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A B S T R A C T

In this paper, we investigate the dynamic behavior of a closed-loop supply chain with capacity restrictions both
in the manufacturing and remanufacturing lines. We assume it operates in a context of a twofold uncertainty by
considering stochastic demand and return processes. From a bullwhip perspective, we evaluate how the four
relevant factors (specifically, two capacities and two sources of uncertainty) interact and determine the op-
erational performance of the system by measuring the variability of the manufacturing and remanufacturing
lines and the net stock. Interestingly, while the manufacturing capacity only impacts on the forward flow of
materials, the remanufacturing capacity affects the dynamics of the whole system. From a managerial viewpoint,
this work suggests that capacity constraints in both remanufacturing and manufacturing lines can be adopted as
a fruitful bullwhip-dampening method, even if they need to be properly regulated for avoiding a reduction in the
system capacity to fulfill customer demand in a cost-effective manner.

1. Introduction

An almost-ubiquitous problem occurring in supply chains (SC) is the
so-called bullwhip effect (BWE) (Lee, Padmanabhan, & Whang, 1997),
which refers to the phenomenon by which even small variations in
customer demand may generate high alterations in upstream produc-
tion for suppliers (Dominguez, Cannella, & Framinan, 2014; Huang,
Hung, & Ho, 2017; Lin, Naim, Purvis, & Gosling, 2017). This has im-
portant implications in real-life SCs (see e.g. Zotteri, 2013; Isaksson &
Seifert, 2016; Chiang, Lin, & Suresh, 2016; Trapero & Pedregal, 2016;
Jin, DeHoratius, & Schmidt, 2017; de Oliveira Pacheco, Cannella,
Lüders, & Barbosa-Povoa, 2017; Lin, Spiegler, & Naim, 2017; Pastore,
Alfieri, & Zotteri, 2017). Indeed, recent empirical works have shown
that the BWE may emerge in two-thirds of firms from USA (Bray &
Mendelson, 2012) and China (Shan, Yang, Yang, & Zhang, 2014). Be-
sides, its consequences are, by nature, global and impact both devel-
oped and developing countries, as pointed out by the European Central
Bank (Altomonte, Mauro, Ottaviano, Rungi, & Vicard, 2012), the Eur-
opean Bank for Reconstruction and Development Working (Zavacka,
2012) and the World Bank (Ferrantino & Taglioni, 2014). Some of the
consequences of BWE are excess of inventory, poor customer service
and inaccurate demand forecasts (Trapero, Kourentzes, & Fildes, 2012).
In the last two decades, different efforts to explain and reduce the BWE

have emerged and these continue to grow (Wang & Disney, 2016).
However, even if a number of advances have been made for limiting
BWE, there is still substantial room for improvement. More specifically,
after conducting the most recent literature survey on the BWE, Wang
and Disney (2016) identify several opportunities for future research,
such as BWE in complex systems, with pricing considerations, in service
chains, and with research competition. Among those opportunities, two
stand out, i.e.: investigating the BWE in capacity-constrained environ-
ments and exploring this phenomenon in Closed-Loop SCs (CLSCs).

Manufacturing firms are fundamental in supporting modern
economies (Trapero, Kourentzes, & Fildes, 2015). Consequently,
studying the impact of manufacturing capacity constraints in SC dy-
namics has become an important research area in the past years. Ca-
pacity constraints usually refer to considering upper limits in the order
sizes placed to suppliers, or upper limits in the orders’ acceptance
channel. For example, this may be due to restrictions in the manu-
facturing resources. In this regard, literature has shown that such in-
terpretation of capacity can stabilize the orders and generate a
smoothing effect on production (see e.g., Evans & Naim, 1994; Chen &
Lee, 2012; Shukla & Naim, 2017; Ponte, Wang, de la Fuente, & Disney,
2017; Framinan, 2017). However, and at the same time, these restric-
tions may negatively impact on inventory holding costs and customer
service level (Cannella, Ciancimino, & Marquez, 2008; Hussain, Khan, &
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Sabir, 2016; Nepal, Murat, & Chinnam, 2012; Spiegler & Naim, 2014).
In general, works dealing with the implications of capacity limits on the
dynamic performance of the SC are relatively scarce (Ponte et al., 2017)
and, to the best of authors’ knowledge, their subject of study is a tra-
ditional forward SC as opposed to the emerging CLSC setting.

