On the algebraic boundaries among typical ranks for real binary forms

Maria Chiara Brambilla ${ }^{1}$, Giovanni Staglianò*
Università Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona, Italy

A R T I C L E I N F O

Article history:

Received 28 April 2018
Accepted 31 July 2018
Available online 2 August 2018
Submitted by J.M. Landsberg

MSC:

primary 15A69
secondary $14 \mathrm{P} 10,14 \mathrm{~N} 05$

A B S T R A C T
We describe the algebraic boundaries of the regions of real binary forms with fixed typical rank and of degree at most eight, showing that they are dual varieties of suitable coincident root loci.
© 2018 Elsevier Inc. All rights reserved.

Keywords:
Typical rank
Real rank boundary
Binary form
Real roots
Coincident root locus
Waring problem

1. Introduction

The study of symmetric tensors, of their rank, decomposition and identifiability is a classical problem, which received great attention recently in both pure and applied mathematics; see e.g. [18] and references therein, see also [2,3,21, $8,20,1]$.

[^0]Symmetric tensors can be interpreted as homogeneous polynomials, also called forms. The rank of a degree d form f is the minimum integer r such that there exists a decomposition $f=\sum_{i=1}^{r} c_{i}\left(l_{i}\right)^{d}$, where l_{i} are linear forms and c_{i} are scalars.

In this paper we focus on the case of binary forms over the field of real numbers \mathbb{R}. In this case it is known that the (real) rank of a general form satisfies the inequalities $\frac{d+1}{2} \leq r \leq d$. Moreover all the ranks in this range are typical, that is, they occur in open subsets (with respect to the Euclidean topology) of the real vector space of degree d forms; see [4].

A natural problem is to understand the geometry of the sets $\Omega_{d, r}$ of forms of degree d and rank r. In particular we would like to describe the boundaries among the various sets of forms of given typical rank; more precisely, we are interested in understanding the algebraic boundaries, i.e., the Zariski closures of the topological boundaries (see Section 3 for the precise definitions).

The easiest case is the maximal one, that is when the rank is equal to the degree. Indeed it is proved in $[10,9]$ that a binary form of degree d with distinct roots has rank d if and only if all its roots are real. Hence its algebraic boundary is the discriminant hypersurface of forms with two coincident roots.

The geometric description of the sets $\Omega_{d, r}$ becomes much more intricate for $r<d$. Indeed, although the rank of a form is always greater than or equal to the number of its real distinct roots, in general the number of real distinct roots is not invariant in the region $\Omega_{d, r}$.

In [19] the authors study the boundary of the set of forms of rank $\left\lceil\frac{d+1}{2}\right\rceil$, which is the minimal typical rank. They prove that the components of the boundary are dual varieties of suitable coincident root loci.

We tackle the problem of describing all the intermediate boundaries in general, as proposed by Lee and Sturmfels in [19, Remark 4.5]. Our approach provides a unified description of all the boundaries in terms of dual varieties of coincident root loci. We recall that the cases of degree $d \leq 5$ have been described in [9], while the case $d=6$ follows by [19,10] (see Proposition 3.1 for more details). In this paper we focus on the cases $d=7$ and $d=8$, and we postpone a general description to future work.

The paper is organized as follows. Sections 2 and 3 are devoted to preliminary results; in particular, in Proposition 3.1 we recall the known results concerning algebraic boundaries for real binary forms of degree less than or equal to 6 . Section 4 and 5 contain our main results, which are Theorem 4.1 and Theorem 5.1, describing the algebraic boundaries for real binary forms of degrees respectively 7 and 8 . They turn out to be dual varieties of suitable coincident root loci. Finally in Section 6 we explain some of the computational methods of which we take advantage in our study.

2. Coincident root loci

We recall here some known results on coincident root loci, referring to [26,15, $6,7,17]$ for details.

We regard a degree d binary form $f=\sum_{i=0}^{d}\binom{d}{i} a_{i} x^{d-i} y^{i}$ over the complex field \mathbb{C} as a point of the projective space $\mathbb{P}\left(\mathbb{C}[x, y]_{d}\right)$, where $\mathbb{C}[x, y]_{d}=\operatorname{Sym}^{d}\left(\mathbb{C}^{2}\right)$. This space is identified with \mathbb{P}^{d} using homogeneous coordinates $\left(a_{0}, \ldots, a_{d}\right)$.

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of d is a list of integers $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 1$ such that $\sum_{i=1}^{n} \lambda_{i}=d$. Given a partition λ, the coincident root locus $\Delta_{\lambda} \subset \mathbb{P}^{d}$ is the set of binary forms f of degree d which admit a factorization $f=\prod_{i=1}^{n} \ell_{i}^{\lambda_{i}}$ for some linear forms $\ell_{1}, \ldots, \ell_{n} \in \mathbb{C}[x, y]_{1}$. A partition λ can be also represented by the list of integers m_{1}, \ldots, m_{k} defined as $m_{j}=\left|\left\{i: \lambda_{i}=j\right\}\right|$, and clearly $\sum_{j=1}^{k} j m_{j}=d$. Then the coincident root locus Δ_{λ} is given by the binary forms of degree d which have m_{j} roots of multiplicity at least j. It is classically known (see [13]) that $\Delta_{\lambda} \subset \mathbb{P}^{d}$ is a variety of dimension n and degree

$$
\begin{equation*}
\operatorname{deg}\left(\Delta_{\lambda}\right)=\frac{n!}{m_{1}!m_{2}!\cdots m_{k}!} \lambda_{1} \lambda_{2} \cdots \lambda_{n} \tag{2.1}
\end{equation*}
$$

If $\lambda=\left(2,1^{d-2}\right)$, the corresponding coincident root locus $\Delta_{\lambda}=\Delta$ is the classical discriminant hypersurface. In the opposite case, if $\lambda=(d)$ then Δ_{λ} is the rational normal curve $C_{d} \subset \mathbb{P}^{d}$. When $\lambda=\left(a, 1^{d-a}\right)$, the partition is called hook, and the associated coincident root locus Δ_{λ} represents the tangential developable of $\Delta_{\left(a+1,1^{d-a-1}\right)}$.

2.1. Singularities of Δ_{λ}

The singular loci of coincident root loci have been studied by Chipalkatti [6] and Kurmann [17].

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the singular locus $\operatorname{Sing}\left(\Delta_{\lambda}\right)$ is given by the union of Δ_{μ} for some suitable coarsenings μ of λ. See either [6, Definition 5.2], or [17, Proposition 2.1] for the precise description. In particular Δ_{λ} is smooth if and only if $\lambda_{1}=\cdots=\lambda_{n}$. Otherwise the singular locus is of (not necessarily pure) codimension 1 .

Example 2.1. For future use, we now compute the iterate singular locus of Δ_{λ}, for $\lambda=$ $(2,1,1,1)$ and $\lambda=(2,1,1,1,1)$.

$$
\begin{gathered}
\operatorname{Sing}\left(\Delta_{(2,1,1,1)}\right)=\Delta_{(3,1,1)} \cup \Delta_{(2,2,1)} ; \\
\operatorname{Sing}\left(\Delta_{(3,1,1)}\right)=\Delta_{(4,1)}, \quad \operatorname{Sing}\left(\Delta_{(2,2,1)}\right)=\Delta_{(3,2)} ; \\
\operatorname{Sing}\left(\Delta_{(4,1)}\right)=\operatorname{Sing}\left(\Delta_{(3,2)}\right)=\Delta_{(5)} ; \\
\operatorname{Sing}\left(\Delta_{(2,1,1,1,1)}\right)=\Delta_{(3,1,1,1)} \cup \Delta_{(2,2,1,1)} ; \\
\operatorname{Sing}\left(\Delta_{(3,1,1,1)}\right)=\Delta_{(4,1,1)} \cup \Delta_{(3,3)}, \quad \operatorname{Sing}\left(\Delta_{(2,2,1,1)}\right)=\Delta_{(3,2,1)} \cup \Delta_{(2,2,2)} ; \\
\operatorname{Sing}\left(\Delta_{(4,1,1)}\right)=\Delta_{(5,1)}, \quad \operatorname{Sing}\left(\Delta_{(3,2,1)}\right)=\Delta_{(3,3)} \cup \Delta_{(4,2)} \cup \Delta_{(5,1)} ; \\
\operatorname{Sing}\left(\Delta_{(4,2)}\right)=\operatorname{Sing}\left(\Delta_{(5,1)}\right)=\Delta_{(6)} .
\end{gathered}
$$

