1–2 mg/L range, this reduced susceptibility has been attributed to
various cell-wall abnormalities, evolving in a multistep fashion. Even if the genetic occurrence at the base
of the hVISA phenotype has not yet been established, these strains often harbor modifications in graSR,
vraSR and walKR two-component system (TCS) regulatory genes, and RNA polymerase beta subunit (rpoB)
encoding genes [2].

In this scenario, daptomycin is always used as an alternative option for the treatment of infections
caused by S. aureus, with a potent bactericidal activity against MRSA, excluding VISA and hVISA
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clinical strains. Moreover, infections sustained by daptomycin non-susceptible S. aureus (DNS) and
DNS-VISA phenotypes, even if rare, are increasingly associated with increased higher mortality and
morbidity rates [3].

Dalbavancin, a new second-generation semisynthetic lipoglycopeptide, active against Gram-positive
pathogens, including MRSA, has recently been approved for the treatment of severe skin infections [4].
The analysis of the bactericidal activity by time-kill curve assays has shown that dalbavancin performs 4–8
times higher activity than vancomycin versus MRSA, and its activity, alone and in association, has also been
tested against MRSA, VISA, hVISA and DNS isolates [5,6].

The objective of this study was to investigate the in vitro antibacterial activity of dalbavancin against
strains of S. aureus belonging to diverse phenotypes of antibiotic resistance: methicillin-susceptible and
methicillin-resistant S. aureus (MSSA, MRSA); vancomycin-susceptible S. aureus (VSSA), hVISA and
VISA; DNS and rifampicin-resistant (RIF-R) S. aureus. All strains were isolated from patients with severe
infections (Blood Stream Infections—BSIs, Low Respiratory Tract Infections—LRTIs—and Skin and Soft tissue
Infections—SSTIs), as part of a multicenter study conducted in Italy, and molecularly characterized by routine
typing methods (sequence-type—ST; Staphylococcal Cassette Chromosome mec—SCCmec; staphylococcal
protein A—spa type) [7,8]. We also evaluated bactericidal activity of dalbavancin against a sample of the main
representative multidrug-resistant (MDR) and virulent epidemic clones (ST22-SCCmec-IVh, ST228-SCCmecI
RIF-R and ST1-SCCmecIV DNS), with increasing antibiotic resistance profiles.

2. Results and Discussion

Dalbavancin showed a potent in vitro activity against S. aureus (MIC range ≤ 0.007–0.125 mg/L), with
MIC50/MIC90 values within the susceptibility breakpoints, according to the international guidelines.

Remarkably, its activity was retained against the most refractory MDR-MRSA isolates belonging
to the major MRSA clones: ST228-SCCmec I, ST8-SCCmec IV, ST239-SCCmec III, ST5-SCCmec II,
and ST22-SCCmec-IVh. Dalbavancin also demonstrated activity against DNS isolates, making it a valuable
tool against these periodically reported strains [7–9]. In only two cases we found non-susceptibility values:
a hospital-associated HA-MRSA/VSSA strain belonging to the USA500-like (ST8-SCCmec IV) clone with a
dalbavancin MIC value one dilution above the susceptibility breakpoint (MIC 0.25 mg/L), and a DNS/VISA
strain belonging to ST1-VISA-SCCmec IV clone, with an MIC value of 2 mg/L (Table 1). This strain was
also RIF-R, carrying the most spread N481Y RpoB substitution [8]. The same increase in MIC values was
similarly observed in the VISA, Mu50 and NRS402 control strains (Table 2).

Table 1. In vitro activity of dalbavancin versus methicillin-susceptible Staphylococcus aureus (MSSA)
and methicillin-resistant Staphylococcus aureus (MRSA) (vancomycin-susceptible S. aureus (VSSA),
vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA); daptomycin
non-susceptible (DNS) and rifampicin-resistant (RIF-R) represented as MIC range (mg/L), MIC50/MIC90

and n/% of resistant isolates (R).

