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ABSTRACT: We present the Macaulay2 package Resultants, which provides
commands for the effective computation of multivariate resultants, discriminants,
and Chow forms. We provide some background for the algorithms implemented
and show, with a few examples, how the package works.

INTRODUCTION. The resultant characterizes the existence of nontrivial solutions
for a square system of homogeneous polynomial equations as a condition on the co-
efficients. One of its important features is that it can be used to compute elimination
ideals and to solve polynomial equations. Indeed, it provides one of the two main
tools in elimination theory, along with Gröbner bases. The resultant of the system
of equations given by the partial derivatives of a complex homogeneous polyno-
mial F is called (up to a constant factor) the discriminant of F. It characterizes
the existence of singular points in the projective hypersurface V (F) as a condition
on the coefficients of F. In this special case, all polynomial equations have the
same total degree. Every time the system of equations consists of n+1 polynomial
equations of the same total degree d , the resultant has a further interesting property:
it can be expressed as a polynomial of degree dn in the (n+1)×(n+1)minors of an
(n+1)×

(n+d
n

)
matrix, the coefficient matrix of the system of equations. This allows

us to write down a generic resultant in a more compact form. The polynomial of
degree dn so obtained is geometrically interpreted as the Chow form of the d-th
Veronese embedding of Pn.

The package Resultants, included with [Macaulay2], provides commands for
the explicit computation of resultants and discriminants. The main algorithm used
is based on the so-called Poisson formula, which reduces the computation of the
resultant of n+ 1 equations to the product of the resultant of n equations with the
determinant of an appropriate matrix. This algorithm requires a certain genericity
condition on the input polynomials, achievable with a generic change of coordi-
nates. The package also includes tools for working with Chow forms and more
generally with tangential Chow forms.
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In Section 1, from a more computational point of view, we give some back-
ground information on the general theory of resultants, discriminants, and Chow
forms. In Section 2, we briefly illustrate how to use the package with the help
of some examples; more detailed information and examples can be found in its
documentation.

1. OVERVIEW OF CLASSICAL RESULTANTS. We present an overview of some
classically well known facts on the theory of resultants for forms in several vari-
ables. For details and proofs, we refer mainly to [Gelfand et al. 1994; Cox et al.
2005]; other references are [Jouanolou 1991; 1997; van der Waerden 1950; De-
mazure 2012; Emiris and Mourrain 1999; Bajaj et al. 1988; Busé and Jouanolou
2014], and [Cox et al. 2007] for the case of two bivariate polynomials.

Resultants. Suppose we are given n+ 1 homogeneous polynomials F0, . . . , Fn in
n+1 variables x0, . . . , xn over the complex field C. For i = 0, . . . , n, let di denote
the total degree of Fi so that we can write Fi =

∑
|α|=di

ci,αxα, where xα denotes
xα0

0 · · · x
αn
n . For each pair of indices i, α, we introduce a variable ui,α and form

the universal ring of coefficients Ud0,...,dn := Z[ui,α : i = 0, . . . , n, |α| = di ]. If
P ∈ Ud0,...,dn , we denote by P(F0, . . . , Fn) the element in C obtained by replacing
each variable ui,α with the corresponding coefficient ci,α.

Theorem 1.1 [Gelfand et al. 1994; Cox et al. 2005]. If we fix positive degrees
d0, . . . , dn , then there is a unique polynomial Res = Resd0,...,dn ∈ Ud0,...,dn which
has the following properties:

(1) If F0, . . . , Fn ∈ C[x0, . . . , xn] are homogeneous of degrees d0, . . . , dn , then
the equations

F0 = 0, . . . , Fn = 0

have a nontrivial solution over C (i.e., ∅ 6= V (F0, . . . , Fn)⊂ Pn
C

) if and only
if Res(F0, . . . , Fn)= 0.

(2) Res is irreducible, even when regarded as a polynomial over C.

(3) Res(xd0
0 , . . . , xdn

n )= 1.

Definition 1.2. We call Res(F0, . . . , Fn) the resultant of F0, . . . , Fn .

Remark 1.3. If A is any commutative ring, we define the resultant of n+1 homoge-
neous polynomials F0, . . . , Fn ∈ A[x0, . . . , xn] again as Res(F0, . . . , Fn) ∈ A, i.e.,
by specializing the coefficients of the integer polynomial Res. Thus, the formation
of resultants commutes with specialization.