2.2. Duality

Consider the dual ring of differential operators $\mathbb{C}\left[\partial_{x}, \partial_{y}\right]=\mathbb{C}[u, v]$, which acts on $\mathbb{C}[x, y]$ with the usual rules of differentiations and gives the pairing with respect to the degrees,

$$
\mathbb{C}[x, y]_{d} \otimes \mathbb{C}[u, v]_{k} \rightarrow \mathbb{C}[x, y]_{d-k}
$$

The conormal variety of a coincident root locus Δ_{λ} is the Zariski closure of the set

$$
\left\{(f, g): f \text { is a smooth point of } \Delta_{\lambda}, g \perp T_{f} \Delta_{\lambda}\right\} \subset \mathbb{P}\left(\mathbb{C}[x, y]_{d}\right) \times \mathbb{P}\left(\mathbb{C}[u, v]_{d}\right)
$$

where $T_{f} \Delta_{\lambda}$ denotes the tangent space to Δ_{λ} at a point f. The dual variety $\left(\Delta_{\lambda}\right)^{\vee}$ of Δ_{λ} is the projection onto $\mathbb{P}\left(\mathbb{C}[u, v]_{d}\right)$ of the conormal variety of Δ_{λ}. The biduality theorem (see [11]) implies that $\left(\Delta_{\lambda}^{\vee}\right)^{\vee}=\Delta_{\lambda}$.

Lee and Sturmfels study duality for binary forms in [19]. We recall here some results which we will use in the sequel.

Proposition 2.2 ([19]). Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\Delta_{\lambda} \subset \mathbb{P}\left(\mathbb{C}[u, v]_{d}\right)$, the points of the dual variety $\Delta_{\lambda}^{\vee} \subset \mathbb{P}\left(\mathbb{C}[x, y]_{d}\right)$ are given by the binary forms $f(x, y)$ that are annihilated by some order $d-n$ operator of the form $\Pi_{i=1}^{n} \ell_{i}^{\lambda_{i}-1}\left(\partial_{x}, \partial_{y}\right)$ where $\ell_{i} \in \mathbb{C}[u, v]_{1}$.

Proposition 2.3 ([19]). Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\Delta_{\lambda} \subset \mathbb{P}\left(\mathbb{C}[u, v]_{d}\right)$, the dual variety $\Delta_{\lambda}^{\vee} \subset \mathbb{P}\left(\mathbb{C}[x, y]_{d}\right)$ has codimension $m_{1}+1$, and it is given by the join of the $\left(n-m_{1}\right)$ coincident root loci $\Delta_{\left(d-\lambda_{i}+2,1^{\lambda_{i}-2}\right)}$ for $1 \leq i \leq n$ with $\lambda_{i} \geq 2$.

If $\lambda_{i} \geq 2$ for all i, then Δ_{λ}^{\vee} is a hypersurface of degree (see [22])

$$
\begin{equation*}
\frac{(n+1)!}{m_{2}!\cdots m_{k}!}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) \cdots\left(\lambda_{n}-1\right) \tag{2.2}
\end{equation*}
$$

2.3. Chow forms and higher associated varieties

Let $\mathbb{G}(h, m)$ denote the Grassmannian of projective subspaces of dimension h in \mathbb{P}^{m}. Let $X \subset \mathbb{P}^{m}$ be a projective variety of dimension k.

The i-th higher associated variety $\mathrm{CH}_{i}(X)$ of X is defined as the closure of the set of all ($m-k-1+i$)-dimensional subspaces $L \subset \mathbb{P}^{m}$ such that $L \cap X \neq \emptyset$ and $\operatorname{dim}\left(L \cap T_{x} X\right) \geq i$ for some smooth point $x \in L \cap X$ (where $T_{x} X$ denotes the embedded tangent space to X at $x)$, see [11] for details.

For $i=0$, the associated variety $\mathrm{CH}_{0}(X) \subset \mathbb{G}(m-k-1, m)$ is the Chow hypersurface, while for $i=k$, we have that $\mathrm{CH}_{k}(X) \subset \mathbb{G}(m-1, m)$ corresponds to the dual variety X^{\vee} via the Grassmannian duality $\mathbb{G}\left(m-1, \mathbb{P}^{m}\right) \simeq \mathbb{G}\left(0,\left(\mathbb{P}^{m}\right)^{\vee}\right)$. If $i=1$ and $\operatorname{deg}(X) \geq 2$, the associated variety $\mathrm{CH}_{1}(X)$ is the Hurwitz hypersurface, see [25].

The variety $\mathrm{CH}_{i}(X)$ is a hypersurface if and only if $i \leq \operatorname{dim}(X)-\left(m-1-\operatorname{dim}\left(X^{\vee}\right)\right)$, see [16]. In particular, if $X=\Delta_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ is a coincident root locus, the higher associated variety $C H_{i}(X)$ is a hypersurface if and only if $i \leq\left|\left\{j: \lambda_{j} \geq 2\right\}\right|$.

3. Real rank of binary forms

3.1. Typical ranks for binary forms

Given a binary form f of degree d with complex (or real) coefficients, its complex rank is the minimum integer r such that f admits a decomposition $f=\sum_{i=1}^{r}\left(\ell_{i}\right)^{d}$ where ℓ_{i} are linear forms with complex coefficients. The generic complex rank for binary forms of degree d (that is the rank of a general binary form of degree d) is $\left\lceil\frac{d+1}{2}\right\rceil$. Sylvester Theorem says that a general binary form admits a unique minimal decomposition if the degree is odd, infinitely many (parametrized by a line) if the degree is even.

Consider now the polynomial ring $R=\mathbb{R}[x, y]$ of real binary forms. Given $f \in R_{d}$, the real rank of f (denoted by $\operatorname{rk}(f))$ is the minimum integer r such that f admits a decomposition $f=\sum_{i=1}^{r} c_{i}\left(l_{i}\right)^{d}$ where $l_{i} \in R_{1}$ and $c_{i} \in \mathbb{R}$; we can impose $c_{i} \in\{1,-1\}$ if d is even, and $c_{i}=1$ if d is odd.

In the real field the notion of generic rank is replaced by the notion of typical ranks. A rank is called typical for binary forms of degree d if it occurs in an open subset of R_{d}, with respect to the Euclidean topology.

Define $\Omega_{d, r}=\left\{f \in R_{d}: \operatorname{rk}(f)=r\right\}$, and denote by $\mathcal{R}_{d, r}$ the interior of $\Omega_{d, r}$. Then $\mathcal{R}_{d, r}$ is a semi-algebraic set in the real vector space R_{d}, and a rank is typical exactly when $\mathcal{R}_{d, r}$ is not empty. From the main result of [4], a rank r is typical if and only if $\frac{d+1}{2} \leq r \leq d$. Thus, from now on we assume that $\frac{d+1}{2} \leq r \leq d$. We define the topological boundary $\partial\left(\mathcal{R}_{d, r}\right)$ as the set-theoretic difference of the closure of $\mathcal{R}_{d, r}$ and the interior of the closure of $\mathcal{R}_{d, r}$. It is a semi-algebraic subset of R_{d} of pure codimension one. We define the real rank boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{d, r}\right)$ as the Zariski closure of the topological boundary $\partial\left(\mathcal{R}_{d, r}\right)$ (see also [19, Section 4]). The real rank boundaries $\partial_{\mathrm{alg}}\left(\mathcal{R}_{d, r}\right)$ are hypersurfaces of the real space R_{d}, that we consider as hypersurfaces of the complex projective space $\mathbb{P}\left(\mathbb{C}[x, y]_{d}\right)=\mathbb{P}_{\mathbb{C}}^{d}$. Let us remark that these hypersurfaces are invariant under the natural action of SL_{2} on \mathbb{P}^{d}.