In a CLSC, recycling and/or remanufacturing activities — which
involve taking back products from customers after their consumption
and returning them to the SC for the recovery of added-value by reusing
the whole product or part of it (Genovese, Acquaye, Figueroa, & Koh,
2017) — are implemented (Jerbia, Kchaou Boujelben, Sehli, & Jemai,
2018). CLSC archetypes are the desired business model for companies
due to the potential value recovery, environmental sustainability, and
special importance given by the customers (Jabbarzadeh, Haughton, &
Khosrojerdi, 2018). In the last decade, some works have been exploring
the dynamic characteristics of CLSCs, specifically by focusing on how
some key factors of this structure (e.g., the return yields, the re-
manufacturing lead-time, and the adoption of different order policies)
may impact on the performance in terms of BWE, inventory stability
and customer service level. Particularly, most of studies have shown
that increasing return yields can reduce the BWE (see e.g., Tang &
Naim, 2004; Zhou & Disney, 2006; Hosoda, Disney, & Gavirneni, 2015;
Cannella, Bruccoleri, & Framinan, 2016; Zhao et al., 2018). However, to
the best of the authors’ knowledge, these studies assume infinite pro-
duction capacity.

In the light of the above-mentioned considerations, we argue that
exploring the dynamic behavior of a CLSC by understanding how a
limitation in the capacity of the manufacturing and remanufacturing
lines impacts on SC performance can be reasonably considered a major
challenge for OM communities. Hence, in this work we aim to shed
light on this topic and, to fulfill the research objective, we model a CLSC
via difference equations (Riddalls, Bennett, & Tipi, 2000) characterized
by a limitation in both manufacturing and remanufacturing operations.
Moreover, given the need of modern SCs for surviving and thriving in
turbulent and volatile environments (Wikner, Naim, Spiegler, & Lin,
2017), we consider stochasticity in both the return yield and the cus-
tomer demand. Thus, we perform a rigorous Design of Experiments
(DoE) considering four key factors, i.e., (1) the variability of the return
yield, (2) the capacity factor of the manufacturer, (3) the capacity
factor of the remanufacturer, and (4) the variability of the customer
demand. In short, the results of this works reveal that a low capacity in
the remanufacturer may smooth the BWE in the fabrication of both new
and remanufactured products while maintaining a good inventory
performance. However, if capacity is reduced below certain threshold
value, it can also generate detrimental consequences in terms of in-
ventory holding costs and customer service level. From a managerial
point of view, this work suggests that imposing capacity limits in both
remanufacturing and manufacturing processes can be adopted as a
bullwhip-dampening method. In order to the set suitable capacity of
both lines, managers should also take into account the degree of un-
certainty of both the market demand and the return yield.

The rest of the paper is organized as follows. Section 2 presents a
literature review of studies dealing with BWE, capacity constraints and
CLSCs. Section 3 details the model of the capacitated CLSC and the key
performance indicators employed. Section 4 describes the experimental
design, while Section 5 shows the results obtained from the simulations.
Section 6 contains the summary of findings and managerial implica-
tions. Finally, Section 7 presents the main conclusions of the work.

2. Literature review

In this section, we first provide an overview of the previous works
investigating the BWE in capacitated SCs. Later, we summarize the
relevant literature exploring the dynamics of CLSCs. As discussed in the
previous section, although a number of contributions have been

produced in these areas separately, we are not aware of any work
jointly investigating these two aspects.