Example 1.4. The resultant is a direct generalization of the determinant. Indeed,
if d0 = · · · = dn = 1, then Res(F0, . . . , Fn) equals the determinant of the (n+ 1)×
(n+ 1) coefficient matrix.
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Proposition 1.5 [Jouanolou 1991; Jouanolou 1997]. The following hold:

(1) (homogeneity) For a fixed j between 0 and n, Res is homogeneous in the vari-
ables u j,α , |α| = d j , of degree d0 · · · d j−1d j+1 · · · dn; hence its total degree is∑n

j=0 d0 · · · d j−1d j+1 · · · dn .

(2) (symmetry) If σ is a permutation of {0, . . . , n}, then

Res(Fσ(0), . . . , Fσ(n))= sign(σ )d0···dn Res(F0, . . . , Fn).

(3) (multiplicativity) If F j = F ′j F ′′j , then we have

Res(F0, . . . , F j , . . . , Fn)= Res(F0, . . . , F ′j , . . . , Fn) Res(F0, . . . , F ′′j , . . . , Fn).

(4) (SL(n+1)-invariance) For each (n+ 1)× (n+ 1) matrix A over C, we have

Res(F0(Ax), . . . , Fn(Ax))= det(A)d0···dn Res(F0(x), . . . , Fn(x)),

where Ax denotes the product of A with the column vector (x0, . . . , xn)
t .

(5) (elementary transformation) If Hi is homogeneous of degree d j − di , then

Res(F0, . . . , F j +
∑
i 6= j

Hi Fi , . . . , Fn)= Res(F0, . . . , F j , . . . , Fn).

Remark 1.6. On the product AM
× Pn

= Spec(C[ui,α]) × Proj(C[x0, . . . , xn]),
where M =

∑n
i=0

(n+di
n

)
, we have an incidence variety

W :=
{
((ci,α), p) ∈ AM

×Pn
: p ∈ V

( ∑
|α|=d0

c0,αxα, . . . ,
∑
|α|=dn

cn,αxα
)}
.

The first projection π1 : W → AM is birational onto its image, whereas all the
fibers of the second projection π2 : W → Pn are linear subspaces of dimension
M − n− 1. It follows that W is a smooth irreducible variety which is birational to
π1(W )= π1(W )= V (Resd0,...,dn )⊂ AM.

The following result is called the Poisson formula and allows one to compute
resultants inductively.

Theorem 1.7 [Jouanolou 1991; Cox et al. 2005]. Let

fi (x0, . . . , xn−1) := Fi (x0, . . . , xn−1, 1)

and Fi (x0, . . . , xn−1) := Fi (x0, . . . , xn−1, 0). If Res(F0, . . . , Fn−1) 6= 0, then the
quotient ring A = C[x0, . . . , xn−1]/( f0, . . . , fn−1) has dimension d0 · · · dn−1 as a
vector space over C, and

Res(F0, . . . , Fn)= Res(F0, . . . , Fn−1)
dn det(m fn : A→ A), (1-1)

where m fn : A→ A is the linear map given by multiplication by fn .
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With the same hypotheses as Theorem 1.7, a monomial basis for A over C

(useful in the implementation) can be constructed as explained in [Cox et al. 2005,
Chapter 2, §2]. Note also that we have

det(m fn : A→ A)=
∏
p∈V

fn(p)multp(V ), (1-2)

where V = V ( f0, . . . , fn−1).
We now describe the most popular way to compute resultants, which is due to

Macaulay [1903]. Let

δ =

n∑
i=0

di − n and N =
(

n+ δ
n

)
.

We can divide the monomials xα of total degree δ into the n+ 1 mutually disjoint
sets

Si := {xα : |α| = δ, min{ j : xd j
j |x

α
} = i}, for i = 0, . . . , n.

A monomial xα of total degree δ is called reduced if xdi
i divides xα for exactly

one i . Consider the following N homogeneous polynomials of degree δ:

xα/xdi
i Fi , for i = 0, . . . n and xα ∈ Si . (1-3)

By regarding the monomials of total degree δ as unknowns, the polynomials in
(1-3) form a system of N linear equations in N unknowns. Let

D= D(F0, . . . , Fn)

denote the coefficient matrix of this linear system, and let D′(F0, . . . , Fn) denote
the submatrix of D obtained by deleting all rows and columns corresponding to re-
duced monomials. The following result is called the Macaulay formula and allows
one to compute the resultant as a quotient of two determinants.