Real rank boundaries have been studied only in the two extreme cases, that is for maximum rank d and minimum rank $\bar{r}=\left\lceil\frac{d+1}{2}\right\rceil$. In the first case $\partial_{\mathrm{alg}}\left(\mathcal{R}_{d, d}\right)$ is the discriminant hypersurface $\Delta_{\left(2,1^{d-2}\right)}$ (see [9, Proposition 3.1] and [10, Corollary 1]); in the second case the real rank boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{d, \bar{r}}\right)$ is described in [19, Theorem 4.1]. Hence, for $d \leq 6$ we have a complete description of all the real rank boundaries, that we recall in the following:

Proposition 3.1 ([9,10,19]). The real rank boundaries for binary forms of degree ≤ 6 are the following hypersurfaces:

$$
\begin{gathered}
\partial_{a l g}\left(\mathcal{R}_{3,2}\right)=\partial_{a l g}\left(\mathcal{R}_{3,3}\right)=\left(\Delta_{(3)}\right)^{\vee} ; \\
\partial_{\text {alg }}\left(\mathcal{R}_{4,3}\right)=\partial_{\text {alg }}\left(\mathcal{R}_{4,4}\right)=\left(\Delta_{(4)}\right)^{\vee} ; \\
\partial_{\text {alg }}\left(\mathcal{R}_{5,3}\right)=\left(\Delta_{(3,2)}\right)^{\vee}, \\
\partial_{\text {alg }}\left(\mathcal{R}_{5,4}\right)=\left(\Delta_{(3,2)}\right)^{\vee} \cup\left(\Delta_{(5)}\right)^{\vee}, \\
\partial_{\text {alg }}\left(\mathcal{R}_{5,5}\right)=\left(\Delta_{(5)}\right)^{\vee} ; \\
\partial_{\text {alg }}\left(\mathcal{R}_{6,4}\right)=\left(\Delta_{(3,3)}\right)^{\vee} \cup\left(\Delta_{(4,2)}\right)^{\vee}, \\
\partial_{\text {alg }}\left(\mathcal{R}_{6,5}\right)=\left(\Delta_{(3,3)}\right)^{\vee} \cup\left(\Delta_{(4,2)}\right)^{\vee} \cup\left(\Delta_{(6)}\right)^{\vee}, \\
\partial_{a l g}\left(\mathcal{R}_{6,6}\right)=\left(\Delta_{(6)}\right)^{\vee} .
\end{gathered}
$$

Remark 3.2. The hypersurfaces $\left(\Delta_{(3)}\right)^{\vee},\left(\Delta_{(4)}\right)^{\vee},\left(\Delta_{(5)}\right)^{\vee},\left(\Delta_{(6)}\right)^{\vee}$ coincide with the discriminant hypersurfaces for binary forms of degrees $3,4,5,6$ and have degrees $4,6,8,10$, respectively. For the other components, we have

- $\left(\Delta_{(3,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(4,1)}, \Delta_{(5)}\right)$ is a hypersurface of degree 12 (this is the apple invariant I_{12} considered in [9]);
- $\left(\Delta_{(3,3)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(5,1)}, \Delta_{(5,1)}\right)$ is a hypersurface of degree 12 ;
- $\left(\Delta_{(4,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(4,1,1)}, \Delta_{(6)}\right)$ is a hypersurface of degree 18.

3.2. Apolarity

We recall here classical techniques, going back to Sylvester. Even if the results of this section are more general, we present them in the case of real numbers. Let $R=\mathbb{R}[x, y]$ be the polynomial ring of real binary forms and let $D=\mathbb{R}\left[\partial_{x}, \partial_{y}\right]=\mathbb{R}[u, v]$ be the corresponding dual ring. Given $l=a x+b y \in R_{1}$, the apolar operator is $l^{\perp}=-b \partial_{x}+$ $a \partial_{y} \in D_{1}$. Given a form f in R_{d}, the apolar ideal $f^{\perp} \subset D$ is given by all the operators which annihilates f, that is: $f^{\perp}=\left\{g\left(\partial_{x}, \partial_{y}\right) \in D: g \perp f\right\}$. A basic tool is the following:

Lemma 3.3 (Apolarity lemma). Assume $f \in R_{d}$ and let $l_{i} \in R_{1}$ be distinct linear forms for $1 \leq i \leq r$. There are coefficients $c_{i} \in \mathbb{R}$ such that $f=\sum_{i=1}^{r} c_{i}\left(l_{i}\right)^{d}$ if and only if the operator $l_{1}^{\perp} \circ \cdots \circ l_{r}^{\perp}$ is in the apolar ideal f^{\perp}.

We will say that a form of degree d is real-rooted if it admits d distinct real roots. From Lemma 3.3, it follows that a form f has rank less than or equal to r if and only if $\left(f^{\perp}\right)_{r}=f^{\perp} \cap D_{r}$ contains a real-rooted form. So the rank of f is the smallest degree r such that $\left(f^{\perp}\right)_{r}$ contains a real-rooted form. The following result is an elementary consequence of Lemma 3.3.

Corollary 3.4. Let f be a real binary form, and let r be an integer. Then $\operatorname{rk}(F)<r$ if and only if $\left(f^{\perp}\right)_{r} \subset D_{r}$ contains a special line whose generic member is a real-rooted form. Here, we say that a line $\left\langle g, g^{\prime}\right\rangle \subset D_{r}$ is special if $\operatorname{gcd}\left(g, g^{\prime}\right)$ is a form of degree $r-1$.

The space of operators of degree r contained in f^{\perp} is the kernel of the linear map $A_{f}: D_{r} \rightarrow R_{d-r}$. The catalecticant (or Hankel) matrix of f is the matrix $A_{f}^{d, r}$ of size $(d-r+1) \times(r+1)$ that represents A_{f} with respect to the standard basis. We denote by $A^{d, r}$ the generic catalecticant matrix of size $(d-r+1) \times(r+1)$.

The following result is well-known (see e.g. [14]):

Proposition 3.5. Assume that $f \in R_{d}$ has rank greater than or equal to 2 . Then its apolar ideal f^{\perp} is generated by two real forms g, g^{\prime} such that $\operatorname{deg} g+\operatorname{deg} g^{\prime}=d+2$ and $\operatorname{gcd}\left(g, g^{\prime}\right)=1$. Conversely, any two such forms generate an ideal f^{\perp} for some $f \in R$ with degree $\operatorname{deg} g+\operatorname{deg} g^{\prime}-2$.

We say that $f \in R_{d}$ is generated in generic degrees if $\left(\operatorname{deg} g, \operatorname{deg} g^{\prime}\right)=\left(\left\lceil\frac{d+1}{2}\right\rceil,\left\lfloor\frac{d+3}{2}\right\rfloor\right)$. The forms that are not generated in generic degrees form a subvariety of R_{d}. More precisely, when the degree $d=2 k$ is even, it is the hypersurface defined by the determinant of the intermediate $(k+1) \times(k+1)$ catalecticant matrix $A^{d, k}$; when the degree $d=2 k+1$ is odd, it is the subvariety of codimension 2 defined by the maximal minors of the intermediate $(k+1) \times(k+2)$ catalecticant matrix $A^{d, k+1}$.

If f is a binary form of degree d, with $\frac{d}{2} \leq r \leq d$ and having catalecticant matrix $A_{f}^{d, r}$ of maximal rank, then $\operatorname{dim}\left(f^{\perp}\right)_{r}=2 r-d$. Thus, we can consider the apolar map

$$
\Psi_{d, r}: \mathbb{P}^{d} \longrightarrow \mathbb{G}(d-r, r) \simeq \mathbb{G}(2 r-d-1, r)
$$

which associates to a general binary form f of degree d the projective $(2 r-d-1)$ dimensional subspace $\Pi_{f}=\mathbb{P}\left(\left(f^{\perp}\right)_{r}\right) \subset \mathbb{P}\left(D_{r}\right)$ obtained from the degree r component of the apolar ideal. In coordinates the map $\Psi_{d, r}$ is defined by the maximal minors of the matrix $A^{d, r}$. We denote by $Z_{d, r}=\overline{\Psi_{d, r}\left(\mathbb{P}^{d}\right)} \subset \mathbb{G}(2 r-d-1, r)$ the closure of the image of $\Psi_{d, r}$.

