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Abstract: The trade-off between the design phase and the experimental setup is crucial in satisfying
the accuracy requirements of large deployable reflectors. Manufacturing errors and tolerances change
the root mean square (RMS) of the reflecting surface and require careful calibration of the tie-rod
system to be able to fit into the initial design specifications. To give a possible solution to this problem,
two calibration methods—for rigid and flexible ring truss supports, respectively—are described in
this study. Starting from the acquired experimental data on the net nodal co-ordinates, the initial
problem of satisfying the static equilibrium with the measured configuration is described. Then, two
constrained optimization problems (for rigid or flexible ring truss supports) are defined to meet the
desired RMS accuracy of the reflecting surface by modifying the tie lengths. Finally, a case study to
demonstrate the validity of the proposed methods is presented.

Keywords: large deployable reflector; tie adjustment; experimental setup

1. Introduction

Satellite communications have become increasingly wide-spread, thanks to the possibility of
having high transmitting capacities at a relatively low cost, compared to the establishment of a
terrestrial broadcasting network. Deployable reflectors represent the most widely-used type of
structure, due to their features, such as large scale, high packaging efficiency, high accuracy, and
low weight. Typically, their architecture consists of a deployable ring truss support, two cable nets
(facing each other and linked by a series of tension ties), and a RF mesh attached to the backside
of the front net. The most representative kind of this type of reflector is the AstroMesh [1], and its
components are shown in Figure 1.

The electromagnetic performance of these antennae is closely related to the shape of the reflector
surface. In turn, this depends on the position of the nodes located on the front net. Therefore, it is clear
that the measurement process of 3D node co-ordinates needs to be made with extreme accuracy, so as
to avoid invalidating the real root mean square (RMS) value.

Several measurement systems have been developed, depending on the application area. Generally,
they can be divided into three categories:

• Photogrammetry,
• Laser tracker, and
• Laser radar.

Photogrammetry is a measurement technique that uses two-dimensional images of an object to
obtain its dimensions.
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As depicted in Figure 2, photogrammetry is based exclusively on angle measurements:
Three-dimensional co-ordinates are calculated by an optical triangulation (or intersection) of two
or more images taken from different positions. The object to be measured is identified by targets
mounted on it, usually made of reflective material to produce a high contrast between the target and
the background [2]. Typically, a calibrated scale bar is integrated into the object, in order to reproduce
it in true scale. At the end of the measurements, a dedicated software calculates the 3D co-ordinates in
the chosen Cartesian co-ordinate system (x, y, z).

Figure 1. AstroMesh.
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Figure 2. Photogrammetry.

Laser trackers and laser radars, alternatively, are measurement systems based on the estimation of
two angles and one length, as shown in Figure 3. Two high-resolution encoders measure the azimuth
(θ) and elevation (ϕ) angles, whereas the radial co-ordinate (r) relative to the center of the target is
measured by means of optical interference [3]. Several types of target can be mounted, but the most
widely-used is the spherically mounted retro-reflector (SMR).
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Figure 3. Laser tracker.

Differing from the laser tracker, a laser radar does not require a retro-reflector. As a matter of fact,
it is capable of measuring the surface of an object with just 1% of the reflected signal [4].

Each of these measurement systems, however, has advantages and disadvantages, which need to
be assessed on the basis of various factors. Van Gestel et al. [4] identified influencing factors to be taken
into account before making the measurement: Task requirements, part restrictions, and environmental
restrictions. Regarding task requirements, the main element to be considered when measuring the
position of the nodes is accuracy, since the permissible RMS error on the reflecting surface is less than 1
mm. Whilst the laser tracker has errors on the order of 1 µm, it is too costly due to the high price of
each SMR and given the number of nodes (at least a hundred). The photogrammetry turned out to be
the best choice [5,6], considering the affordable cost and accuracy of the measure. Furthermore, the
possibility of obtaining multiple images from different angles makes it possible to overcome the lower
accuracy of the angular encoders of laser trackers.

