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Abstract. We consider a nonlinear elliptic Dirichlet problem driven by the anisotropic (p, q)-Laplacian and with a reaction
which is nonparametric and has the combined effects of a singular and of a superlinear terms. Using variational tools
together with truncation and comparison techniques, we show that the problem has at least two positive smooth solutions.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following

anisotropic singular (p, q)-equation (double phase problem){−Δp(z)u(z) − Δq(z)u(z) = u(z)−η(z) + f(z, u(z)) in Ω

u
∣∣∣
∂Ω

= 0, u > 0
, (1.1)

Given r ∈ C(Ω) with 1 < min
Ω

r, by Δr(z) we denote the r(z)-Laplace differential operator defined by

Δr(z) = div
(
|Du|r(z)−2Du

)
for all u ∈ W

1,r(z)
0 (Ω).

In Problem (1.1), we have the sum of two such operators (double phase problem). In the reaction
(right-hand side of (1.1)), we have the competing effects of two different terms of different nature. One
is the singular term u−η(z), and the other term is a Carathéodory perturbation f(z, x) (that is, for all
x ∈ R, z �→ f(z, x) is measurable and for a.a. z ∈ Ω, x �→ f(z, x) is continuous) which exhibits (p+ − 1)-
superlinear growth as x → +∞ (here p+ = max

Ω
p). We point out that problem (1.1) is nonparametric.

Our aim is to prove the existence and the multiplicity of positive solutions for problem (1.1).
Usually, singular problems are studied with a parameter involved in the reaction. By varying and

restricting the parameter, we are able to satisfy the geometry of the minimax theorems of critical point
theory and then use them to produce a positive solution. Indicatively, we mention the works of Bai-
Motreanu-Zeng [3], Candito-Gasiński-Livrea [5], Gasiński-Papageorgiou [13], Ghergu-Rădulescu [17,18],
Giacomoni-Schindler-Takáč [19], Haitao [21], Kyritsi-Papageorgiou [22], Papageorgiou-Rădulescu-Repovš
[26–28], Papageorgiou-Repovš-Vetro [31], Papageorgiou-Smyrlis [32], Papageorgiou-Vetro-Vetro [35], Sun-
Wu-Long [40]. All the aforementioned works consider parametric isotropic singular semilinear or nonlinear
problems. Nonparametric isotropic singular problems were considered by Bai-Gasiński-Papageorgiou [2],
Papageorgiou-Rădulescu-Repovš [25] and Papageorgiou-Vetro-Vetro [34]. Papers [2,25] deal with equa-
tions driven by the p-Laplacian and in [2] the perturbation f(z, ·) is (p − 1)-superlinear, while in [25]
the perturbation f(z, ·) is (p − 1)-linear and resonant. In [34], the authors consider a (p, 2)-equation with
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superlinear perturbation. In contrast, the study of anisotropic singular problems is lagging behind. To
the best of our knowledge, there is only the recent work of Byun-Ko [4], who study an equation driven
by the p(z)-Laplacian and with a reaction of the form λu−η(z) + ur(z), where λ > 0 is a parameter and
r ∈ C(Ω), p(z) < r(z) + 1 for all z ∈ Ω. We also mention the works of Gasiński-Papageorgiou [12,14],
Gasiński-Winkert [15,16], Papageorgiou-Rădulescu-Repovš [29] and Papageorgiou-Vetro [33], which also
deal with anisotropic equations with a superlinear reaction, but no singular term.

We mention that partial differential equations with variable exponents arise in several models of
electrorheological fluids (see Qian [37], Ruzicka [39]) and in image processing and image restoration (see
Chen-Levine-Rao [6]).

Further applications can be found in the book of Rădulescu-Repovš [38].

2. Preliminaries—auxiliary results and hypotheses

Let C0,1(Ω) denote the space of Lipschitz continuous functions. If r ∈ C0,1(Ω), we set r− = min
Ω

r and

r+ = max
Ω

r. We introduce the sets

E1 =
{
r ∈ C0,1(Ω) : 1 ≤ r−

}
,

M(Ω) = {u : Ω → R measurable} .

We identify two elements in M(Ω) if they differ only on a set of zero Lebesgue measure.
Given r ∈ E1, we define the variable exponent Lebesgue space Lr(z)(Ω) by

Lr(z)(Ω) =

⎧⎨
⎩u ∈ M(Ω) :

∫
Ω

|u|r(z) dz < ∞
⎫⎬
⎭ .

We furnish Lr(z)(Ω) with the following norm (known as the Luxemburg norm):

‖u‖r(z) = inf

⎡
⎣λ > 0 :

∫
Ω

∣∣∣∣u(z)
λ

∣∣∣∣
r(z)

dz < ∞
⎤
⎦ .