4. Real rank boundaries of degree 7 binary forms

In this section, we prove the following:

Theorem 4.1. The real rank boundaries for degree 7 binary real forms are the following hypersurfaces:

$$
\begin{aligned}
& \partial_{\text {alg }}\left(\mathcal{R}_{7,4}\right)=\left(\Delta_{(3,2,2)}\right)^{\vee} ; \\
& \partial_{\text {alg }}\left(\mathcal{R}_{7,5}\right)=\left(\Delta_{(3,2,2)}\right)^{\vee} \cup\left(\Delta_{(4,3)}\right)^{\vee} \cup\left(\Delta_{(5,2)}\right)^{\vee} ; \\
& \partial_{\text {alg }}\left(\mathcal{R}_{7,6}\right)=\left(\Delta_{(4,3)}\right)^{\vee} \cup\left(\Delta_{(5,2)}\right)^{\vee} \cup\left(\Delta_{(7)}\right)^{\vee} ; \\
& \partial_{\text {alg }}\left(\mathcal{R}_{7,7}\right)=\left(\Delta_{(7)}\right)^{\vee} .
\end{aligned}
$$

Remark 4.2. From Proposition 2.3 and formula (2.2) we obtain:

- $\left(\Delta_{(3,2,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(6,1)}, \Delta_{(7)}, \Delta_{(7)}\right)$ is a hypersurface of degree 24 ;
- $\left(\Delta_{(4,3)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(5,1,1)}, \Delta_{(6,1)}\right)$ is a hypersurface of degree 36 ;
- $\left(\Delta_{(5,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(4,1,1,1)}, \Delta_{(7)}\right)$ is a hypersurface of degree 24 ;
- $\left(\Delta_{(7)}\right)^{\vee}=\Delta_{(2,1,1,1,1,1)}$ is a hypersurface of degree 12 .

Proof. We divide the proof in several steps.
The boundary $\partial_{\text {alg }}\left(\mathcal{R}_{7,7}\right)$ between ranks 7 and ≤ 6.
From [9] and [10], it is known that the real rank boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,7}\right)$ is the discriminant hypersurface $\Delta_{\left(2,1^{5}\right)}$ in \mathbb{P}^{7}. Note that

$$
\Delta_{\left(2,1^{5}\right)}=\left(\Delta_{(7)}\right)^{\vee}=\overline{\Psi_{7,6}^{-1}\left(C H_{0}\left(\Delta_{(6)}\right)\right)}
$$

where $\Psi_{7,6}: \mathbb{P}^{7} \rightarrow Z_{7,6} \subset \mathbb{G}(4,6) \subset \mathbb{P}^{20}$.
The boundary $\partial_{\text {alg }}\left(\mathcal{R}_{7,4}\right)$ between ranks 4 and ≥ 5.
For the reader's convenience, we sketch briefly the proof given in [19] of the fact that $\partial_{\text {alg }}\left(\mathcal{R}_{7,4}\right)=\left(\Delta_{(3,2,2)}\right)^{\vee}$. Consider a binary form f of degree 7 with apolar ideal $f^{\perp}=\left(g_{4}, g_{5}\right)$, where $\operatorname{deg}\left(g_{i}\right)=i$. By Lemma 3.3, we have that $f \in \mathcal{R}_{7,4}$ if and only if g_{4} is real-rooted. When f moves toward $\mathcal{R}_{7,5} \cup \mathcal{R}_{7,6} \cup \mathcal{R}_{7,7}$ and passes through the boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right)$, then (at least) two roots of g_{4} must collapse and become a double root. Hence at the transition point the generator g_{4} belongs to the discriminant locus $\Delta_{(2,1,1)} \subset \mathbb{P}\left(D_{4}\right)$, and by Proposition 2.2, we get $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right) \subseteq\left(\Delta_{(3,2,2)}\right)^{\vee}$. Now since $\partial_{\text {alg }}\left(\mathcal{R}_{7,4}\right) \neq \emptyset$ because 4 and 5 are typical ranks, and $\left.\Delta_{(3,2,2)}\right)^{\vee}$ is irreducible, it follows that $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right)=\left(\Delta_{(3,2,2)}\right)^{\vee}$.
The boundary $\partial_{\text {alg }}\left(\mathcal{R}_{7,5}\right)$ between ranks 5 and $\neq 5$.
We describe now the boundary between $\mathcal{R}_{7,5}$ and $\mathcal{R}_{7,6} \cup \mathcal{R}_{7,7}$. Let f_{ε} be a continuous family of forms crossing the boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,5}\right)$ at the point $f_{0}=f$, going from $\mathcal{R}_{7,5}$ to $\mathcal{R}_{7,6} \cup \mathcal{R}_{7,7}$. Namely, we assume that $f_{-\varepsilon} \in \mathcal{R}_{7,5}$ and $f_{\varepsilon} \in \mathcal{R}_{7,6} \cup \mathcal{R}_{7,7}$ for any small ε with $\varepsilon>0$. We can assume that for any ε the form f_{ε} is generated in generic degree, since the locus of non generated in generic degree forms has codimension 2. In particular, we can assume $f^{\perp}=\left(g_{4}, g_{5}\right)$, where $\operatorname{deg}\left(g_{4}\right)=4$ and $\operatorname{deg}\left(g_{5}\right)=5$.

Let $\mathbb{G}(2,5)$ be the Grassmannian of planes in $\mathbb{P}\left(D_{5}\right)$, and consider the apolar map

$$
\begin{equation*}
\Psi_{7,5}: \mathbb{P}^{7} \rightarrow Z_{7,5} \subset \mathbb{G}(2,5) \subset \mathbb{P}^{19} \tag{4.1}
\end{equation*}
$$

which is a cubic birational map onto a subvariety $Z_{7,5} \subset \mathbb{P}^{19}$ of degree 84 and cut out by 42 quadric hypersurfaces. The map $\Psi_{7,5}$ sends the family f_{ε} into a continuous family of apolar planes Π_{ε}; in particular, $\Psi_{7,5}(f)=\Pi_{0}=\left\langle u g_{4}, v g_{4}, g_{5}\right\rangle$ is the apolar plane of f. From Lemma 3.3, we obtain that the plane Π_{ε}, with $\varepsilon<0$, contains a real-rooted form $h_{\varepsilon}=l_{1}(\varepsilon) l_{2}(\varepsilon) l_{3}(\varepsilon) l_{4}(\varepsilon) l_{5}(\varepsilon)$ (where $l_{i}(\varepsilon) \in D_{1}$), while Π_{ε}, with $\varepsilon>0$, does not contain any real-rooted form. The set of real-rooted forms is a full-dimensional connected
semi-algebraic subset of \mathbb{P}^{5}, and the Zariski closure of its topological boundary is the discriminant hypersurface $\Delta=\Delta_{(2,1,1,1)}$. Thus the limit $h_{0}=\lim _{\varepsilon \rightarrow 0^{-}} h_{\varepsilon}=l_{1}^{2} l_{2} l_{3} l_{4}$ must belong to Δ. We now analyze, taking into account also Example 2.1, the possible positions of Π_{0} with respect to Δ :
(1) The point h_{0} is smooth and the tangent space $T_{h_{0}}(\Delta)=\left\langle l_{1} u^{i} v^{j}: i+j=4\right\rangle$ contains Π_{0}. This implies that $\Pi_{0} \in C H_{2}(\Delta)$.
(2) The point h_{0} is smooth in a component of $\Delta_{(3,1,1)} \cup \Delta_{(2,2,1)}$. We have the following subcases:
(a) $h_{0}=l_{1}^{3} l_{2} l_{3} \in \Delta_{(3,1,1)}$ and $T_{h_{0}}\left(\Delta_{(3,1,1)}\right)=\left\langle l_{1}^{2} u^{i} v^{j}: i+j=3\right\rangle$ intersects Π_{0} in a line L through h_{0}. This implies that $\Pi_{0} \in C H_{1}\left(\Delta_{(3,1,1)}\right)$.
(b) $h_{0}=l_{1}^{2} l_{2}^{2} l_{3} \in \Delta_{(2,2,1)}$ and $T_{h_{0}}\left(\Delta_{(2,2,1)}\right)=\left\langle l_{1} l_{2} u^{i} v^{j}: i+j=3\right\rangle$ intersects Π_{0} in a line L through h_{0}. This implies that $\Pi_{0} \in C H_{1}\left(\Delta_{(2,2,1)}\right)$.
(3) The point h_{0} belongs to a component of $\Delta_{(4,1)} \cup \Delta_{(3,2)}$, hence $\Pi_{0} \in C H_{0}\left(\Delta_{(4,1)}\right) \cup$ $C H_{0}\left(\Delta_{(3,2)}\right)$.

Case (1). Clearly this case cannot occur. Indeed g_{4} and g_{5} would have l_{1} as common divisor, and this is against our assumptions.

Case (2). We show that case (2a) cannot occur. With the same argument, one sees that neither case (2 b) occurs.