2.1. The impact of capacity constraints on supply chains

In BWE literature, the problem of capacity constraints has been
considered in relatively few studies. These are usually developed by
adopting modelling and simulation techniques, given the mathematical
complexity introduced by the capacity limit in the form of a non-
linearity. Among these works, to the best of the authors’ knowledge,
Evans and Naim (1994) can be considered the first one. Via differential
equation modelling, the authors conclude that the capacity constraints
may improve the behavior of SC in terms of BWE, but at the expense of
reducing the inventory service levels. Essentially, Evans and Naim
(1994) show for the first time that an unconstrained SC does not always
produce the best performance. De Souza, Zice, and Chaoyang (2000),
using system dynamics, conclude that SC performance can be seriously
affected by capacity shortages. In this fashion, they suggest that capa-
city planning is central to the dynamics of the SC. Analogously, Helo
(2000), also via system dynamics, suggests that a limited capacity ne-
gatively impacts on the responsiveness of the SC. Vlachos and Tagaras
(2001), through both analytical methods and simulation, show that
imposing capacity limits damages the system’s response, particularly
for long production lead times. Similarly to Evans and Naim (1994),
Wilson (2007), through system dynamics modelling, finds out that
short-term limitations on capacity may produce a poor customer service
level; however, they can improve the SC behavior. Analogously,
Cannella et al. (2008), via differential equations modelling, show that
the BWE can be reduced if capacity limits are imposed, but they also
can create a significant stock-out phenomenon. Boute, Disney,
Lambrecht, and Van Houdt (2009), via analytical methods, demonstrate
that inflexible limits on capacity generate stochastic lead times and thus
they amplify the desired inventory on-hand and, in general, the op-
erational costs. Interestingly, Juntunen and Juga (2009), via discrete-
event simulation, show that the fill rate does not necessarily improve by
increasing the capacity limitation in distribution. Contrarily,
Hamdouch (2011), by adopting a network equilibrium method, shows
that capacity limitations generate poor market response and SC beha-
vior. Nepal et al. (2012), via differential equations modelling, report
that capacity restrictions do not have a significant impact on order
variability but, in contrast, it can strongly affect the stability of the
inventory. Chen and Lee (2012), via mathematical analysis, and in line
with those studies showing the benefits of capacity constraints in terms
of BWE reduction, argue that considering a fixed capacity in SC miti-
gates this phenomenon. Spiegler and Naim (2014), via system dy-
namics, show that capacity restrictions have a negative effect on both
inventory and service customer levels, even if it emerges a positive
impact on the ‘backlash’ effect (i.e., BWE on transportation). In line
with most of the previous studies, Hussain et al. (2016), using differ-
ential equations modelling, show that restrictions in the order size due
to capacity limitation may avoid “phantom” large orders, a similar
conclusion to that by Shukla and Naim (2017) via system dynamics
modelling. Ponte et al. (2017) show that the capacity limit can be op-
timized to reduce SC costs by looking at the trade-off between improved
order stability and reduced inventory performance. Finally, Framinan
(2017) analytically demonstrates that if capacity refers to the rejection
of orders in excess of a given threshold, then capacity dampens the
BWE.

In summary, the above-mentioned studies have reported somewhat
contradictory results regarding the impact of capacity constraints on
the dynamics of SCs. However, most of them agree on the positive effect
of the capacity limitations on the BWE, since these restrictions dampen
order variability. At the same time, they observe that this improvement
is generally achieved at the expense of a decreased trade-off between
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service level and inventory holding requirements. However, it is in-
teresting to highlight that all the previous studies have been conducted
in the context of traditional, or open-loop, SCs. In this sense, none of the
studies investigates how capacity limitations may impact the dynamics
of CLSCs, particularly when these affect to both the forward and reverse
flow of materials.

2.2. The dynamics of closed-loop supply chains

Following from the previous discussion, the BWE has largely
boosted the attraction of researchers over the last decades in what we
may label as traditional, or open-loop, SCs (see e.g. Wang & Disney,
2016). These cover the unidirectional flow of materials between the
point at which the raw materials are extracted, upstream, and that at
which the product is consumed and ends up in landfill, downstream.
However, this archetype is becoming obsolete in many practical set-
tings, as SCs are evolving towards closed-loop variants in a bid to mi-
tigate environmental impacts and exploit economic opportunities de-
rived from circular economy models (Genovese et al., 2017; Govindan,
Soleimani, & Kannan, 2015). In this sense, the so-called CLSCs capture a
bidirectional flow of materials: on the one hand, the traditional
downstream flow, from suppliers to customers; on the other hand, the
reverse flow, in the opposite direction. The reverse flow covers the
collection of used products and their recovery up to operating stan-
dards, for examples through recycling and/or remanufacturing pro-
cesses. It should be noted that the forward and reverse flow are subject
to different uncertainties. While the dynamics of the former, and thus
those of traditional SCs, are heavily influenced by the consumer de-
mand uncertainty; the dynamics of the reverse flow of materials, and
thus those of CLSCs, are greatly impacted by the uncertainty on the
volume, timing, and quality of the returned products (Ferguson, Guide,
Koca, & Souza, 2009; Souza, 2013). Given that the characteristics of
these emerging SCs significantly differ from those of traditional SCs,
research on new business models that efficiently integrate both flows of
materials becomes necessary (Goltsos, Ponte, Wang, Liu, Naim, &
Syntetos, in press; Guide, Harrison, & Van Wassenhove, 2003).