With this norm Lr(z)(Ω) becomes a separable Banach space. If 1 < r−, then Lr(z)(Ω) is also uniformly
convex, thus reflexive. If r1, r2 ∈ E1 and r1(z) ≤ r2(z) for all z ∈ Ω, then Lr2(z)(Ω) ↪→ Lr1(z)(Ω)
continuously. Moreover, if r ∈ E1 with 1 < r−, then Lr(z)(Ω)∗ = Lr′(z)(Ω) where r′ ∈ E1 and satisfies

1
r(z) + 1

r′(z) = 1 for all z ∈ Ω. If u ∈ Lr(z)(Ω) and v ∈ Lr′(z)(Ω), then we have the following Hölder-type
inequality ∣∣∣∣∣∣

∫
Ω

uv dz

∣∣∣∣∣∣ ≤
(

1
r−

+
1
r′−

)
‖u‖r(z)‖v‖r′(z).

The following modular function is important in the study of variable exponent Lebesgue spaces,

ρr(u) =
∫
Ω

|u|r(z) dz for all u ∈ Lr(z)(Ω).

The next proposition shows that there is a close relation between the modular function ρr(·) and the
norm ‖ · ‖r(z).

Proposition 2.1. If r ∈ E1 and 1 < r−, then
(a) for u 	= 0, ‖u‖r(z) = λ ⇔ ρr

(
u
λ

)
= 1;

(b) ‖u‖r(z) < 1 (resp. = 1, > 1) ⇔ ρr(u) < 1 (resp. = 1, > 1);
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(c) ‖u‖r(z) ≤ 1 ⇒ ‖u‖r+

r(z) ≤ ρr(u) ≤ ‖u‖r−
r(z);

(d) ‖u‖r(z) ≥ 1 ⇒ ‖u‖r−
r(z) ≤ ρr(u) ≤ ‖u‖r+

r(z);
(e) ‖un‖r(z) → 0 ⇔ ρr(un) → 0 as n → ∞;
(f) ‖un‖r(z) → +∞ ⇔ ρr(un) → +∞ as n → ∞.

Using the variable exponent Lebesgue spaces, we can define the corresponding variable exponent
Sobolev spaces.

So, let r ∈ E1 with 1 < r−. The anisotropic Sobolev space W 1,r(z)(Ω) is defined by

W 1,r(z)(Ω) =
{

u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)
}

(here the gradient Du is understood in the weak sense).
We equip W 1,r(z)(Ω) with the following norm:

‖u‖1,r(z) = ‖u‖r(z) +
∥∥|Du|∥∥

r(z)
for all u ∈ W 1,r(z)(Ω).

We set W
1,r(z)
0 (Ω) = C∞

c (Ω)
‖·‖1,r(z) and define

r∗(z) =

{
Nr(z)

N−r(z) if r(z) < N

+∞ if N ≤ r(z)
for all z ∈ Ω.

We know that:
(a) Both W 1,r(z)(Ω) and W

1,r(z)
0 (Ω) are separable and uniformly convex (thus reflexive) Banach spaces.

(b) If s ∈ E1 with 1 < s− and s(z) ≤ r∗(z) (resp. s(z) < r∗(z)) for all z ∈ Ω, then W 1,s(z)(Ω) ↪→
Lr∗(z)(Ω) continuously (resp. compactly); similarly for the space W

1,r(z)
0 (Ω).

(c) The Poincaré inequality holds, namely

‖u‖r(z) ≤ c
∥∥ |Du|∥∥ for some c > 0, all u ∈ W

1,r(z)
0 (Ω).

In the sequel, we write

ρr(Du) = ρr(|Du|) and ‖Du‖r(z) =
∥∥ |Du|∥∥

r(z)
.

We have that

W
1,r(z)
0 (Ω)∗ = W−1,r′(z)(Ω).

A comprehensive analysis of variable exponent Lebesgue and Sobolev spaces can be found in the book
of Diening-Harjulehto-Hästo-Ruzicka [7].

Let Ar(z) : W
1,r(z)
0 (Ω) → W−1,r′(z)(Ω) be the nonlinear operator defined by

〈Ar(z)(u), h〉 =
∫
Ω

|Du|r(z)−2(Du,Dh)RN dz for all u, h ∈ W
1,r(z)
0 (Ω).

The following proposition summarizes the main properties of this operator (see Gasiński-Papageorgiou
[12, Proposition 2.5] and Rădulescu-Repovš [38, p. 40]).

Proposition 2.2. The operator Ar(z)(·) is continuous and strictly monotone (hence it is maximal monotone
too) and of type (S)+, that is

“un
w−→ u in W

1,r(z)
0 (Ω) and lim sup

n→∞
〈Ar(z)(un), un − u〉 ≤ 0

imply that

un → u in W
1,r(z)
0 (Ω) as n → ∞′′.
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In addition to the variable exponent spaces, we will also use the Banach space C1
0 (Ω) = {u ∈ C1(Ω) :

u|∂Ω = 0}. This is an ordered Banach space with positive cone C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣∣∣∣
∂Ω

< 0
}

with n(·) being the outward unit normal on ∂Ω.
If x ∈ R, then we set x± = max{±x, 0}. For u ∈ W

1,r(z)
0 (Ω), we define u±(z) = u(z)± for all z ∈ Ω.