If $h_{0} \notin\left\langle u g_{4}, v g_{4}\right\rangle$, then we can take as degree 5 generator of the apolar ideal $g_{5}=h_{0}$. Now, every point of L is a form divisible by l_{1}^{2} and we have that $L \cap\left\langle u g_{4}, v g_{4}\right\rangle \neq \emptyset$. This implies that l_{1} is a common divisor of g_{4} and of g_{5}, which is impossible. It follows that $h_{0} \in\left\langle u g_{4}, v g_{4}\right\rangle$ and in particular l_{1}^{2} divides g_{4}. More precisely, this implies that g_{4} is of the form $l_{1}^{2} l_{2} l_{3}$, or $l_{1}^{3} l_{2}$, or $l_{1}^{3} l_{3}$. In any cases it is obvious that f is limit of generic forms of degree 4 . This implies that f is a singular point of the hypersurface $\partial_{\text {alg }}\left(\mathcal{R}_{7,5}\right)$. Hence f does not vary in a codimension 1 locus of \mathbb{P}^{7}, and $\overline{\Psi_{7,5}^{-1}\left(C H_{1}\left(\Delta_{3,1,1}\right)\right)}$ cannot be a component of the boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,5}\right)$.

Case (3). We show now that both components corresponding to this case are in the boundary. Indeed it is enough to find an example of a binary form which lies exclusively on each component and is limit of a sequence of general forms of rank 5 and a sequence of general forms of rank 6. This is done in Example 4.3 below. Recall that by Proposition 2.2, we have $\overline{\Psi_{7,5}^{-1}\left(C H_{0}\left(\Delta_{(4,1)}\right)\right)}=\left(\Delta_{(5,2)}\right)^{\vee}$ and $\overline{\Psi_{7,5}^{-1}\left(C H_{0}\left(\Delta_{(3,2)}\right)\right)}=\left(\Delta_{(4,3)}\right)^{\vee}$. Hence we have proved that $\overline{\partial_{\text {alg }}\left(\mathcal{R}_{7,5}\right) \backslash \partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right)}=\left(\Delta_{(4,3)}\right)^{\vee} \cup\left(\Delta_{(5,2)}\right)^{\vee}$.
The boundary $\partial_{\text {alg }}\left(\mathcal{R}_{7,6}\right)$ between ranks 6 and $\neq 6$.
At this point we know that

$$
\begin{aligned}
\overline{\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,6}\right) \backslash \partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right)} & =\left(\overline{\partial_{\mathrm{alg}}\left(\mathcal{R}_{7,5}\right) \backslash \partial_{\mathrm{alg}}\left(\mathcal{R}_{7,4}\right)}\right) \cup \partial_{\mathrm{alg}}\left(\mathcal{R}_{7,7}\right) \\
& =\left(\Delta_{(4,3)}\right)^{\vee} \cup\left(\Delta_{(5,2)}\right)^{\vee} \cup\left(\Delta_{(7)}\right)^{\vee}
\end{aligned}
$$

So, we only need to show that the boundary between $\mathcal{R}_{7,4}$ and $\mathcal{R}_{7,6}$ is not of codimension 1 in \mathbb{P}^{7}. Let f_{ε} be a continuous family of forms such that $f_{-\varepsilon} \in \mathcal{R}_{7,4}$ and $f_{\varepsilon} \in \mathcal{R}_{7,6}$ for any small ε with $\varepsilon>0$. The corresponding apolar plane $\Pi_{\varepsilon}=\Psi_{7,5}\left(f_{\varepsilon}\right)$ does not contain any real-rooted form for any $\varepsilon>0$. On the other hand, from Corollary 3.4, we deduce that Π_{ε} must contain a special line L_{ε} which is generically contained in the locus of real-rooted forms for any $\varepsilon<0$. Now the limit $L_{0}=\lim _{\varepsilon \rightarrow 0^{-}} L_{\varepsilon}$ is a special line contained in the intersection of the plane Π_{0} and of the discriminant $\Delta=\Delta_{(2,1,1,1)}$. By the previous analysis we deduce that the line $L_{0}=\left\langle u g_{4}, v g_{4}\right\rangle$ must be contained in $\Delta_{(4,1)} \cup \Delta_{(3,2)}$. This implies that $g_{4} \in \Delta_{(4)}$, and this forces f_{0} to move in some locus of codimension ≥ 2 in \mathbb{P}^{7}, which cannot be a component of the boundary.

Example 4.3. Given

$$
g_{4}=\left(u^{2}+v^{2}\right)\left(u^{2}-v^{2}\right), \quad g_{5}(\varepsilon)=\left(u^{2}+\varepsilon v^{2}\right) u v(\varepsilon u+v),
$$

the degree 7 form f_{ε} associated to the apolar ideal $\left(g_{4}, g_{5}(\varepsilon)\right)$ is:

$$
\begin{aligned}
& \varepsilon^{2} x^{7}+7\left(\varepsilon^{2}+\varepsilon+1\right) x^{6} y-21 \varepsilon\left(\varepsilon^{2}+\varepsilon+1\right) x^{5} y^{2}-35 \varepsilon x^{4} y^{3}+35 \varepsilon^{2} x^{3} y^{4} \\
& \quad+21\left(\varepsilon^{2}+\varepsilon+1\right) x^{2} y^{5}-7 \varepsilon\left(\varepsilon^{2}+\varepsilon+1\right) x y^{6}-\varepsilon y^{7}
\end{aligned}
$$

We have $\operatorname{rk}\left(f_{\varepsilon}\right)=6$ for any small $\varepsilon \geq 0$ and $\operatorname{rk}\left(f_{-\varepsilon}\right)=5$ for any small $\varepsilon>0$. Moreover $f_{0}=x^{6} y+3 x^{2} y^{5}$ belongs to $\left(\Delta_{(4,3)}\right)^{\vee}$ and it does not belong to $\left(\Delta_{(5,2)}\right)^{\vee} \cup\left(\Delta_{(3,2,2)}\right)^{\vee}$.

On the other hand, taking

$$
g_{4}=\left(u^{2}+v^{2}\right)\left(2 u^{2}-v^{2}\right), \quad g_{5}(\varepsilon)=\left(\varepsilon u^{2}+v^{2}\right) u v(\varepsilon u+v),
$$

we consider the associated form f_{ε} :

$$
\begin{aligned}
& \varepsilon\left(\varepsilon^{3}+\varepsilon^{2}-\varepsilon-3\right) x^{7}+14\left(\varepsilon^{2}-\varepsilon-1\right) x^{6} y-42 \varepsilon\left(\varepsilon^{2}-\varepsilon-1\right) x^{5} y^{2} \\
& \quad-70\left(\varepsilon^{3}-2\right) x^{4} y^{3}+70 \varepsilon\left(\varepsilon^{3}-2\right) x^{3} y^{4}-42 \varepsilon\left(\varepsilon^{2}-2 \varepsilon+2\right) x^{2} y^{5} \\
& \quad+14 \varepsilon^{2}\left(\varepsilon^{2}-2 \varepsilon+2\right) x y^{6}-2\left(3 \varepsilon^{3}-2 \varepsilon^{2}+2 \varepsilon-4\right) y^{7} .
\end{aligned}
$$

Again we have $\operatorname{rk}\left(f_{\varepsilon}\right)=6$ for any small $\varepsilon \geq 0$ and $\operatorname{rk}\left(f_{-\varepsilon}\right)=5$ for any small $\varepsilon>0$. Moreover $f_{0}=7 x^{6} y-70 x^{4} y^{3}-4 y^{7}$ belongs to $\left(\Delta_{(5,2)}\right)^{\vee}$ and it does not belong to $\left(\Delta_{(4,3)}\right)^{\vee} \cup\left(\Delta_{(3,2,2)}\right)^{\vee}$. For computational details, see Section 6 .