Theorem 1.8 [MacAulay 1903; Jouanolou 1997; Cox et al. 2005]. The following
formula holds:

det(D(F0, . . . , Fn))= Res(F0, . . . , Fn) det(D′(F0, . . . , Fn)). (1-4)

In several special cases, the resultant can be expressed as a single determinant
(see [Gelfand et al. 1994, Chapter 13, Proposition 1.6]). We also mention that be-
sides (1-4), there are other ways to represent resultants as quotients: these include
Bezoutians [Elkadi and Mourrain 1998] and Dixon matrices [Kapur et al. 1994];
see also [Emiris and Mourrain 1999] and [Cox et al. 2005, p. 110]. However, all
these matrices are usually of much larger size than those involved by the Poisson
formula (1-1), as shown in the following simple example (see [Emiris and Mourrain
1999], for a comparison between Macaulay and other resultant matrices).
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Example 1.9. Let F0= x3
+y2z, F1= xy+y2

+xz+yz, F2= y4
+z4
∈C[x, y, z].

The Poisson formula expresses Res(F0, F1, F2) as the following product of deter-
minants:

Res(F0, F1, F2)=

12 det

1 0 0
1 1 0
0 1 1


4

· det



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 1 0 1 0 0
1 0 0 0 2 0
0 −1 0 1 0 2


= 16.

The Macaulay formula yields the same result as a quotient det(D)/det(D′), where
D and D′ are square matrices of size 36× 36 and 10× 10, respectively.

Discriminants. Let F =
∑
|α|=d cαxα ∈ C[x0, . . . , xn] be a homogeneous polyno-

mial of a certain degree d. As above, for each index α we introduce a variable uα
and form the universal ring of coefficients Ud := C[uα : |α| = d]. Then one can
show that, up to sign, there is a unique polynomial Disc= Discd ∈ Ud which has
the following properties:

(1) If F ∈ C[x0, . . . , xn] is homogeneous of degrees d , then the equations

∂F/∂x0 = 0, . . . , ∂F/∂xn = 0

have a nontrivial solution over C (i.e., the hypersurface defined by F is singu-
lar) if and only if Disc(F)= 0;

(2) Disc is irreducible, even when regarded as a polynomial over C.

Proposition 1.10 [Gelfand et al. 1994]. Up to sign, we have the formula

Disc(F)= cd,n Res
(
∂F
∂x0

, . . . ,
∂F
∂xn

)
, where cd,n = d

(−1)n+1
−(d−1)n+1

d . (1-5)

Definition 1.11. We call the polynomial defined by (1-5) the discriminant of F.

Proposition 1.12 [Gelfand et al. 1994]. The following hold:

(1) The polynomial Disc is homogeneous of degree (n+ 1)(d − 1)n .

(2) For each (n+ 1)× (n+ 1) matrix A over C, we have

Disc(F(Ax))= det(A)d(d−1)n Disc(F(x)),

where Ax denotes the product of A with the column vector (x0, . . . , xn)
t .

Geometrically, we have the following interpretation.

Proposition 1.13 [Gelfand et al. 1994]. The discriminant hypersurface V (Discd)

in the space of forms of degree d on Pn coincides with the dual variety of the d-th
Veronese embedding of Pn .
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Chow forms. Let X ⊂Pn be an irreducible subvariety of dimension k and degree d .
Consider the subvariety Z(X) in the Grassmannian G(n−k−1,Pn) of all (n−k−1)-
dimensional projective subspaces of Pn that intersect X . It turns out that Z(X) is
an irreducible hypersurface of degree d; thus Z(X) is defined by the vanishing of
some element RX , unique up to a constant factor, in the homogeneous component
of degree d of the coordinate ring of the Grassmannian G(n − k − 1,Pn) in the
Plücker embedding. This element is called the Chow form of X . It is notable that
X can be recovered from its Chow form. See [Gelfand et al. 1994, Chapter 3, §2]
for details.