Strains n. of Strains MIC Range (mg/L) MIC50 (mg/L) MIC90 (mg/L) n. −% (R)

MSSA 23 ≤0.007–0.125 0.03 0.125 0
MRSA/VSSA (HA/CA-MRSA) 25 0.015–0.25 0.06 0.125 1 (4%)
MRSA/hVISA (HA/CA-MRSA) 22 ≤0.007–0.125 0.06 0.125 0
MRSA/DNS (hVISA + VISA) 4 (3hVISA + 1VISA) 0.06–2 0.06 0.125 1 (25%)

MRSA/RIF-R (hVISA + VSSA) 50 (31hVISA + 19VSSA) 0.015–0.5 0.125 0.25 9 (18%)
Tot S. aureus 124 ≤0.007–2 0.06 0.125 11 (8.8%)

MSSA, methicillin-susceptible S. aureus; MRSA, methicillin-resistant S. aureus; VSSA, vancomycin-susceptible
S. aureus; hVISA, hetero-resistant vancomycin-intermediate S. aureus; DNS, daptomycin non-susceptible; RD-R,
rifampicin-resistant. MIC range (mg/L) refers to the lower and higher dalbavancin MIC values; EUCAST dalbavancin
clinical breakpoint R > 0.125mg/L.

The selected RIF-R strains showed the highest percentage of isolates with non-susceptibility
to dalbavancin (n.9, 18%), although with MIC values between 0.25 and 0.5mg/L. These strains
showed nearly all a hVISA phenotype and belonged to the most spread Italian clone ST228-SCCmec
I-spa-type t001/t041 clone (7 out of 9), and to ST5-SCCmec II-spa-type t002 clone (1 out of 9), the same
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as the VISA/hVISA controls (Mu50/Mu3) included in the study, with which they share common
characteristics including a thickened cell wall [10]. Only one RIF-R/VSSA strain, showing a one-fold
higher dalbavancin MIC value, belonged to ST8-SCCmec IV/spa-type t008 clone usually spread in the
community setting. In the interpretation of this result, which deserves further insights, it should be
taken into account that the rifampicin-resistant phenotype of these strains occurred from different
mutations in the gene encoding RNA-polymerase (rpoB), whose alteration has been associated with
multiresistant daptomycin, vancomycin and beta-lactams phenotypes [8,9].

The results of time–kill curve assays provided a dynamic picture of the bactericidal activity against
three model strains: the analyses were conducted with different concentrations of dalbavancin, equal to
the MIC values 2, 4 and 8 times higher than the MIC value, respectively.

Dalbavancin exerted a potent bactericidal activity against the HA-MRSA/VSSA strain belonging
to the E-MRSA15-ST22-SCCmec-IVh spa-type t223 clone after 8h from the starting inoculum at
concentrations of 0.12 and 0.24 mg/L. Dalbavancin concentrations of 0.03 and 0.06 mg/L were not
sufficiently bactericidal, therefore bacterial growth increased over time, miming the antibiotic-free
control (Figure 1).
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Figure 1. E-MRSA15 ST22-IVh-t223 MIC (1X) 0.03mg/L: (a) Graph of curves obtained. (b) Average of
duplicate viable counts (CFU/mL) observed at T0-T2-T4-T8 and T24 time intervals and after exposure to
different concertation of dalbavancin (1-2-4 and 8X MIC). DAL: dalbavancin. Time (hour): 0, 2, 4, 8 and 24 h
after the starting inoculum. The red row represents the threshold of bactericidal activity (≥3 log10 decrease).

Against the RIF-R/hVISA strain belonging to ST228-SCCmec I spa-type t041, dalbavancin
bactericidal activity was exhibited at the higher concentration assayed of 4 mg/L (8X MIC) at 8
and 24 h intervals, and a non-bactericidal reduction of only 1 log10 at lower concentrations (1 and
2 mg/L), at 24 h (Figure 2).
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Table 2. In vitro activity of dalbavancin versus S. aureus control strains.