5. Real rank boundaries of degree 8 binary forms

In this section, we prove the following:

Theorem 5.1. The real rank boundaries for degree 8 binary real forms are the following hypersurfaces:

$$
\begin{aligned}
& \partial_{a l g}\left(\mathcal{R}_{8,5}\right)=\left(\Delta_{(3,3,2)}\right)^{\vee} \cup\left(\Delta_{(4,2,2)}\right)^{\vee} ; \\
& \partial_{a l g}\left(\mathcal{R}_{8,6}\right)=\left(\Delta_{(3,3,2)}\right)^{\vee} \cup\left(\Delta_{(4,2,2)}\right)^{\vee} \cup\left(\Delta_{(4,4)}\right)^{\vee} \cup\left(\Delta_{(5,3)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee} ; \\
& \partial_{a l g}\left(\mathcal{R}_{8,7}\right)=\left(\Delta_{(4,4)}\right)^{\vee} \cup\left(\Delta_{(5,3)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee} \cup\left(\Delta_{(8)}\right)^{\vee} ; \\
& \partial_{a l g}\left(\mathcal{R}_{8,8}\right)=\left(\Delta_{(8)}\right)^{\vee} .
\end{aligned}
$$

Remark 5.2. From Proposition 2.3 and formula (2.2) we obtain:

- $\left(\Delta_{(3,3,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(7,1)}, \Delta_{(7,1)}, \Delta_{(8)}\right)$ is a hypersurface of degree 48 ;
- $\left(\Delta_{(4,2,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(6,1,1)}, \Delta_{(8)}, \Delta_{(8)}\right)$ is a hypersurface of degree 36 ;
- $\left(\Delta_{(4,4)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(6,1,1)}, \Delta_{(6,1,1)}\right)$ is a hypersurface of degree 27 ;
- $\left(\Delta_{(5,3)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(5,1,1,1)}, \Delta_{(7,1)}\right)$ is a hypersurface of degree 48 ;
- $\left(\Delta_{(6,2)}\right)^{\vee}=\operatorname{Join}\left(\Delta_{(4,1,1,1,1)}, \Delta_{(8)}\right)$ is a hypersurface of degree 30 ;
- $\left(\Delta_{(8)}\right)^{\vee}=\Delta_{(2,1,1,1,1,1,1)}$ is a hypersurface of degree 14 .

Proof. From [9] and [10], we have $\partial_{\mathrm{alg}}\left(\mathcal{R}_{8,8}\right)=\left(\Delta_{(8)}\right)^{\vee}$. On the other hand, from [19], we have $\partial_{\mathrm{alg}}\left(\mathcal{R}_{8,5}\right)=\left(\Delta_{(3,3,2)}\right)^{\vee} \cup\left(\Delta_{(4,2,2)}\right)^{\vee}$.

We study now the boundary between ranks 6 and ≥ 6. Let f_{ε} be a continuous family of forms crossing the boundary $\partial_{\text {alg }}\left(\mathcal{R}_{8,6}\right)$ at the point $f_{0}=f$, going from $\mathcal{R}_{8,6}$ to $\mathcal{R}_{8,7} \cup \mathcal{R}_{8,8}$. Namely, we assume that $f_{-\varepsilon} \in \mathcal{R}_{8,6}$ and $f_{\varepsilon} \in \mathcal{R}_{8,7} \cup \mathcal{R}_{8,8}$ for any small ε with $\varepsilon>0$. We can also assume that for any $\varepsilon \neq 0$ the form f_{ε} is generated in generic degree, i.e. the apolar ideal f_{ε}^{\perp} is generated by two quintic forms g_{ε} and g_{ε}^{\prime}. Moreover, since f moves in a codimension 1 locus, we may assume that f^{\perp} is generated by two forms g_{0} and g_{0}^{\prime} either with $\operatorname{deg}\left(g_{0}\right)=\operatorname{deg}\left(g_{0}^{\prime}\right)=5$, or with $\operatorname{deg}\left(g_{0}\right)=4$, $\operatorname{deg}\left(g_{0}^{\prime}\right)=6$, and moreover $g_{0} \notin \Delta_{(2,1,1)}$. Note that in the former case we have $\mathbb{P}\left(\left(f^{\perp}\right)_{6}\right)=\left\langle u g_{0}, v g_{0}, u g_{0}^{\prime}, v g_{0}^{\prime}\right\rangle$, while in the latter case we have $\mathbb{P}\left(\left(f^{\perp}\right)_{6}\right)=\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}, g_{0}^{\prime}\right\rangle$.

Consider the apolar map

$$
\begin{equation*}
\Psi_{8,6}: \mathbb{P}^{8} \rightarrow Z_{8,6} \subset \mathbb{G}(3,6) \subset \mathbb{P}^{34} \tag{5.1}
\end{equation*}
$$

which is a cubic birational map onto a subvariety $Z_{8,6} \subset \mathbb{P}^{34}$ of degree 686 and cut out by 186 quadric hypersurfaces. The map $\Psi_{8,6}$ sends the family f_{ε} into the continuous family of the 3 -dimensional linear spaces $\Pi_{\varepsilon}=\mathbb{P}\left(\left(f_{\varepsilon}^{\perp}\right)_{6}\right)$. From Lemma 3.3, we obtain that Π_{ε}, with $\varepsilon<0$, contains a real-rooted form $h_{\varepsilon}=\prod_{i=1}^{6} l_{i}(\varepsilon)$ (where $l_{i} \in D_{1}$), while Π_{ε}, with $\varepsilon>0$, does not contain any real-rooted form. Thus the limit $h_{0}=\lim _{\varepsilon \rightarrow 0^{-}} h_{\varepsilon}$ must belong to the discriminant hypersurface $\Delta=\Delta_{(2,1,1,1,1)}$. We now analyze, recalling Example 2.1, the possible positions of Π_{0} with respect to Δ :
(1) The point h_{0} is smooth and the tangent space $T_{h_{0}}(\Delta)=\left\langle l_{1} u^{i} v^{j}: i+j=5\right\rangle$ contains Π_{0}. This implies that $\Pi_{0} \in C H_{3}(\Delta)$.
(2) The point h_{0} is smooth in a component of $\Delta_{(3,1,1,1)} \cup \Delta_{(2,2,1,1)}$. We have the following subcases:
(a) $h_{0}=l_{1}^{3} l_{2} l_{3} l_{4} \in \Delta_{(3,1,1,1)}$ and $T_{h_{0}}\left(\Delta_{(3,1,1,1)}\right)=\left\langle l_{1}^{2} u^{i} v^{j}: i+j=4\right\rangle$ intersects Π_{0} in a plane P through h_{0}. This implies that $\Pi_{0} \in C H_{2}\left(\Delta_{(3,1,1,1)}\right)$.
(b) $h_{0}=l_{1}^{2} l_{2}^{2} l_{3} l_{4} \in \Delta_{(2,2,1,1)}$ and $T_{h_{0}}\left(\Delta_{(2,2,1,1)}\right)=\left\langle l_{1} l_{2} u^{i} v^{j}: i+j=4\right\rangle$ intersects Π_{0} in a plane P through h_{0}. This implies that $\Pi_{0} \in C H_{2}\left(\Delta_{(2,2,1,1)}\right)$.
(3) The point h_{0} is smooth in a component of $\Delta_{(3,2,1)} \cup \Delta_{(4,1,1)} \cup \Delta_{(2,2,2)}$. We have the following subcases:
(a) $h_{0}=l_{1}^{3} l_{2}^{2} l_{3} \in \Delta_{(3,2,1)}$ and $T_{h_{0}}\left(\Delta_{(3,2,1)}\right)=\left\langle l_{1}^{2} l_{2} u^{i} v^{j}: i+j=3\right\rangle$ intersects Π_{0} in a line L through h_{0}. This implies that $\Pi_{0} \in C H_{1}\left(\Delta_{(3,2,1)}\right)$.
(b) $h_{0}=l_{1}^{4} l_{2} l_{3} \in \Delta_{(4,1,1)}$ and $T_{h_{0}}\left(\Delta_{(4,1,1)}\right)=\left\langle l_{1}^{3} u^{i} v^{j}: i+j=3\right\rangle$ intersects Π_{0} in a line L through h_{0}. This implies that $\Pi_{0} \in C H_{1}\left(\Delta_{(4,1,1)}\right)$.
(c) $h_{0}=l_{1}^{2} l_{2}^{2} l_{3}^{2} \in \Delta_{(2,2,2)}$ and $T_{h_{0}}\left(\Delta_{(2,2,2)}\right)=\left\langle l_{1} l_{2} l_{3} u^{i} v^{j}: i+j=3\right\rangle$ intersects Π_{0} in a line L through h_{0}. This implies that $\Pi_{0} \in C H_{1}\left(\Delta_{(2,2,2)}\right)$.
(4) The point h_{0} belongs to a component of $\Delta_{(3,3)} \cup \Delta_{(4,2)} \cup \Delta_{(5,1)}$, hence $\Pi_{0} \in$ $C H_{0}\left(\Delta_{(3,3)}\right) \cup C H_{0}\left(\Delta_{(4,2)}\right) \cup C H_{0}\left(\Delta_{(5,1)}\right)$.

In the following, we show that only the last case occurs.
Case (1). This case cannot occur. Indeed from the fact that $\Pi_{0} \subset T_{h_{0}}(\Delta)$, we would conclude that l_{1} is a common divisor of g_{0} and g_{0}^{\prime}.