The acquisition of node co-ordinates is essential for the next calibration step, in order to meet the
RMS design requirements of the reflecting surface. Generally, the main strategies followed by LDR
developers and designers is to use the tie system, connecting front and rear nets, in order to locally
move single nodes. This operation is long and delicate, but allows the adjustment of different error
sources, such as manufacturing errors [7–9], material definition errors, clearance [10,11], friction [12,13],
hysteresis [14], mechanical vibrations [15,16], and imperfect behaviour of the elastic properties of
components. This paper describes a method for the tie-system calibration of LDRs with a rigid or
flexible ring truss. To our knowledge, this topic has not been deeply investigated in the literature
and the adjustment phase is entrusted with proprietary solutions of LDR companies. The outline
of this paper is as follows. In Section 2, the problem of correcting the parameters to satisfy the
static equilibrium in the deployed configuration is first addressed. Then, the method for finding the
necessary corrections to the tie-system is discussed, for the two cases of LDR (i.e., with rigid or flexible
ring truss). In Section 3, the method is applied to a LDR with an asymmetric ring truss, developed by
Thales Alenia Space. A simulated error distribution is superimposed to the design configuration to
represent a real experimental test. The tie-system corrections (expressed in terms of length elongation
or shortening) necessary to meet RMS design requirement are obtained for both rigid and flexible ring
truss cases. Finally, in Section 4, the conclusions of the paper are presented.

2. Experimental Settings for Calibration

Once the antenna has been manufactured, it is necessary to carry out some experimental tests in
order to check the RMS of the reflector in the deployed configuration. To do this, the first operation
consists of measuring the position of all nodes of the nets with respect to a reference system through
one of the methods described above. Due to different sources of errors, such as manufacturing errors
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or assembly errors, the deployed configuration will be different from the design configuration and
the RMS will usually be greater than the design requirement. Even the measurement operation of
the node co-ordinates will be affected by errors. Laser trackers and photogrammetry have errors on
the order of 1 µm; while laser radar reaches 0.1 µm. Errors related to the measurement systems are,
regardless, significantly below the preceeding mechanical errors. In the following, two methods for
the experimental setting of the rigid and flexible ring truss supports are described.

Several experimental methodologies [17–20] based on a multi-body approach have been
developed [21–29]. Recently, methods based on fuzzy logic [30–34], neural networks [35], and genetic
algorithms have been applied for the tensioning of space trusses [36,37]. The proposed methods act on
the tensioning system of the ties in order to fix the errors coming from the construction of the antenna.

2.1. Rigid Ring Truss Support: Construction Length Determination

Tie-cable regulation is usually independent of the actuators used for the LDA deployment [38–40]
and from the control system [41–44]. Here, the method to regulate tie cable tension in an antenna
with rigid ring truss support is first described. Once the deployment has been carried out and all
node co-ordinates of the net have been measured, the reflective surface will typically deviate from
the design configuration due to mechanical errors. As a consequence of this deviation, the system of
equilibrium equation is not satisfied for the current configuration. Then, denoting with Eij, Aij, Lcij,
and Lc0

ij the Young modulus, the cross-section area, the measured length, and the construction length

of cable ij, respectively, and with kij, Ltij, and Lt0
ij the spring constant, the measured length, and the

construction length of tie ij, respectively, the system of nonlinear equations for each free node i, with j
adjacent nodes, is not satisfied:

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

xi−xj
Lcij

+ kij(Ltij − Lt0
ij)

xi−xj
Ltij

] 6= 0

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

yi−yj
Lcij

+ kij(Ltij − Lt0
ij)

yi−yj
Ltij

] 6= 0

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

zi−zj
Lcij

+ kij(Ltij − Lt0
ij)

zi−zj
Ltij

] 6= 0

, (1)

where xl , yl , and zl are the measured Cartesian co-ordinates of the l-th node. It is noteworthy to remark
that the only measured parameters are the node co-ordinates; while the measured length is derived
using the Euclidian norm. The remaining parameters of the previous system are design parameters,
instead; each affected by different types of error. Here, denoting by Lij and L0

ij the measured and
construction length for both cable and tie, respectively, we choose to gather all these errors inside the
construction length L0

ij, defined as the distance between the centers of the eyelets i and j belonging to
the same cable, as shown in Figure 4. This choice is motivated by the fact that the construction length
of the cables is affected by two main sources of errors, such as the manufacturing errors generated
during the cutting operation of (Computer Numerical Control) CNC machines [45], and the assembly
errors coming from the bad placement of the eyelets (which are necessary to connect two or more
cables). In order to restore the equilibrium condition in System (1), only the design parameters can be
adjusted, while the measured parameters describe the real configuration of equilibrium: The measured
configuration is already in equilibrium and, thus, System (1) is to be satisfied in this configuration
without changing the node co-ordinates.