Subcategory Strain ST-MRSA-SCCmec spa-Type Dalbavancin MIC (mg/L)

MSSA ATCC29213 - - 0.06
MRSA-hVISA Mu3 ST5-hVISA-II t002 0.125
MRSA-VISA Mu50 ST5-hVISA-II t002 1

MRSA-hVISA NRS22 ST45-hVISA-II t266 0.03
MRSA-VISA (DNS) NRS402 ST5-VISA-II t002 1

MRSA-VRSA VRS1 ST5-VRSA Tn1546 vanA - ≥4

Clone characterization by means of: ST—Sequence Type; SCCmec—Staphylococcal Cassette Chromosome mec;
spa type—staphylococcal protein A.
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Figure 2. MRSA RIF-R ST228-I-t041 MIC (1X) 0.5 mg/L. (a) Graph of curves obtained. (b) Average of
duplicate viable counts (CFU/mL) observed at T0-T2-T4-T8 and T24 time intervals and after exposure
to different concentration of dalbavancin (1-2-4 and 8X MIC). DAL: dalbavancin. Time (hour): 0, 2,
4, 8 and 24 h after the starting inoculum. The red row represents the threshold of bactericidal activity
(≥3 log10 decrease).

The time–kill curve assay showed a stronger bactericidal activity of dalbavancin against the DNS
strain belonging to ST1-SCCmec IV spa-type t386, at 24 h and at all the concentrations assayed (Figure 3).
The bacterial growth considerably decreased from 3–4 log10, in the presence of 1X-2X and 4X MIC,
to 5 log10 with the highest dalbavancin concentration (16 mg/L—8X MIC). In this clone, the bactericidal
activity was exhibited only after 24 h from the starting inoculum. These data therefore deserve an
in-depth analysis, aimed at understanding if a correlation between daptomycin non-susceptibility and
delayed but conclusive bactericidal activity is conceivable [11,12].
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Figure 3. MRSA DNS ST1-IV-t386 MIC (1X) 2 mg/L. (a) Graph of curves obtained. (b) Average of
duplicate viable counts (CFU/mL) observed at T0-T2-T4-T8 and T24 time intervals and after exposure
to different concertation of dalbavancin (1-2-4 and 8X MIC). DAL: dalbavancin. Time (hour): 0, 2, 4,
8 and 24 h after the starting inoculum. The red row represents the threshold of bactericidal activity
(≥3 log10 decrease).

3. Methods Section

A total of 124 strains of S. aureus selected from a large collection of isolates from 63 centers
distributed throughout Italy—as part of the multicentre study CoSA-AMCLI 2012 [7,8]—were
tested for susceptibility to dalbavancin according to standard methods [13,14]. Characterization of
VSSA/hVISA/VISA phenotypes were also assessed by population analysis assay (PAP/AUC), following
previously published procedures [15]. All isolates were already genetically characterized by PFGE,
SCCmec-typing, Multilocus Sequence Typing (MLST—https://pubmlst.org/organisms), spa-typing
(https://spaserver.ridom.de), presence of pvl gene and evaluation of rpoB mutations responsible for the
RIF-R phenotype, as previously published [7,8].

In particular, the sample consisted of n. 23 MSSA; n. 24 MRSA/VSSA; n. 22 MRSA/hVISA; n. 5
DNS/MRSA and a selected sample n. 50 RIF-R/MRSA. Two VISA (Mu50 and NRS402) and two hVISA
(Mu3 and NRS22) strains, a vancomycin-resistant (VRS1) strain and an MSSA (ATCC 29213) strain
were included as controls.

Dalbavancin in vitro activity was tested by a microdilution method. For the preparation of dalbavancin,
100 mg of powder was completely dissolved in 10 mL Dimethyl sulfoxide (DMSO Sigma-Aldrich-Merck
KGaA, Darmstadt, Germany). Microtiter plates were prepared with 100 µl of Mueller Hinton Broth,
Cation-adjusted (CAMHB, NutriSelect™ Plus, Becton Dickinson, Franklin Lakes, NJ, USA), in which
100 µl of antibiotic were added at scalar concentrations starting from an initial concentration of 8 mg/L.
For dalbavancin, 0.002% polysorbate-80 (Tween 80) (Merck, Darmstadt, Germany) was previously added
to the broth CAMHB medium [13,14]. A standard inoculum of 0.5 McFarland was used as described by

https://pubmlst.org/organisms
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the CLSI M07-A10 document [16] and the results interpreted according to the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) breakpoint criteria [10].