In the BWE literature, the CLSC archetype has still received rela-
tively little attention, as pointed out by recent reviews of the literature
(Braz, De Mello, de Vasconcelos Gomes, & de Souza Nascimento, 2018;
Goltsos et al., in press). Historically, the work by Tang and Naim (2004)
can be considered the first effort in analyzing the BWE in a CLSC in the
form of a hybrid manufacturing/remanufacturing system. The authors,
via control theory, study three ad-hoc order policies. They conclude
that increasing recollected products and operating with higher in-
formation transparency on the pipeline of the remanufacturer strongly
improves the performance of the CLSC. Also by means of a control
theoretic approach, Zhou and Disney (2006) analyze the impact of lead
times and return rates on the inventory variance and demand amplifi-
cation phenomenon. Zanoni, Ferretti, and Tang (2006) use a discrete-
event simulation model to carry out a comparative study between four
different replenishment rules in terms of order amplification. They
show how the BWE of the downstream (forward) flow in the SC can be
reduced in the dual policy, while the BWE of the upstream flow (re-
verse) can be mitigated by using the shifted pull policy. Pati, Vrat, and
Kumar (2010) use a statistical analysis on a six-stage reverse SC and
conclude that the reverse flow does not experience a demand amplifi-
cation. By means of agent-based simulation, Adenso-Díaz, Moreno,
Gutiérrez, and Lozano (2012) analyze the impact of 12 factors in both
the forward and the reverse flow of materials and do not detect sig-
nificant differences between the performances of the two considered SC
structures in terms of order rate amplification. Turrisi, Bruccoleri, and
Cannella (2013), via difference equation modelling, propose a novel
replenishment rule to coordinate the upstream and downstream flows

in a CLSC and show that a reduction of BWE can be obtained by in-
creasing the volume of returns. However, they do not find significant
differences in terms of inventory variance. Analogously, Corum,
Vayvay, and Bayraktar (2014) employ a discrete-event simulation
model to show that a CLSC allows reducing the BWE phenomenon.
Hosoda et al. (2015), via analytical methods, study the impact of the
correlation between demand and returns, and observe that increasing
the yield may have a negative effect in terms of inventory variability.
Cannella et al. (2016) employ difference equation modelling to show
that shifting from a forward SC to a CLSC always generates benefits in
terms of inventory and order variances, both in stable and turbulent
market scenarios. Dev, Shankar, and Choudhary (2017), via difference
equation modelling, conclude that, in a CLSC, continuous-review po-
licies outperform periodic-review policies from a BWE perspective.
Zhou, Naim, and Disney (2017) consider different return qualities in a
three-echelon supply chain, using control theory, and show that a
higher return yield decreases the BWE. The magnitude of this reduction
depends on the combination of control parameters (i.e., the degree of
return yield at each echelon and the lead times in the CLSC). Hosoda
and Disney (2018), via analytical methods, explore the so-called ‘lead
time paradox’ in CLSCs, which refers to the scenarios in which in-
creasing the remanufacturing lead time may decrease the SC cost. They
show that shortening the remanufacturing lead time does not contribute
to lower inventory costs but could generate some other benefits, such as
lower capacity cost and in-transit inventory. Sy (2017) employs system
dynamics to analyze a hybrid production-distribution system and show
that, under three scenarios, the centralization of the customer demand
information attenuates the BWE. Similarly, Zhao et al. (2018) study, via
system dynamics, the impact of three ordering policies that differ on the
degree of shared information in the CLSC. In line with literature on
information sharing, they conclude that the use of centralized demand
information in a vendor managed inventory system reduces both order
and inventory variability.