We have

u± ∈ W
1,r(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

If u, v ∈ W 1,r(z)(Ω) with u ≤ v, then we define

[u, v] =
{

h ∈ W
1,r(z)
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
,

intC1
0 (Ω)[u, v] = the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω),

[u) =
{

h ∈ W
1,r(z)
0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω

}
.

When X is a Banach space and ϕ ∈ C1(X,R), we set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

Also, we say that ϕ(·) satisfies the C-condition, if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and (1+‖un‖X)ϕ′(un) →
0 in X∗ as n → ∞, admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ(·). In most cases of interest, the ambient
space X is infinite dimensional and so it is not locally compact. So, the burden of compactness is passed
on the functional ϕ(·). Using the C-condition, one can prove a deformation theorem from which follow
the minimax theorems of critical point theory (see Papageorgiou-Rădulescu-Repovš [30, Chapter 5]).

Finally, by û1(p−) ∈ W
1,p−
0 (Ω) we denote the positive, Lp− -normalized (that is, ‖û1(p−)‖p− = 1)

eigenfunction corresponding to the principal eigenvalue λ̂1(p−) > 0 of (−Δp− ,W
1,p−
0 (Ω)). We know (see,

for example, Gasiński-Papageorgiou [11, p. 739]) that û1(p−) ∈ intC+. Also, by | · |N we denote the
Lebesgue measure on R

N .
Now we introduce our hypotheses on the data of (1.1).

H0: p, q, η ∈ C0,1(Ω), 0 < η(z) < 1 and 1 < q(z) < p(z) for all z ∈ Ω, p− < N .
H1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f(z, x) ≤ a(z)[1 + |x|r(z)−1] for a.a. z ∈ Ω, all x ≥ 0, with a ∈ L∞(Ω), r ∈ C(Ω),
p(z) < r(z) < p∗

− for all z ∈ Ω;

(ii) if F (z, x) =
x∫
0

f(z, s) ds, then lim
x→±∞

F (z, x)
xp+

= +∞ uniformly for a.a. z ∈ Ω;

(iii) there exists μ ∈ C(Ω) such that

μ(z) ∈
(

(r+ − p−)
N

p−
, p∗

+

)

0 < γ0 ≤ lim inf
x→+∞

f(z, x)x − p+F (z, x)
xμ(z)

uniformly for a.a. z ∈ Ω;
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(iv) there exist τ ∈ C(Ω), δ > 0 and ϑ > 0 such that

1 < τ(z) < q−,

c0x
τ(z)−1 ≤ f(z, x) for a.a. z ∈ Ω, all x ∈ [0, δ0], some c0 > 0,

ϑ−η(z) + f(z, ϑ) ≤ −ĉϑ < 0, for a.a. z ∈ Ω;

(v) there exists ξ̂ϑ > 0 such that for a.a. z ∈ Ω, the function

x �→ f(z, x) + ξ̂ϑxp(z)−1

is nondecreasing on [0, ϑ].

Remarks. Since we aim to find positive solutions and all the above hypotheses concern the positive
semiaxis R+ = [0,+∞), without any loss of generality, we may assume that

f(z, x) = 0 for a.a z ∈ Ω, all x ≤ 0. (2.1)

Hypotheses H1(ii),(iii) imply that for a.a. z ∈ Ω, f(z, ·) is (p+ − 1)-superlinear. However, this super-
linearity is not expressed using the well-known Ambrosetti-Rabinowitz condition (the AR-condition for
short, see Ambrosetti-Rabinowitz [1]). Instead, we employ hypothesis H1(iii) which is less restrictive and
incorporates in our framework (p+ − 1)-superlinear nonlinearities with “slower” growth near +∞. For
example, consider the following function

f(z, x) =

{
xτ(z)−1 − 2xϑ(z)−1 if 0 ≤ x ≤ 1
xp+−1 ln x + xs(z)−1 − 2xλ(z)−1 if 1 < x

(see (2.1))

with ϑ, s, λ ∈ C(Ω), τ(z) < ϑ(z), 1 < s(z), λ(z) < p(z) for all z ∈ Ω. Then, this function satisfies
hypotheses H1, but fails to satisfy the AR-condition.

On account of hypotheses H1(i),(iv), we have

f(z, x) ≥ c0x
τ(z)−1 − c1x

r(z)−1 for a.a. z ∈ Ω, all x ≥ 0, with c1 > 0. (2.2)

We introduce the following truncation of the right-hand side of (2.2):

k(z, x) =

{
c0(x+)τ(z)−1 − c1(x+)r(z)−1 if x ≤ ϑ

c0ϑ
τ(z)−1 − c1ϑ

r(z)−1 if ϑ < x
, (2.3)

with ϑ > 0 as in hypothesis H1(iv). Evidently, this is a Carathéodory function. Using k(·, ·) as the source
term, we consider the following auxiliary Dirichlet problem:{−Δp(z)u(z) − Δq(z)u(z) = k(z, u(z)) in Ω

u
∣∣∣
∂Ω

= 0, u > 0
. (2.4)

Proposition 2.3. Problem (2.4) admits a unique positive solution u ∈ intC1
0 (Ω)[0, ϑ].