Then, as each cable works in traction force only, the constraint Lij ≥ L0
ij must be imposed. To solve

the system of nonlinear equations, Matlab c© provides the command fsolve, but it does not allow the
inclusion of any constraints. To overcome this problem, the nonlinear programming solver fmincon
can be used by giving a constant objective function and setting (1) as the nonlinear equality constraint,



Machines 2019, 7, 23 5 of 15

in addition to the linear inequality constraint Lij ≥ L0
ij. The resulting constrained optimization problem

is described below: 
find L0

ij, ∀cables and ties

min constant objective function
s.t. Lij ≥ L0

ij

(2)

Hence, a first check is required. As the springs used in tension ties require a pre-stress value, here
denoted by F0, representing the minimum value necessary for their activation, the condition Fij ≥ F0

ij
for each tension tie cable must be verified, where

Fij = kij(Ltij − Lt0
ij) (3)

is the spring force of tie ij. If the condition is satisfied, the next step can be conducted; otherwise,
the spring belonging to the tie which has failed the test must be replaced and the algorithm starts again
by calculating the array L0 of all construction lengths.

L

Figure 4. Layout of a cable: The construction length L0 is affected by manufacturing errors generated
during the cutting operation and assembly errors coming from a bad placement of the eyelets necessary
to connect two or more cables.

2.2. Rear Node Determination

In the event that only the co-ordinates of the nodes of the front net are known by measurement,
before implementing the algorithm described above, the rear node co-ordinates have to be estimated.
Their co-ordinates are initialized with the design data and System (1) is implemented for each free node
of the front and rear net. Note the dualism between the two methods: In the former, the unknowns
are the construction lengths; in the latter, they are the rear node co-ordinates. Next, the construction
lengths are obtained as a consequence of using the Euclidian norm. We checked that both methods
lead to the same results (except for negligible errors) if the experimental configuration is not too distant
from the design one.

2.3. Rigid Ring Truss Support: Tie Calibration

Once the configuration satisfying the static equilibrium has been found, the algorithm continues
with the estimation of the values of stretching or shortening for each tension tie-cable, which ensures
that the surface accuracy of the reflector can be met. Figure 5 shows the screw adjustment system for a
tie. One fixed part is connected to a node of the front net, while one mobile part—adjustable with a
screw—is connected to a node of the rear net. Now, the system of nonlinear equations of each free
node i can be written as follows:

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

xi−xj
Lcij

+ kij(Ltij − Lt0
ij + δLtij)

xi−xj
Ltij

] = 0

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

yi−yj
Lcij

+ kij(Ltij − Lt0
ij + δLtij)

yi−yj
Ltij

] = 0

∑
j
[Eij Aij

Lcij−Lc0
ij

Lc0
ij

zi−zj
Lcij

+ kij(Ltij − Lt0
ij + δLtij)

zi−zj
Ltij

] = 0

. (4)
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Figure 5. Screw adjustment in the tie system: (left) Tie system before adjustment; and (right) tie system
after the screw regulation.

This system, similar to (1), is used to determine the vector L0, with the difference that the variables
to be found are the stretching/shortening values δLtij and the co-ordinates of the free nodes of the
front and rear net. The values δLtij can be positive or negative: Here, we assume positive values for
tie-shortening and negative for tie-stretching. Additionally, this system is subject to some constraints:
One condition for all net cables is Lc ≥ Lc0. For the tension tie-cables, for which the values δLtij are to
be considered, the constraint condition is that the final force Fij must be one of traction:

Fij = kij(Ltij − Lt0
ij) + kijδLtij ≥ 0⇒ Ltij + δLtij ≥ Lt0

ij. (5)

Finally, the third constraint is related to the surface accuracy, since the RMS error must be lower
than the desired design value RMStarget. This is a typical constrained optimization problem, largely
used in the design optimization of complex systems [46–49] and mechanisms [50–52]. The optimization
problem can be summarised as follows:

find x1, y1, z1 and δLt
min constant objective function
s.t. Lcij ≥ Lc0

ij net cables

Ltij + δLtij ≥ Lt0
ij tension tie cables

RMS ≤ RMStarget reflecting surface requirement

, (6)

where x1, y1, and z1 are the free node co-ordinates and δLt is the array containing all corrections δLtij.
The RMS is calculated by measuring the minimum distance of the free nodes of the front net, compared
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to the ideal surface of the paraboloid [53]. The initial condition for the free nodes is represented by
their experimental measurement, while the guess value for δLt is set equal to zero.