To sum up, previous studies show a lack of consensus on the impact
of the relevant CLSC parameters on the BWE and inventory variability
of such systems. While some studies observed that the dynamics of
CLSCs may be improved by increasing the return yield, other studies
concluded the opposite impact. Similarly, some studies concluded that
reducing remanufacturing lead times translates into an increased per-
formance of CLSCs, while others reported the previously mentioned
lead time paradox. As remarked by Cannella et al. (2016) and Zhao
et al. (2018), these conflicting results may depend on different SC
configurations and modelling assumptions. There is no doubt, however,
about the key role of information transparency for improving the dy-
namic behavior of CLSCs. Integrating the forward and reverse flow of
materials in a cost-effective manner has proven to be greatly facilitated
by the information exchange between them. Finally, it is important to
emphasize that there is no evidence on how a CLSC performs if capacity
limitations are considered both in the forward and reverse flow of
materials.

3. Closed-loop supply chain model

Fig. 1 provides an overview of the hybrid manufacturing/re-
manufacturing system considered in this research work, together with
its main parameters. This CLSC is described in detail in the following
paragraphs. A summary of the notation employed for describing the
CLSC model is provided in Table 1.

The CLSC integrates both manufacturing and remanufacturing
processes into the same SC and operates on a discrete-time basis, being
the time unit t. We consider two sources of stochasticity, i.e., the con-
sumer demand (dt) and the returns (rt). As usually assumed in this field,
the demand is drawn from an independent and identically distributed
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(i.i.d.) random variable (x )t following a normal distribution with mean
μ and standard deviation σ, being the coefficient of variation =CV µd ,
which is constrained to only positive values. That is,

=d x x N µmax{ , 0}, ( , ).t t t
2 (1)

In order to account for the stochasticity of the returns, we model the
return yield (zt), i.e., the percentage of sold products that come back to
the SC after consumption, through an i.i.d. random variable (yt) fol-
lowing a normal distribution with mean β and standard deviation ξ,
being the coefficient of variation =CVr , which has been constrained
to values between 0 and 1. This approach allows us to model the returns
as the product of the yield and the demand before a constant con-
sumption lead time Tc. In this sense, this variable has been constrained
to prevent negative values from happening, which would be mean-
ingless in practice.

= =r y d y z z N, min{max{ , 0}, 1}, ( , ).t t t T t t t
2

c (2)

Each period t, the operation of the hybrid manufacturing/re-
manufacturing system can be divided into three sequential stages,
which are detailed below, including the associated mathematical for-
mulation.

3.1. Stage I: Reception, settling and feeding

At the beginning of each period t, the serviceable inventory receives
the product from both the manufacturer (new products) and re-
manufacturer (assuming as-good-as-new products), once the processes
have been completed after the respective constant lead times Tm and Tr .
In this sense, the serviceable inventory is ready for facing the consumer
demand that will be received during this period. Moreover, the raw
material inventory provides the manufacturing equipment with the
quantity required according to the order issued at the end of the pre-
vious period. Similarly, the returns collected during the previous period
are fed into the remanufacturing process, which hence operates ac-
cording to a push policy—Hosoda and Disney (2018) justifies that this
common assumption fits well with the ethics of sustainability.

In this regard, we note that the capacity constraints of the manu-
facturing and remanufacturing process, respectively m and r , play a
key role. Taking into consideration the capacity required for both
processes under a steady state defined by the mean values µ (for the
demand) and (for the returns), that is, µ(1 ) for the manufacturing
process (i.e. the average net demand) and µ for the remanufacturing
process (i.e. the average returns); we define the coefficients of capacity
as =CoC µ[(1 ) ]m m and =CoC µ[ ]r r . Note that these

Fig. 1. Structure of the hybrid manufacturing/remanufacturing system.

Table 1
Notation of the CLSC model.