Consider the product Pk
× X as a subvariety of P(k+1)(n+1)−1 via the Segre

embedding. Identify P(k+1)(n+1)−1 with the projectivization P(Mat(k+ 1, n+ 1))
of the space of (k + 1) × (n + 1) matrices and consider the natural projection
ρ : P(Mat(k + 1, n + 1)) 99K G(k, n) ' G(n − k − 1, n). The following result is
called the Cayley trick.

Theorem 1.14 [Gelfand et al. 1994; Weyman and Zelevinsky 1994]. The dual
variety of Pk

× X coincides with the closure ρ−1(Z(X)), where

Z(X)⊂ G(n− k− 1, n)

is the hypersurface defined by the Chow form of X.

The defining polynomial of the hypersurface ρ−1(Z(X))⊂P(Mat(k+1, n+1))
is called X-resultant; it provides another way of writing the Chow form of X .

Now, let F0, . . . , Fn be n+ 1 generic homogeneous polynomials on Pn of the
same degree d > 0, and let M=M(F0, . . . , Fn) be the (n+ 1)× N matrix of the
coefficients of these polynomials, N =

(n+d
n

)
. We consider the projection ρn,d :

P(Mat(n+1, N )) 99K G(n, N −1)'G(N −n−2, N −1) defined by the maximal
minors of M.

Proposition 1.15 [Gelfand et al. 1994; Cox et al. 2005]. The hypersurface of
degree (n + 1)dn in P(Mat(n + 1, N )) defined by the resultant Res(F0, . . . , Fn)

coincides with the closure ρ−1
n,d(V (Rn,d)), where Rn,d denotes the Chow form of the

d-th Veronese embedding of Pn. In particular, Res(F0, . . . , Fn) is a polynomial in
the maximal minors of M.

2. IMPLEMENTATION. In this section, we illustrate briefly some of the methods
available in the package Resultants, included with [Macaulay2]. We refer to the
package documentation (which can be viewed with viewHelp Resultants) for
more details and examples.

One of the main methods is resultant, which accepts as input a list of n+ 1
homogeneous polynomials in n+1 variables with coefficients in some commutative
ring A and returns an element of A, the resultant of the polynomials. There are

https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Resultants.m2
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no limitations on the ring A because of Remark 1.3. The algorithms implemented
are the Poisson formula (Theorem 1.7) and the Macaulay formula (Theorem 1.8).
The former is used by default since it is typically faster, while for the latter one has
to set the Algorithm option: resultant(...,Algorithm=>"Macaulay"). The
method can also be configured to involve interpolation of multivariate polynomials
(see [Manocha and Canny 1993]), i.e., it can reconstruct the polynomial resultant
from its values at a sufficiently large number of points, which in turn are evaluated
using the same formulas. The main derived method is discriminant, which
applies the formula (1-5) to compute discriminants of homogeneous polynomials.

Example 2.1. In the following code, we take two forms F,G of degree 6 on P3. We
first verify that Disc(F)= 0 and Disc(G) 6= 0 and then we compute the intersection
of the pencil generated by F and G with the discriminant hypersurface in the space
of forms of degree 6 on P3, which is a hypersurface of degree 500 in P83. (The
algorithm behind these calculations is the Poisson formula; this is one of the cases
where the Macaulay formula is much slower).
Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage "Resultants";
i2 : ZZ[w,x,y,z]; (F,G) = (w^6+x^6+y^6+w*x*y^4,w^6+x^6+y^6+z^6)

6 6 4 6 6 6 6 6
o3 = (w + x + w*x*y + y , w + x + y + z )
o3 : Sequence
i4 : time discriminant F

-- used 0.0179806 seconds
o4 = 0
i5 : time discriminant G

-- used 0.0310744 seconds
o5 = 140570811483169199470638017932788358544282187717397844656324826769552160278476332
56406502145120855236676811697488882435760217714078399664105019672381338748228576388801
69042329841357623161361759778624522173244483459194112043602458289220741512289591637737
14466361681597648097658753070739833449997864683601657856
i6 : R := ZZ[t,u][w,x,y,z]; pencil = t*sub(F,R) + u*sub(G,R)

6 6 4 6 6
o7 = (t + u)w + (t + u)x + t*w*x*y + (t + u)y + u*z
o7 : ZZ[t, u][w, x, y, z]
i8 : time D = discriminant pencil

-- used 7.05101 seconds
375 125 374 126 ...