2.4. Flexible Ring Truss Support

The truss support is generally manufactured out of carbon fiber and it is, therefore, reasonable to
consider truss deformation under the effect of the tension of the cable net.

The elastodynamic model of the flexible ring truss support can be found using analytic techniques
combined with matrix structural analysis [54–57], elliptic integrals [58,59], FEM models [60–62], and
flexible multibody formulations [63].

This implies the displacement of the nodes connected to the truss support, also called vertices,
when the net system is tensioned. By considering the stiffness of the structure, the nonlinear system (4),
described in the previous section, becomes as follows:



r

∑
j=1

(Eij Aij
Lcij − Lc0

ij

Lc0
ij

− kxxij(xvj − x0
vj
))

xi − xj

Lcij
+

c−r

∑
j=1

[Eij Aij
Lcij − Lc0

ij

Lc0
ij

xi − xj

Lcij
+

+ kij(Ltij − Lt0
ij + δLtij)

xi − xj

Ltij
] = 0

r

∑
j=1

(Eij Aij
Lcij − Lc0

ij

Lc0
ij

− kyyij(yvj − y0
vj
))

yi − yj

Lcij
+

c−r

∑
j=1

[Eij Aij
Lcij − Lc0

ij

Lc0
ij

yi − yj

Lcij
+

+ kij(Ltij − Lt0
ij + δLtij)

yi − yj

Ltij
] = 0

r

∑
j=1

(Eij Aij
Lcij − Lc0

ij

Lc0
ij

− kzzij(zvj − z0
vj
))

zi − zj

Lcij
+

c−r

∑
j=1

[Eij Aij
Lcij − Lc0

ij

Lc0
ij

zi − zj

Lcij
+

+ kij(Ltij − Lt0
ij + δLtij)

zi − zj

Ltij
] = 0

, (7)

where c is the total number of cables connected to the i-th node; r is the number of rods; xv, yv, and zv

are the unknown co-ordinates of the j-th vertex; and x0
v, y0

v, and z0
v are the initial co-ordinates of the

vertex itself. The stiffness of the truss support can be represented as a three-dimensional bushing, with
stiffnesses kxxij , kyyij , and kzzij , connecting the rods to the vertex, as shown in Figure 6.

The constrained optimization (6) still applies to this flexible ring truss case and the overall
algorithm is summarised in the flowchart in Figure 7.

k

a b

ring truss support

rods

vertex

Figure 6. Displacement of the vertex due to the deformation of the flexible ring truss support.
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Start

- Measure all node co-ordinates;
- Measure construction lengths of all
cables

Compute construction lengths L0
ij to

satisfy the equilibrium of the net by
Equation (1)

Compute F0
ij for all ties by Equation

(3)

Fij ≥ F0
ij for all ties?

Compute the tie correction values
δLtij, the position of verices xv,
yv and zv and the RMS by using
Equation (7)

Is the desired RMS reached?

No feasible
solutions with this
configuration of the
net

End End

no

yes

no

yes

Figure 7. Flowchart for the algorithm of the proposed method. RMS, Root Mean Square.

3. Results

In order to verify the validity of the proposed method, a case study of an asymmetric large
deployable reflector, designed by Thales Alenia Space [53], is described. The relevant parameters and
geometric data are listed as follows:

• Focal length: 6 m
• Number of free nodes: 296
• Number of vertices: 14
• Number of total cables: 1044
• Cable section: 4 mm2

• Young modulus of cables: 8.3× 1010 N/m2

• Initial RMS error: 0.5872 mm
• Design value of the RMS faceting error: 0.21 mm

The value of the spring constant for tie cables ranges from 2 × 103 N/m to 68 × 103 N/m,
with a radial step of 11× 103 N/m starting from the centre (central node) to the outer ring cables.
The initial RMS error on the front net was simulated by introducing an additional value to each node
proportionally to the length of the tie connected to it. By imposing the equilibrium in System (1), we
can determine the construction lengths described in Section 2. Nevertheless, from Figure 8 it can be
noted that the maximum error eL0 obtained was about 1 mm, representing only 1% of the total cables;
the largest percentage (86%) showed an error between 0.6 mm and 1 mm,.
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In Figure 9 the local faceting error for the chosen initial configuration is shown. The local faceting
error is calculated by considering the centroid of the triangular facets into which the surface can be
decomposed [64–67]. As can be observed, the faceting error follows the shape of the asymmetric
reflector since the chosen error is proportional to the tie lengths. As a matter of fact, the central zone is
the one with the shortest cables and, therefore, with the lowest faceting error. On the contrary, the tie
lengths, and consequently the errors, grow; moving from the centre to the outer perimeter of the net.