Proof. First we prove the existence of a positive solution. So, let K(z, x) =
x∫
0

k(z, s) ds and consider the

C1-functional σ : W
1,p(z)
0 (Ω) → R defined by

σ(u) =
∫
Ω

1
p(z)

|Du|p(z) dz +
∫
Ω

1
q(z)

|Du|q(z) dz −
∫
Ω

K(z, u+) dz for all u ∈ W
1,p(z)
0 (Ω).
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From (2.4) and Proposition 2.1, we see that σ(·) is coercive. Also by the anisotropic Sobolev embedding
theorem and the convexity of the map u �→ ∫

Ω

1
p(z) |Du|p(z) dz+

∫
Ω

1
q(z) |Du|q(z) dz, we see that σ(·) is sequen-

tially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem we can find u ∈ W
1,p(z)
0 (Ω)

such that
σ(u) = min

{
σ(u) : u ∈ W

1,p(z)
0 (Ω)

}
. (2.5)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that tu(z) ≤ ϑ for all z ∈ Ω. Then, using (2.3) we have

σ(tu) ≥ tp+

p+
ρp(Du) +

tq+

q+
ρq(Du) +

tr+

r+
ρr(u) − tτ−

τ−
ρτ (u).

Since 1 < τ− < q+ < p+ < r+, by choosing t ∈ (0, 1) even smaller if necessary, we have

σ(tu) < 0,

⇒ σ(u) < 0 = σ(0) (see (2.5)),
⇒ u 	= 0.

From (2.5), we have

σ′(u) = 0,

⇒ 〈Ap(z)(u), h〉 + 〈Aq(z)(u), h〉 =
∫
Ω

k(z, u)h dz for all h ∈ W
1,p(z)
0 (Ω) (2.6)

In (2.6) first we choose h = −u− ∈ W
1,p(z)
0 (Ω). We obtain

ρp(Du−) + ρq(Du−) = 0 (see (2.1)),

⇒ u ≥ 0, u 	= 0 (see Proposition 2.1).

Next in (2.6), we choose h = (u − ϑ)+ ∈ W
1,p(z)
0 (Ω). Then,

〈Ap(z)(u), (u − ϑ)+〉 + 〈Aq(z)(u), (u − ϑ)+〉

=
∫
Ω

[c0ϑ
τ(z)−1 − c1ϑ

r(z)−1](u − ϑ)+ dz (see (2.3))

≤
∫
Ω

f(z, ϑ)(u − ϑ)+ dz (see (2.2))

≤ 0 (see hypothesis H1(iv)),

⇒ u ≤ ϑ.

We have proved that
u ∈ [0, ϑ], u 	= 0. (2.7)

From (2.7), (2.3) and (2.6), it follows that

−Δp(z)u(z) − Δq(z)u(z) = c0u(z)τ(z)−1 − c1u(z)r(z)−1 in Ω, u|∂Ω = 0.

From Fan-Zhao [9, Theorem 4.1] (see also Gasiński-Papageorgiou [12, Proposition 3.1]), we have that

u ∈ L∞(Ω).

Applying Lemma 3.3 of Fukagai-Narukawa [10] (see also Lieberman [24]), we have that

u ∈ C+\{0}.
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Moreover, Lemma 3.5 of [10] implies that

u ∈ intC+.

Let ξ̂ϑ > 0 be as postulated by hypothesis H1(v). We have

− Δp(z)u − Δq(z)u + ξ̂ϑup(z)−1

= c0u
τ(z)−1 − c1u

r(z)−1 + ξ̂ϑup(z)−1

≤ f(z, u) + ξ̂ϑup(z)−1 (see (2.2))

≤ f(z, ϑ) + ξ̂ϑϑp(z)−1 (see (2.7) and hypothesis H1(v))

≤ −ϑ−η(z) + ξ̂ϑϑp(z)−1 (see hypothesis H1(iv))

≤ −Δp(z)ϑ − Δq(z)ϑ + ξ̂ϑϑp(z)−1 in Ω,

⇒ u(z) < ϑ for all z ∈ Ω

(see Proposition 2.5 of Papageorgiou-Rădulescu-Repovš [29]).

We conclude that

u ∈ intC1
0 (Ω)[0, ϑ].

Next we show the uniqueness of this positive solution.
To this end, we consider the integral functional j : L1(Ω) → R = R ∪ {+∞} defined by

j(u) =

⎧⎨
⎩
∫
Ω

1
p(z) |Du

1
q− |p(z) dz +

∫
Ω

1
q(z) |Du

1
q− |q(z) dz if u ≥ 0, u

1
q− ∈ W

1,p(z)
0 (Ω)

+∞ otherwise
.