Case (2). Consider first the case when f is not generated in generic degree, so that we have $\Pi_{0}=\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}, g_{0}^{\prime}\right\rangle$. If $h_{0} \notin\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle$, then we can take $g_{0}^{\prime}=h_{0}$ and, since there are at least two points in $P \cap\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle$, we deduce that g_{0} and g_{0}^{\prime} have a common divisor, which is a contradiction. Assume therefore that $h_{0} \in$ $\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle$. Since $g_{0} \notin \Delta_{(2,1,1)}$, the only possibility is that $g_{0}=l_{1} l_{2} l_{3} l_{4}$. This implies that $\operatorname{rk}(f)=4$, and it is easy to see that f is limit of a general sequence of form of rank 5 . This would imply that f is not a general point of the boundary between forms of rank 6 and rank ≥ 7. Hence we can assume $\operatorname{deg}\left(g_{0}\right)=\operatorname{deg}\left(g_{0}^{\prime}\right)=5$, and consider the following subcases.

Case (2a). The plane P meets the special lines $\left\langle u g_{0}, v g_{0}\right\rangle$ and $\left\langle u g_{0}^{\prime}, v g_{0}^{\prime}\right\rangle$ at points p_{0} and p_{0}^{\prime} respectively. Therefore, p_{0} and p_{0}^{\prime} are forms divisible by l_{1}^{2}, and then l_{1} divides both g_{0} and g_{0}^{\prime}, which is a contradiction.

Case (2b). Let us consider the surface

$$
\mathcal{Q}=\bigcup_{\substack{m \in D_{1}, g \in\left\langle g_{0}, g_{0}^{\prime}\right\rangle}} m g \subset \Pi_{0} \simeq \mathbb{P}^{3}
$$

swept out by all the special apolar lines of f. Using that f is generated in generic degrees, one sees that \mathcal{Q} is a smooth quadric surface, which we will call the apolar quadric of f. The intersection $P \cap \mathcal{Q}$ is a (possible reducible) plane conic, which in
particular contains three noncollinear points: $p_{0}=m g, p_{0}^{\prime}=m^{\prime} g^{\prime}$ and $p_{0}^{\prime \prime}=m^{\prime \prime} g^{\prime \prime}$. We can assume $g=g_{0}, g^{\prime}=g_{0}^{\prime}$, and since every point of P is a form divisible by $l_{1} l_{2}$, we conclude that g_{0} and g_{0}^{\prime} have a common factor, which is a contradiction.

Case (3). As above we consider first the case when $\operatorname{deg}\left(g_{0}\right)=4, \operatorname{deg}\left(g_{0}^{\prime}\right)=6$ and $\Pi_{0}=\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}, g_{0}^{\prime}\right\rangle$. If $h_{0} \notin\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle$, then we can take $g_{0}^{\prime}=h_{0}$. Moreover, since $L \cap\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle \neq \emptyset$, we deduce that g_{0} and g_{0}^{\prime} have a common divisor, which is a contradiction. Thus we have that $h_{0} \in\left\langle u^{2} g_{0}, u v g_{0}, v^{2} g_{0}\right\rangle$. This implies that $g_{0} \in \Delta_{(2,1,1)}$, which contradicts our assumption. Hence we can assume $\operatorname{deg}\left(g_{0}\right)=\operatorname{deg}\left(g_{0}^{\prime}\right)=5$, and consider the following subcases.

Case (3a). Let \mathcal{Q} be again the apolar quadric of f. We have two cases: either the line L meets \mathcal{Q} in two distinct points $m g$ and $m^{\prime} g^{\prime}$, or there exists a point $m g \in L \cap \mathcal{Q}$ such that L is contained in the tangent plane $T_{m g} \mathcal{Q}$.

In the former case, since $l_{1}^{2} l_{2}$ divides $m g$ and $m^{\prime} g^{\prime}$, we deduce that l_{1} divides g and g^{\prime}. This is a contradiction, unless we have $g=g^{\prime}$ and hence L is the special line $\langle g u, g v\rangle$. Now, since $h_{0} \in L$, we obtain that $g \in \Delta_{(2,2,1)} \cup \Delta_{(3,1,1)}$, and thus $f \in\left(\Delta_{(3,3,2)}\right)^{\vee} \cup\left(\Delta_{(4,2,2)}\right)^{\vee}=\partial_{\text {alg }}\left(\mathcal{R}_{8,5}\right)$ is also limit of generic forms of rank 5. This implies that f belongs to the singular locus of the hypersurface $\partial_{\text {alg }}\left(\mathcal{R}_{7,6}\right)$ and then $\overline{\Psi_{8,6}^{-1}\left(C H_{1}\left(\Delta_{(3,2,1)}\right)\right)}$ cannot be a component of the boundary $\partial_{\mathrm{alg}}\left(\mathcal{R}_{8,6}\right)$.

In the latter case, we may assume $g=g_{0}$ and $T_{m g} \mathcal{Q}=\left\langle m g_{0}, m g_{0}^{\prime}, m^{\prime} g_{0}\right\rangle$, for some $m^{\prime} \in D_{1}$. We have $h_{0}=l_{1}^{3} l_{2}^{2} l_{3}=\alpha m g_{0}+\beta m g_{0}^{\prime}+\gamma m^{\prime} g_{0}$, for some scalars α, β, γ, and we know that $l_{1}^{2} l_{2}$ divides $m g_{0}$. Since $\operatorname{gcd}\left(g_{0}, g_{0}^{\prime}\right)=1$, this implies $\beta=0$, and then $l_{1}^{3} l_{2}^{2} l_{3}=\left(\alpha m+\gamma m^{\prime}\right) g_{0}$. As above, from this it follows that $g_{0} \in \Delta_{(2,2,1)} \cup \Delta_{(3,1,1)}$ and thus f does not vary in a codimension 1 locus of \mathbb{P}^{8},

Cases (3b) and (3c). Arguing as above, we deduce that f must belong to $\left(\Delta_{(4,2,2)}\right)^{\vee}$ and $\left(\Delta_{(3,3,2)}\right)^{\vee}$, respectively, and furthermore we must have that f is a singular point of the hypersurface $\partial_{\text {alg }}\left(\mathcal{R}_{8,6}\right)$. This implies that $\overline{\Psi_{8,6}^{-1}\left(C H_{1}\left(\Delta_{(4,1,1)}\right)\right)}$ and $\overline{\Psi_{8,6}^{-1}\left(C H_{1}\left(\Delta_{(2,2,2)}\right)\right)}$ are not components of the boundary $\partial_{\text {alg }}\left(\mathcal{R}_{8,6}\right)$.

Case (4). We show in Example 5.3 below that each of the three components corresponding to this case are in the boundary. This proves that $\overline{\partial_{\text {alg }}\left(\mathcal{R}_{8,6}\right) \backslash \partial_{\text {alg }}\left(\mathcal{R}_{8,5}\right)}=\left(\Delta_{(4,4)}\right)^{\vee} \cup\left(\Delta_{(5,3)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee}$.

Finally we need to prove that there are no components of the boundary between \mathcal{R}_{5} and \mathcal{R}_{7}. This can be done with the same argument used at the end of the proof of Theorem 4.1.

Example 5.3. Given

$$
g_{0}=u^{4} v-u^{2} v^{3}-2 v^{5}, \quad g_{0}^{\prime}=-u^{5}+2 u^{3} v^{2}+2 u v^{4}
$$

we have $u g_{0}+v g_{0}^{\prime}=u^{3} v^{3}$ and the degree 8 form f_{0} associated to the apolar ideal $\left(g_{0}, g_{0}^{\prime}\right)$ is

$$
\begin{equation*}
f_{0}=8 x^{8}+112 x^{6} y^{2}+56 x^{2} y^{6}-y^{8} . \tag{5.2}
\end{equation*}
$$

With the help of a computer, one can easily check (see Section 6) that $\operatorname{rk}\left(f_{0}\right)=7$ and $f_{0} \in\left(\Delta_{(4,4)}\right)^{\vee} \backslash\left(\left(\Delta_{(5,3)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee}\right)$. Moreover, we can construct near f_{0} generic degree 8 forms $f_{ \pm \varepsilon}$ having real ranks 6 and 7 .