The bactericidal activity of dalbavancin was evaluated by time–kill curves, according to standard
procedures [17]. Briefly, the experiments were performed in duplicate in 20 mL tubes containing
Cation-adjusted Mueller-Hinton broth (CAMHB), NutriSelect™ Plus, Becton Dickinson, Franklin Lakes,
NJ, USA) using a starting inoculum of 105–106 CFU/mL, with dalbavancin (1X, 2X, 4X and 8X MIC)
supplemented with 0.002% Tween 80. Additionally, 100 µl serial dilutions were plated in Mueller
Hinton Agar 2 (MH agar 2, NutriSelect™ Plus, Becton Dickinson, Franklin Lakes, NJ, USA), in different
time intervals T0-T2-T4-T8 and T24 (0, 2, 4, 8 and 24 h) and after overnight incubation at 37 ◦C the
grown colonies were counted. All experiments were repeated at least three times, and results of
a representative experiment are presented. Killing curves were constructed by plotting the log10

CFU ml−1 versus time over 24 h, and the change in bacterial concentration was determined. Data points
are averages from duplicate viable count determinations (CFU/mL) within an experiment. Bactericidal
activity was defined as a reduction of 99.9% (≥3 log10) of the total number of CFU/mL of the starting
inoculum (105–106 CFU/mL), after 24 h of exposure with the antibiotic. Bacteriostatic activity was
defined as maintenance of the starting inoculum or a reduction of less than 99.9% (<3 log10) of the total
number of CFU/mL of the starting inoculum [17].

4. Conclusions

Our study underlined the excellent in vitro antibacterial and bactericidal activity of dalbavancin
against representative strains belonging to the major epidemiologically diffused phenotypes, including
MRSA/hVISA, DNS and RIF-R strains, confirming the stability of its potency against S. aureus
isolates [18]. MRSA strains showing heteroresistance to vancomycin (hVISA), often with vancomycin
MICs in the 1–2 mg/L range, are increasingly being reported and a systematic review of the literature
on hVISA reported that patients infected with these organisms had a 2.37-fold greater failure rate
compared to those infected with fully susceptible (VSSA) organisms [19]. Consequently, significant
controversy exists regarding the current and future roles of vancomycin and teicoplanin in the treatment
of serious hVISA-MRSA infections. Our data corroborate with what has been recently reported by
other authors, reinforcing the hypothesis that dalbavancin may be a valuable agent against problematic
pathogens [6–20]. The interpretation of the slightly higher rate of dalbavancin non-susceptibility among
RIF-R/hVISA isolates needs further investigations, although it is possible to assume that the presence of
rpoB mutations in these strains [8], already associated with the emergence of vancomycin-intermediate
resistance, may affect the antimicrobial activity. The major refractoriness of RIF-R/hVISA and DNS
strains is also corroborated by other expression studies conducted on VISA and hVISA, in which the
drastic change in the cell transcriptional profile was demonstrated to be mainly associated to rpoB
mutations [21]. Nonetheless, it is to be mentioned that the dalbavancin MICs of these strains were only
one/two dilutions above the EUCAST breakpoint, and that many in vitro and in vivo preclinical studies
predicted that the pharmacokinetic/pharmacodynamic (PK/PD) profiles usually persist above the MIC
level [22]. Our observations suggest that dalbavancin will be considered an excellent therapeutic
alternative for the management of severe S. aureus infections sustained by MDR strains sharing diverse
and increasing behaviors of antibiotic resistance, also belonging to most refractory MRSA phenotypes.
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