From Theorem 2.2 of Takač-Giacomoni [41], we have that the functional j(·) is convex.
Suppose that v ∈ W

1,p(z)
0 (Ω) is another positive solution of the auxiliary problem (2.4). As above, we

show that v ∈ int C+. Then, from Proposition 4.1.22, p. 274, of Papageorgiou-Rădulescu-Repovš [30], we
have

u

v
∈ L∞(Ω) and

v

u
∈ L∞(Ω).

Hence, by Theorem 2.5 of Takač-Giacomoni [41] and the convexity of j(·), we have

0 ≤ 1
q−

⎡
⎣∫

Ω

−Δp(z)u − Δq(z)u

uq−−1 (uq− − vq−) dz +
∫
Ω

−Δp(z)v − Δq(z)v

vq−−1 (uq− − vq−) dz

⎤
⎦

=
1
q−

⎡
⎣∫

Ω

c0

(
1

uq−−τ(z)
− 1

vq−−τ(z)

)
(uq− − vq−) dz

+
∫
Ω

c1

(
vr(z)−q− − ur(z)−q−

)
(uq− − vq−) dz

⎤
⎦ ≤ 0 (see hypotheses H0, H1(iv)),

⇒ u = v.

This proves the uniqueness of the positive solution of problem (2.4). �
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We consider the Banach space C0(Ω) = {u ∈ C(Ω) : u|∂Ω = 0}. This is an ordered Banach space with
positive cone K+ = {u ∈ C0(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intK+ =
{

u ∈ K+ : cud̂ ≤ u for cu > 0
}

,

where d̂(z) = d(z, ∂Ω) for all z ∈ Ω. Lemma 14.16, p. 335, of Gilbarg-Trudinger [20], says that we can
find δ0 > 0 such that d̂ ∈ C2(Ωδ0) with Ωδ0 = {z ∈ Ω : d(z, ∂Ω) < δ0}. Hence, d̂ ∈ intC+ and so we can
use Proposition 4.1.22, p. 274, of Papageorgiou-Rădulescu-Repovš [30] and find 0 < c2 < c3 such that

c2d̂ ≤ u ≤ c3d̂

⇒ u ∈ intK+. (2.8)

Let s > N . We have û1(p−)
1
s ∈ K+ and so on account of (2.8), we can find c4 > 0 such that

0 ≤ û1(p−)
1
s ≤ c4u

⇒ 0 ≤ u−η(z) ≤ c5û1(p−)− η(z)
s for some c5 > 0.

Note that ∫
Ω

[
û1(p−)− η(z)

s

]s
dz

=
∫
Ω

û1(p−)−η(z) dz

=
∫

{û1(p−)≤1}

û1(p−)−η(z) dz +
∫

{û1(p−)>1}

û1(p−)−η(z) dz

≤
∫
Ω

û1(p−)−η+ dz + |Ω|N ,

⇒ û1(p−)(·)−η(·) ∈ Ls(Ω)

(see the Lemma of Lazer-McKenna [23] and recall that η+ < 1),

⇒ u(·)−η(·) ∈ Ls(Ω), s > N. (2.9)

3. Positive solutions

In this section, we prove a multiplicity theorem for the positive solutions of problem (1.1).
To produce the first positive solution of (1.1), we use (2.7) and (2.9) to define the following truncation

of the reaction in problem (1.1):

e(z, x) =

⎧⎪⎨
⎪⎩

u(z)−η(z) + f(z, u(z)) if x < u(z)
x−η(z) + f(z, x) if u(z) ≤ x ≤ ϑ

ϑ−η(z) + f(z, ϑ) if ϑ < x

. (3.1)

This is a Carathéodory function. We set E(z, x) =
x∫
0

e(z, s) ds and introduce the functional ψ :

W
1,p(z)
0 (Ω) → R defined by

ψ(u) =
∫
Ω

1
p(z)

|Du|p(z) dz +
∫
Ω

1
q(z)

|Du|q(z) dz −
∫
Ω

E(z, u) dz for all u ∈ W
1,p(z)
0 (Ω).
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From (2.9) it follows that ψ ∈ C1(W 1,p(z)
0 (Ω)) (see also Papageorgiou-Smyrlis [32, Proposition 3]).

Using this functional, we can now produce the first positive solution of (1.1).

Proposition 3.1. If hypotheses H0, H1(i),(iv),(v) hold, then problem (1.1) has a positive solution u0 ∈
[u, ϑ] ∩ int C+, u0(z) < ϑ for all z ∈ Ω.

Proof. From (3.1) and Proposition 2.1, we see that ψ(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u0 ∈ W

1,p(z)
0 (Ω) such that

ψ(u0) = min
[
ψ(u) : u ∈ W

1,p(z)
0 (Ω)

]
,

⇒ ψ′(u0) = 0,

⇒ 〈Ap(z)(u0), h〉 + 〈Aq(z)(u0), h〉 =
∫
Ω

e(z, u0)h dz for all h ∈ W
1,p(z)
0 (Ω). (3.2)

In (3.2) first we choose h = (u − u0)+ ∈ W
1,p(z)
0 (Ω). We have

〈Ap(z)(u0), (u − u0)+〉 + 〈Aq(z)(u0), (u − u0)+〉

=
∫
Ω

[
u−η(z) + f(z, u)

]
(u − u0)+ dz (see (3.1))

≥
∫
Ω

f(z, u)(u − u0)+ dz

≥
∫
Ω

[
c0u

τ(z)−1 − c1u
r(z)−1

]
(u − u0)+ dz (see (2.2))

= 〈Ap(z)(u), (u − u0)+〉 + 〈Aq(z)(u), (u − u0)+〉 (see Proposition 2.3),

⇒ u ≤ u0.