Analogously, given

$$
g_{0}=u^{4} v-u^{2} v^{3}-2 v^{5}, \quad g_{0}^{\prime}=-u^{5}+u^{4} v+u^{3} v^{2}+2 u v^{4}
$$

we have $u g_{0}+v g_{0}^{\prime}=u^{4} v^{2}$ and the associated degree 8 form is

$$
\begin{equation*}
f_{0}=x^{8}+8 x^{7} y+28 x^{3} y^{5}-2 x y^{7} \tag{5.3}
\end{equation*}
$$

One verifies that $\operatorname{rk}\left(f_{0}\right)=7$ and $f_{0} \in\left(\Delta_{(5,3)}\right)^{\vee} \backslash\left(\left(\Delta_{(4,4)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee}\right)$.
Finally, given

$$
g_{0}=u^{5}+u^{4} v+3 u^{3} v^{2}+3 u^{2} v^{3}+2 u v^{4}+2 v^{5}, \quad g_{0}^{\prime}=-3 u^{3} v^{2}-2 u v^{4}
$$

we have $u g_{0}+(u+v) g_{0}^{\prime}=u^{5}(u+v)$ and the associated degree 8 form is

$$
\begin{align*}
f_{0} & =8 x^{8}-64 x^{7} y+224 x^{6} y^{2}-448 x^{5} y^{3}-840 x^{4} y^{4} \\
& +672 x^{3} y^{5}+504 x^{2} y^{6}-144 x y^{7}-17 y^{8} . \tag{5.4}
\end{align*}
$$

One verifies that $\operatorname{rk}\left(f_{0}\right)=7$ and $f_{0} \in\left(\Delta_{(6,2)}\right)^{\vee} \backslash\left(\left(\Delta_{(4,4)}\right)^{\vee} \cup\left(\Delta_{(5,3)}\right)^{\vee}\right)$.

6. Computations

We provide a package for Macaulay2 [12], named CoincidentRootLoci and included with the current stable version of Macaulay2, which implements methods useful to check the correctness of Examples 4.3 and 5.3. This package depends on the packages Cremona and Resultants (see [23] and [24]). In the following, we illustrate briefly some of the methods available. For technical details and examples, we refer to the documentation of the package, which can be shown using the command viewHelp.

The method realrank computes the real rank of a binary form with rational coefficients. Indeed, Lemma 3.3 reduces the problem of computing the real rank of a binary form to that of establishing whether certain semi-algebraic sets are nonempty. The Tarski formulas defining these semi-algebraic sets can be obtained via the computation of kernels of appropriate catalecticant matrices. The problem of deciding the truth of a Tarski formula can be handled by Qepcad B via a quantifier elimination by partial cylindrical algebraic decomposition (see [5]). The method calls automatically QEPCAD B without requiring user intervention (provided it is installed on the system). Below, we compute the real rank of the binary form (5.2) (the run time is about 30 seconds).

```
Macaulay2, version 1.12
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
    LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : needsPackage "CoincidentRootLoci";
i2 : R := QQ[x,y];
i3 : F = 8*x^8+112*x^6*y^2+56*x^2*y^6-y^8;
i4 : realrank F
o4 = 7
```

The method member tests membership of a binary form in the dual variety of a coincident root locus (or in a coincident root locus). It does not pass through the hard computation of the equations but uses Proposition 2.2. Below, we verify that the binary form (5.2) lies in $\left(\Delta_{(4,4)}\right)^{\vee}$ but not in $\left(\Delta_{(5,3)}\right)^{\vee} \cup\left(\Delta_{(6,2)}\right)^{\vee}$ (the run time is less than one second).

```
i5 : X = dual coincidentRootLocus(4,4)
o5 = CRL (6,1,1) * CRL (6,1,1) (dual of CRL (4,4))
o5 : JoinOfCoincidentRootLoci
i6 : member(F,X)
o6 = true
i7 : member(F,dual coincidentRootLocus(5,3)) or member(F,dual coincidentRootLocus(6,2))
o7 = false
```

The method apolar computes the apolar ideal of a binary form, while recover, as the name suggests, recovers the binary form from its apolar ideal. Basically, these two methods translate to problems of computing the image or the inverse image of a point via a (bi)rational map, and then the computation is performed using tools of the package Cremona. For example, the following calculation involves the birational map (5.1) (the run time is less than one second).

```
i8 : F == recover apolar F
08 = true
```

For the convenience of the user, the method realRankBoundary implements Theorems 4.1 and 5.1. For example, below we get immediately the degree of the first component of $\partial_{\mathrm{alg}}\left(\mathcal{R}_{8,5}\right)$.

```
i9 : Y = first realRankBoundary (8,5)
o9 = CRL(7,1) * CRL(7,1) * CRL(8) (dual of CRL(3,3,2))
o9 : JoinOfCoincidentRootLoci
i10 : degree Y
o10 = 48
```


Acknowledgements

We thank the participants to the seminar "Algebraic Geometry and Tensors" where this work has begun. In particular we are grateful to Giorgio Ottaviani for many useful discussions.

References

[^1][2] A. Bernardi, J. Brachat, B. Mourrain, A comparison of different notions of ranks of symmetric tensors, Linear Algebra Appl. 460 (2014) 205-230.
[3] A. Bernardi, G. Blekherman, G. Ottaviani, On real typical ranks, Boll. Unione Mat. Ital. (2015).
[4] G. Blekherman, Typical real ranks of binary forms, Found. Comput. Math. 15 (3) (2015) 793-798.
[5] C.W. Brown, QEPCAD B: a program for computing with semi-algebraic sets using CADs, SIGSAM Bull. 37 (4) (2003) 97-108.
[6] J.V. Chipalkatti, On equations defining coincident root loci, J. Algebra 267 (1) (2003) 246-271.
[7] J.V. Chipalkatti, Invariant equations defining coincident root loci, Arch. Math. 83 (5) (2004) 422-428.
[8] E. Carlini, M. Kummer, A. Oneto, E. Ventura, On the real rank of monomials, Math. Z. 286 (1) (2017) 571-577.
[9] P. Comon, G. Ottaviani, On the typical rank of real binary forms, Linear Multilinear Algebra 60 (6) (2012) 657-667.
[10] A. Causa, R. Re, On the maximum rank of a real binary form, Ann. Mat. Pura Appl. 190 (1) (2011) 55-59.
[11] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, reprint of the 1994 edition Birkhäuser, Boston, 2008.
[12] D.R. Grayson, M.E. Stillman, Macaulay2 - a software system for research in algebraic geometry (version 1.12), available at: http://www.math.uiuc.edu/Macaulay2/, 2018.
[13] D. Hilbert, Über die singularitäten der diskriminantenfläche, Math. Ann. 30 (4) (1887) 437-441.
[14] A. Iarrobino, V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, 1999, with an Appendix by A. Iarrobino and S.L. Kleiman.
[15] G. Katz, How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties, Expo. Math. 21 (3) (2003) 219-261.
[16] K. Kohn, Coisotropic hypersurfaces in the Grassmannian, arXiv:1607.05932, 2016.
[17] S. Kurmann, Some remarks on equations defining coincident root loci, J. Algebra 352 (1) (2012) 223-231.
[18] J.M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Soc., 2012.
[19] H. Lee, B. Sturmfels, Duality of multiple root loci, J. Algebra 446 (2016) 499-526.
[20] A. Massarenti, M. Mella, G. Staglianò, Effective identifiability criteria for tensors and polynomials, J. Symbolic Comput. 87 (2018) 227-237.
[21] M. Michałek, H. Moon, B. Sturmfels, E. Ventura, Real rank geometry of ternary forms, Ann. Mat. Pura Appl. 196 (3) (2017) 1025-1054.
[22] L. Oeding, Hyperdeterminants of polynomials, Adv. Math. 231 (3) (2012) 1308-1326.
[23] G. Staglianò, A Macaulay2 package for computations with rational maps, J. Softw. Algebra Geom. 8 (1) (2018) 61-70.
[24] G. Staglianò, A package for computations with classical resultants, J. Softw. Algebra Geom. 8 (1) (2018) 21-30.
[25] B. Sturmfels, The Hurwitz form of a projective variety, J. Symbolic Comput. 79 (2017) 186-196.
[26] J. Weyman, The equations of strata for binary forms, J. Algebra 122 (1) (1989) 244-249.

[^0]: * Corresponding author.

 E-mail addresses: brambilla@dipmat.univpm.it (M.C. Brambilla), giovannistagliano@gmail.com (G. Staglianò).
 ${ }^{1}$ The first author is partially supported by MIUR and INdAM.

[^1]: [1] E. Angelini, C. Bocci, L. Chiantini, Real identifiability vs. complex identifiability, Linear Multilinear Algebra 66 (6) (2018) 1257-1267.