3
4

6

24

62

1

02

04

06

08

m1

m2

Figure 8. Pie chart of the error (absolute value), grouped by measuring ranges (mm), between the
measured construction lengths and those obtained by solving for equilibrium in System (1).
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Figure 9. Faceted RMS (mm) of the front tension truss in the initial configuration.

The optimization method described in the previous sections is first applied to the rigid ring
truss support. Figure 10 shows the error of each free node of the front net with respect to the ideal
surface, coupled with the stretching/shortening value necessary to reach the desired surface accuracy.
The reason why the correction values are all positive is that the initial error is simulated by positioning
all nodes of the front net above the ideal surface, so there is a need to shorten the tie lengths to satisfy
the RMS design value. The bars are grouped by spring constant value.
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The corresponding faceting error is shown in Figure 11. As can be observed, the RMS of the
faceting error decreases until the required value of 0.2036 mm is furnished, as per specification.
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Figure 10. Error and correction values (rigid case).
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Figure 11. Faceting error (mm) distribution on the front tension truss, obtained for the rigid ring
truss support.

Then, the same analysis has been performed for the flexible ring truss support. It can be noted
that, in Figure 12, the correction values are lower than the corresponding values for the rigid truss
support: This is because the additional tensioning of ties further deforms the shape of the truss support,
resulting in a closure of the support itself [68]. As a result, this causes a slight lowering of the front
net, thus reducing the shortening action of the tie lengths. Finally, Figure 13 shows the faceting error
distribution on the front net. Even in this case, the final RMS faceting error reached 0.2045 mm,
representing the design value of the RMS. Comparing Figures 11 and 13, it can be observed that
the faceting error distribution is more uniform for the flexible ring truss support. This result can be
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explained by considering that the deformation of the truss support relaxes the front and rear tension
truss systems, making the tension distribution more uniform.

Moreover, other simulations with different initial RMS errors revealed that, with the given design
data, the maximum initial RMS error which can be fixed is about 1 mm. Beyond this limiting value,
a revision of the design data is needed. This demonstrates the validity of the method only for small
RMS errors.
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Figure 12. Error and correction values (flexible case).

2000 3000 4000 5000 6000 7000

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

 

 

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Figure 13. Faceting error (mm) distribution on the front tension truss, obtained for the flexible ring
truss support.

4. Conclusions

In this paper, a method for the tie-system calibration of large deployable reflectors (LDRs) is
provided. The LDRs are very sensitive to errors and usually require a careful experimental setup
to meet the design requirements for surface accuracy. Due to manufacturing errors, clearance,
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friction, and the imperfect behaviour of materials, the real configuration moves away from the
design configuration and a fine calibration is needed to improve the quality of the reflecting surface,
expressed in terms of closeness to the ideal paraboloidal geometry. The proposed method follows two
steps: The determination of the parameters satisfying the static equilibrium in the real deployed
configuration; and a fine calibration to meet the RMS design requirements. For the first step,
a constrained optimization problem was proposed, in order to find the cable construction lengths once
all node co-ordinates had been measured. The second step was developed by acting on the system of
screw-adjustable ties. A further constrained optimization problem was formulated to find the length
corrections of each tie. Using the same approach, the cases of LDR with a rigid or flexible tension truss
were studied. Finally, the method was applied to a LDR with an asymmetrical ring truss designed
by Thales Alenia Space. Considering an initial RMS of 0.58 mm, the results (not yet validated by
experimental test) seemed comforting in reaching the design RMS. The convergence of the method
depends on the starting and desired RMS. Here, the convergence was insured up to a reasonably high
initial RMS value of 1 mm. Beyond this value, the tie system was not able to reach the equilibrium and
satisfy the constraints, and a different solution should be adopted.
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