Next we test (3.2) with (u0 − ϑ)+ ∈ W
1,p(z)
0 (Ω). Then

〈Ap(z)(u0), (u0 − ϑ)+〉 + 〈Aq(z)(u0), (u0 − ϑ)+〉

=
∫
Ω

[
ϑ−η(z) + f(z, ϑ)

]
(u0 − ϑ)+ dz (see (3.1))

≤ 0 (see hypothesis H1(iv)),

⇒ u0 ≤ ϑ.

So, we have proved that
u0 ∈ [u, ϑ]. (3.3)

From (3.3), (3.1) and (3.2) it follows that

− Δp(z)u0 − Δq(z)u0 = u
−η(z)
0 + f(z, u0) in Ω, u0|∂Ω = 0. (3.4)

From (2.9), (3.3), (3.4) and Theorem 4.1 of Fan-Zhao [9] (see also Tan-Fang [42, Theorem 3.1]), we
have that

u0 ∈ L∞(Ω) (recall that s > N is arbitrary).
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Then (2.9) and hypothesis H1(i) imply that

β(·) = u0(·)−η(·) + f(·, u0(·)) ∈ Ls(Ω), s > N. (3.5)

We consider the following linear Dirichlet problem

− Δy(z) = β(z) in Ω, y|∂Ω = 0. (3.6)

Then (3.5) and Theorem 9.15, p. 241, of Gilbarg-Trudinger [20], imply that problem (3.6) admits a
unique solution y ∈ W 2,s(Ω), s > N , (in fact y ≥ 0 since β ≥ 0). From the Sobolev embedding theorem,
we have

W 2,s(Ω) ↪→ C1,α(Ω) with α = 1 − N

s
∈ (0, 1),

⇒ y ∈ C1,α
0 (Ω) = C1,α(Ω) ∩ C1

0 (Ω),

⇒ w = Dy ∈ C0,α(Ω,RN ).

We rewrite (3.4) as follows:

−div
(
|Du0|p(z)−2Du0 + |Du0|q(z)−2Du0 − w

)
= 0 in Ω.

As before, from Fukagai-Narukawa [10] (see also Lieberman [24]), we have that

u0 ∈ intC+ (see (3.3)).

Let ξ̂ϑ > 0 be as postulated by hypothesis H1(v). We have

− Δp(z)u0 − Δq(z)u0 + ξ̂ϑu
p(z)−1
0 − u

−η(z)
0

= f(z, u0) + ξ̂ϑu
p(z)−1
0

≤ f(z, ϑ) + ξ̂ϑϑp(z)−1 (see (3.3) and hypothesis H1(v))

≤ −ĉϑ − ϑ−η(z) + ξ̂ϑϑp(z)−1 (see hypothesis H1(iv))

≤ −Δp(z)ϑ − Δq(z)ϑ + ξ̂ϑϑp(z)−1 − ϑ−η(z) in Ω.

But then from the anisotropic strong comparison principle (see Proposition 2.5 of [29] and Proposition
6 of [28]), we have

u0(z) < ϑ for all z ∈ Ω.

�

To produce a second positive solution for problem (1.1), we introduce the following truncation of the
reaction:

l(z, x) =

{
u(z)−η(z) + f(z, u(z)) if x ≤ u(z)
x−η(z) + f(z, x) if u(z) < x

. (3.7)

This is a Carathéodory function. We set L(z, x) =
x∫
0

l(z, s) ds and consider the functional ϕ :

W
1,p(z)
0 (Ω) → R defined by

ϕ(u) =
∫
Ω

1
p(z)

|Du|p(z) dz +
∫
Ω

1
q(z)

|Du|q(z) dz −
∫
Ω

L(z, u) dz for all u ∈ W
1,p(z)
0 (Ω).

As before, on account of (2.9), we have that ϕ ∈ C1(W 1,p(z)
0 (Ω)).

From (3.1) and (3.7), we see that

ϕ
∣∣∣
[0,ϑ]

= ψ
∣∣∣
[0,ϑ]

and ϕ′
∣∣∣
[0,ϑ]

= ψ′
∣∣∣
[0,ϑ]

. (3.8)
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Proposition 3.2. If hypotheses H0, H1 hold, then u0 ∈ int C+ is a local minimizer of ϕ.