11918167904272470982401...000t u + 44811489377450403137211...000t u ...
o8 : ZZ[t, u]
i9 : factor D

125 195 3 2 2 3 30 3 2 2 3 30
o9 = (u) (t + u) (25t + 81t u + 81t*u + 27u ) (29t + 81t u + 81t*u + 27u ) (
18453098603344854356045130076201433820906084922117987408631404035314583354936784858690
19666668055428407222803144055042891867966935429959336227999512218285981355846846846364
626801397625813957058058834010980828766582924640256)
o9 : Expression of class Product
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In particular, we deduce that the pencil 〈F,G〉 intersects the discriminant hyper-
surface in F with multiplicity 125, in F −G with multiplicity 195, and in another
six distinct points with multiplicity 30.

The package also provides methods for working with Chow forms and more
generally tangential Chow forms of projective varieties (see [Gelfand et al. 1994,
p. 104] and [Green and Morrison 1986]). In the following example, we apply some
of these methods.

Example 2.2. Take C ⊂ P3 to be the twisted cubic curve.

i10 : C = kernel veronese(1,3)
2 2

o10 = ideal (x - x x , x x - x x , x - x x )
2 1 3 1 2 0 3 1 0 2

o10 : Ideal of QQ[x , x , x , x ]
0 1 2 3

The Chow form of C in G(1, 3) can be obtained as follows:

i11 : w = chowForm C
3 2 2

o11 = x - x x x + x x + x x - 2x x x - x x x
1,2 0,2 1,2 1,3 0,1 1,3 0,2 2,3 0,1 1,2 2,3 0,1 0,3 2,3

QQ[x , x , x , x , x , x ]
0,1 0,2 1,2 0,3 1,3 2,3

o11 : --------------------------------------
x x - x x + x x
1,2 0,3 0,2 1,3 0,1 2,3

We can recover C from its Chow form by taking the so-called Chow equations;
see [Gelfand et al. 1994, p. 102; Catanese 1992].

i12 : C == saturate chowEquations w
o12 = true

The X -resultant of C can be obtained applying first the duality isomorphism
G(1,P3)= G(1,P3∗) and then passing from the Plücker to the Stiefel coordinates.

i13 : w’ = dualize w
3 2 2

o13 = x - x x x + x x + x x - x x x - 2x x x
0,3 0,2 0,3 1,3 0,1 1,3 0,2 2,3 0,1 1,2 2,3 0,1 0,3 2,3

QQ[x , x , x , x , x , x ]
0,1 0,2 1,2 0,3 1,3 2,3

o13 : --------------------------------------
x x - x x + x x
1,2 0,3 0,2 1,3 0,1 2,3

i14 : fromPluckerToStiefel w’
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3 3 2 2 2 2 2 3 ...
o14 = - x x + x x x x - x x x x + x x x - ...

0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 ...

o14 : QQ[x , x , x , x , x , x , x , x ]
0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3

The method cayleyTrick returns a pair consisting of the defining ideal of
P1
×C ⊂P7

'P(Mat(2, 4)) and the X -resultant of C , considered as a hypersurface
Z ⊂ P(Mat(2, 4)). Theorem 1.14 ensures that Z is the dual variety of P1

×C . We
can check this using the method dualVariety.

i15 : (P1xC,Z) = cayleyTrick C;
i16 : dualVariety(P1xC) == Z
o16 = true

Some overlapping packages. There are two further packages related to resultant
computations, which are included in Macaulay2: [Elimination] by M. E. Stillman,
and [EliminationMatrices] by N. Botbol, L. Busé and M. Dubinsky. The former
contains functions to compute Sylvester resultants. The latter can compute different
resultant matrices; in particular, it contains an implementation of the Macaulay
formula.

A further package for working with Chow forms is Coisotropy, by K. Kohn
(see [Kohn 2016]), which, in particular, contains a useful function to compute the
degrees of all tangential Chow forms of a given projective variety.

For all these overlapping functions, it does not seem easy to rank implementa-
tions in terms of efficiency because this generally depends on the problem. They
also differ in how they handle input and output. For instance, the discriminant of
a binary form computed using the package Elimination lies again in the same ring,
rather than in the ring of coefficients, and the Chow form of a projective variety
computed using Coisotropy lies in a polynomial ring, rather than in a quotient ring.

SUPPLEMENT. The online supplement contains version 1.2.1 of Resultants.
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