Variables

ot Order quantity rct remanufacturing completion rate
dt customer demand in period t rbt remanufacturing backlog

dt market demand forecast at the end of period t xt random variable for demand in the period t

rt returns in the period wt work-in-progress
ist serviceable stock zt return yield in period t
sst safety stock twt target work-in-progress
nst net stock yt random variable for the return yield
mbt manufacturing backlog

Parameters and statistics

CVd coefficient of variation of demand m capacity constraint of the manufacturing process
CVr coefficient of variation of the return yield r capacity constraint of the remanufacturing process
σ standard deviation of the random variable simulating the demand Tp Estimated pipeline lead time
μ mean of the random variable simulating the demand Tm manufacturing lead time
α demand forecast smoothing factor Tr remanufacturing lead time
β mean of the random variable simulating the return yield Tc consumption lead time

standard deviation of the random variable simulating the return yield t time unit
ε safety stock factor mc standard deviation of the manufacturing completion rate
CoCm coefficient of manufacturing capacity rc standard deviation of the remanufacturing completion rate
CoCr coefficient of remanufacturing capacity ns standard deviation of the net stock
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coefficients inform about the excess capacity available in relative terms
to the mean required. We note that to ensure the stability of the system,
both must be greater than the unity.

Under these circumstances, the manufacturing completion rate re-
sponds to the order placed +T 1m periods ago, as long as there is en-
ough capacity available, by

= +mc o mbmin{ , }.t t T t m1 1m (3)

As Eq. (3) illustrates, it is also necessary to consider the manufacturing
backlog (mbt) which measures the pending orders that could not be
processed when required and will be delivered as soon as capacity
becomes available. This variable can be expressed by

= +mb o mbmax{ , 0}.t t T t m1 1m (4)

It can be easily checked that if +o mbt T t m1 1m , the manufacturing
system has no pending work, i.e. =mb 0t , while + <o mbt T t m1 1m
would result in pending orders, i.e. >mb 0t .

The rationale employed for modelling the remanufacturing line is
similar, assuming that it operates according to a push policy. For this
reason, the remanufacturing completion rate (rct) corresponds to the
returns collected +T 1r periods ago, as long as the remanufacturing
capacity allows it, by

= +rc r rbmin{ , };t t T t r1 1r (5)

while the remanufacturing backlog (rbt) would be expressed as

= +rb r rbmax{ , 0}.t t T t r1 1r (6)

Overall, the on-hand serviceable stock, or initial stock (ist), which is
available for fulfilling the demand received during the period can be
expressed as a function of the net stock (nst), or excess on-hand in-
ventory at the end of the previous period, by

= + +is ns mc rc .t t t t1 (7)

3.2. Stage II: Manufacturing, serving, and returns collection

During period t, orders from consumers are received. These are
satisfied as long as on-hand inventory is available. In this sense, the
final position of this inventory can be expressed as

=ns is d ,t t t (8)

where positive values of this variable refer to holding and negative
values indicate stock-outs, which will be satisfied as soon as possible
(ideally, at the beginning of the next period).

In this regard, the on-order inventory, or work-in-progress (wt), at
the end of the period can be obtained by

= + +w w o mc r rc( ) ( ).t t t t t t1 1 1 (10)

Note that we are implicitly assuming that it takes one period to gather
the collected returns and evaluate their state. The work-in-progress
represents the sum of the products that have been ordered but not yet
received in the serviceable inventory plus the returns that have been
collected but not yet completely remanufactured. This is a relevant
variable as it provides the decision makers with important information
about the current state of the system.

At the same time, during period t, returns are collected and stored in
the recoverable inventory. Similarly, both the manufacturing and re-
manufacturing processes are considered to be ongoing.

3.3. Stage III: Updating, forecasting, and sourcing

At the end of each period, a new order is issued to manufacture new
products. In this sense, we are implicitly assuming that the serviceable
inventory is operated via a discrete-review policy. To this end, we
employ an order-up-to (OUT) replenishment model, which is widely
used in real-world scenarios (Dejonckheere, Disney, Lambrecht, &

Towill, 2003). We note that, as pointed out by Axsäter (2003), these
periodic-review inventory models are generally easier to implement
and less expensive to operate than continuous-review models, where
the inventory is constantly reviewed.