Proof. From the proof of Proposition 3.1, we know that

u0 ∈ intC+ is a minimizer of ψ(·) and u0(z) < ϑ for all z ∈ Ω,

⇒ u0 ∈ intC1
0 (Ω)[0, ϑ]. (3.9)

From (3.8) and (3.9), it follows that

u0 is a local C1
0 (Ω) − minimizer of ϕ(·),

⇒ u0 is a local W
1,p(z)
0 (Ω) − minimizer of ϕ

(see Fan [8], Gasiński-Papageorgiou [12] and Tan-Fang [42]).

�

Proposition 3.3. If hypotheses H0, H1 hold, then Kϕ ⊆ [u) ∩ int C+.

Proof. Let u ∈ Kϕ. We have

ϕ′(u) = 0

⇒ 〈Ap(z)(u), h〉 + 〈Aq(z)(u), h〉 =
∫
Ω

l(z, u)h dz for all h ∈ W
1,p(z)
0 (Ω). (3.10)

In (3.10) we choose h = (u − u)+ ∈ W
1,p(z)
0 (Ω). We have

〈Ap(z)(u), (u − u)+〉 + 〈Aq(z)(u), (u − u)+〉

=
∫
Ω

[
u−η(z) + f(z, u)

]
(u − u)+ dz (see (3.7))

≥
∫
Ω

f(z, u)(u − u)+ dz

≥
∫
Ω

[
c0u

τ(z)−1 − c1u
r(z)−1

]
(u − u)+ dz (see (2.2))

= 〈Ap(z)(u), (u − u)+〉 + 〈Aq(z)(u), (u − u)+〉 (see Proposition 2.3),

⇒ u ≤ u.

From (3.7) and (3.10) it follows that

−Δp(z)u − Δq(z)u = u−η(z) + f(z, u) in Ω, u|∂Ω = 0.

As before, the anisotropic regularity theory (see [9,10]) implies that

u ∈ intC+,

⇒ Kϕ ⊆ [u) ∩ int C+.

�

From Proposition 3.3 and (3.7), we see that we may assume

Kϕ is finite. (3.11)

Otherwise, we already have an infinity of positive smooth solutions and so we are done.
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From (3.11), Proposition 3.2 and Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-Repovš [30], we
know that we can find ρ ∈ (0, 1) small such that

ϕ(u0) < inf
[
ϕ(u) : u ∈ W

1,p(z)
0 (Ω) : ‖u − u0‖ = ρ

]
= m0. (3.12)

On account of hypothesis H1(ii) we, have:

Proposition 3.4. If hypotheses H0, H1 hold and u ∈ intC+, then ϕ(tu) → −∞ as t → +∞.

Proposition 3.5. If hypotheses H0, H1 hold, then the functional ϕ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ W
1,p(z)
0 (Ω) such that

|ϕ(un)| ≤ c6 for some c6 > 0, all n ∈ N, (3.13)

(1 + ‖un‖)ϕ′(un) → 0 in W−1,p′(z)(Ω) as n → ∞. (3.14)

From (3.14) we have ∣∣∣∣∣∣〈Ap(z)(un), h〉 + 〈Aq(z)(un), h〉 −
∫
Ω

l(z, un)h dz

∣∣∣∣∣∣ ≤
εn‖h‖

1 + ‖un‖

for all h ∈ W
1,p(z)
0 (Ω), with εn → 0+. (3.15)

In (3.15) we choose h = −u−
n ∈ W

1,p(z)
0 (Ω). Then using (3.7), we obtain

ρp(Du−
n ) + ρq(Du−

n ) ≤ c7‖u−
n ‖ for some c7 > 0, all n ∈ N,

⇒ {u−
n }n≥1 ⊆ W

1,p(z)
0 (Ω) is bounded. (3.16)

If in (3.15) we choose h ∈ u+
n ∈ W

1,p(z)
0 (Ω), then

− ρp(Du+
n ) − ρq(Du+

n ) +
∫
Ω

l(z, u+
n )u+

n dz ≤ εn for all n ∈ N. (3.17)

On the other hand, from (3.13) and (3.16), we have∣∣∣∣∣∣
∫
Ω

1
p(z)

|Du+
n |p(z) dz +

∫
Ω

1
q(z)

|Du+
n |q(z) dz −

∫
Ω

L(z, u+
n ) dz

∣∣∣∣∣∣ ≤ c8

for some c8 > 0, all n ∈ N,

⇒ ρp(Du+
n ) + ρq(Du+

n ) −
∫
Ω

p+L(z, u+
n ) dz ≤ p+c8 for all n ∈ N. (3.18)

We add (3.17) and (3.18) and obtain∫
Ω

[
l(z, u+

n )u+
n − p+L(z, u+

n )
]

dz ≤ c9 for some c9 > 0, all n ∈ N,

⇒
∫
Ω

[
f(z, u+

n )u+
n − p+F (z, u+

n )
]

dz ≤ c10

⎡
⎣1 +

∫
Ω

(u+
n )1−η(z) dz

⎤
⎦

for some c10 > 0, all n ∈ N (see (3.7)). (3.19)

From hypotheses H1(i),(iiii), we see that we can find γ1 ∈ (0, γ0) and c11 = c11(γ1) > 0 such that

γ1x
μ(z) − c11 ≤ f(z, x)x − p+F (z, x) for a.a. z ∈ Ω, all x ≥ 0. (3.20)
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We return to (3.19) and use (3.20). Then

ρμ(u+
n ) ≤ c12

[
1 + ‖u+

n ‖μ(z)

]
for some c12 > 0, all n ∈ N,

⇒ {u+
n }n≥1 ⊆ Lμ(z)(Ω) is bounded (see Proposition 2.1). (3.21)

From hypothesis H1(iii), we see that without any loss of generality, we may assume that μ(z) < r(z) <
p∗

− for all z ∈ Ω (see hypothesis H1(i)). Hence,

μ− < r+ < p∗
−.

We choose t ∈ (0, 1) such that

1
r+

=
1 − t

μ−
+

t

p∗−
. (3.22)

From the interpolation inequality (see Papageorgiou-Winkert [36, Proposition 2.3.17, p. 116]), we have

‖u+
n ‖r+ ≤ ‖u+

n ‖1−t
μ− ‖un‖t

p∗
−
,

⇒ ‖u+
n ‖r+

r+
≤ c13‖u+

n ‖tr+
p∗
+

for some c13 > 0, all n ∈ N

(see (3.21) and recall that Lμ(z)(Ω) ↪→ Lμ−(Ω) continuously),

⇒ ‖u+
n ‖r+

r+
≤ c14‖u+

n ‖tr+ for some c14 > 0, all n ∈ N

(since W
1,p(z)
0 (Ω) ↪→ Lp∗

−(Ω) continuously). (3.23)

We test (3.15) with h = u+
n ∈ W

1,p(z)
0 (Ω) and obtain

ρp(Du+
n ) + ρq(Du+

n ) ≤ εn +
∫
Ω

l(z, u+
n )u+

n dz,

⇒ ρp(Du+
n ) + ρq(Du+

n ) ≤ c15

⎡
⎣1 +

∫
Ω

f(z, u+
n )u+

n dz

⎤
⎦ for some c15 > 0, all n ∈ N (see (3.7))

≤ c16

[
1 + ‖u+

n ‖r+
r+

]
for some c16 > 0, all n ∈ N (see hypothesis H1(i))

≤ c17

[
1 + ‖u+

n ‖tr+
]

for some c17 > 0, all n ∈ N (see (3.23)). (3.24)

From (3.22), we have

tr+ =
p∗

−(r+ − μ−)
p∗− − μ−

< p− (see hypothesis H1(iii)).

Then from (3.24), it follows that

{u+
n }n≥1 ⊆ W

1,p(z)
0 (Ω) is bounded,

⇒ {un}n≥1 ⊆ W
1,p(z)
0 (Ω) is bounded (see (3.16)).

So, we may assume that

un
w−→ u in W

1,p(z)
0 (Ω) and un → u in Lr(z)(Ω) as n → ∞. (3.25)
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In (3.15), we choose h = un − u ∈ W
1,p(z)
0 (Ω), pass to the limit as n → ∞ and use (3.25). Then

lim
n→+∞

[〈Ap(z)(un), un − u〉 + 〈Aq(z)(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(z)(un), un − u〉 + 〈Aq(z)(u), un − u〉] ≤ 0 (since Aq(z)(·) is monotone),

⇒ lim sup
n→∞

〈Ap(z)(un), un − u〉 ≤ 0 (see (3.25)),

⇒ un → u in W
1,p(z)
0 as n → ∞ (see Proposition 2.2).

This proves that the functional ϕ(·) satisfies the C-condition. �
Now we are ready for the multiplicity theorem.

Theorem 3.6. If hypotheses H0, H1 hold, then problem (1.1) has at least two positive solutions

u0, û ∈ int C+, u0 	= û, u0(z) < ϑ for all z ∈ Ω.

Proof. From Proposition 3.1, we already have one positive solution

u0 ∈ intC1
0 (Ω)[0, ϑ]. (3.26)

Propositions 3.4, 3.5 and (3.12) permit the use of the mountain pass theorem. So, we can find û ∈
W

1,p(z)
0 (Ω) such that

û ∈ Kϕ ⊆ [u) ∩ int C+ (see Proposition 3.3) and m0 ≤ ϕ(û) (see (3.12)). (3.27)

From (3.27) and (3.7), it follows that

û ∈ intC+ is a positive solution of problem (1.1),

û 	= u0,

and u0(z) < ϑ for all z ∈ Ω (see (3.26)). �
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[19] Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for

a singular quasilinear equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 117–158 (2007)
[20] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)
[21] Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J.

Differ. Equ. 189, 487–512 (2003)
[22] Kyritsi, S., Papageorgiou, N.S.: Pairs of positive solutions for singular p-Laplacian equations with a p-superlinear

potential. Nonlinear Anal. Theory Methods Appl. 73, 1136–1142 (2010)
[23] Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary value problem. Proc. Am. Math. Soc. 111,

721–730 (1991)
[24] Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic

equations. Commun. Part. Differ. Equ. 16, 311–361 (1991)
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