It is relevant to highlight that the OUT model has been adapted to
closed-loop scenarios by employing the same rationale that the type-3
OUT model developed by Tang and Naim (2004). More specifically, an
order is placed to cover the fraction of the demand that cannot be sa-
tisfied through remanufactured products. We selected the type-3
system, as it was shown to make the best use of the available in-
formation both from the manufacturing and remanufacturing processes.
As in Tang and Naim (2004)’s proposal, the order quantity is obtained
as the sum of three gaps: (i) the gap between the forecasted demand (dt)
and the actual number of remanufactured products; (ii) the gap be-
tween the target, or safety stock (sst), and the current level of the on-
hand inventory; and (iii) the gap between the target (twt) and the
current work-in-progress; as per the following equation,

= + +o d rc ss ns tw wmax{( ) ( ) ( ), 0}.t t t t t t t (11)

Note that we have constrained the order quantity to only positive va-
lues, which means assuming that the serviceable inventory is not al-
lowed to return the excess inventory to the raw material inventory (if it
were the case). In this sense, we are capturing a common real-world
feature of inventory systems.

The previous equation requires the calculation of the demand
forecast, the safety stock, and the target work-in-progress. First, we
assume that the demand is estimated through the minimum mean
square error (MMSE) forecast of the statistical variable that define its
behavior, which is its conditional expectation (e.g. Disney, Maltz,
Wang, & Warburton, 2016). For i.i.d. demand, that is:

=d µ.t (12)

Regarding the safety stock, we adopt a simple but used model (e.g.
Cannella et al., 2016) that estimates it as the product of the safety stock
factor ε and the demand forecast, by

=ss d .t t (13)

Thus, the factor may be interpreted as the number of future periods
against which the node aims to be protected. Finally, the target work-
in-progress is obtained as the product of the pipeline estimate Tp and the
demand forecast, according to:

=tw T d .t p t (14)

Note that the pipeline estimate has been adjusted, according to the
setting proposed by Tang and Naim (2004), as an average of the
manufacturing and remanufacturing lead times weighted by the return
yield. These authors show that this is the only configuration that avoids
a long-term drift in the position of the serviceable inventory. Given that
in their case they assumed a constant return yield, we have adapted
their proposed equation by employing the average of the variable that
define the yield’s behavior, i.e. = +T T T(1 )p m r .

3.4. Key performance indicators

We assess the behavior of the CSLC using three main performance
indicators based on the pioneering works of Tang and Naim (2004)
(i.e., manufacturing completion rate, net stock) and Zanoni et al.
(2006) (i.e., remanufacturing completion rate). More specifically, we
measure the standard deviations of these three variables over time,
i.e. manufacturing completion rate ( )mc , remanufacturing comple-
tion rate ( )rc , and net stock ( )ns , as they provide more concise and
comparable insights on the BWE of both manufacturing and re-
manufacturing processes as well as on inventory holding costs. Below,
we discuss in detail the rationale behind the adoption of these me-
trics.
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Disney, Gaalman, and Hosoda (2012) explore several cost functions
that can be employed to assigned capacity-related costs to stochastic
production rates. They show that in guaranteed-capacity models — i.e.,
where an opportunity cost is incurred if the production is lower than
the guaranteed capacity and an overtime cost is incurred when the
production rate is higher than the guaranteed capacity —, the minimum
production cost is proportional to the standard deviation of the man-
ufacturing rate if both costs are proportional to the volume. While it is
true than in other costs models this perfect relationship may be broken,
it can be considered that the standard deviation of the manufacturing
completion rate provides a good understanding on the behavior of the
capacity-related production costs in the SC. The same rationale applies
for the standard deviation of the remanufacturing completion rate.

Similarly, Kahn (1987) demonstrate that the minimum inventory
cost is linearly related to the standard deviation of the net stock, where
holding (for positive net stocks) and stock-out (for negative net stocks)
are considered and these are proportional to the volume. Again, this
pure relationship may not hold for other cost models; but the variability
of net stock can still be interpreted as a good indicator of the inventory
performance of the SC under a specific configuration. In this sense,
Disney & Lambrecht (2008) state that the variability of the net stock
determines the echelon’s ability to meet a service level in a cost-effec-
tive manner.

4. Experimental design

In this section, the effect of capacity constraints on the performance
of the hybrid manufacturing/remanufacturing system is explored using
an experimental design. To do so, we focus on the coefficients of ca-
pacity of both the manufacturer and remanufacturer processes, i.e.,
CoCm and CoCr. As highlighted previously, these parameters express the
capacity limits of the manufacturing and remanufacturing line in re-
lative terms to the average capacity required. In order to understand
their effect in a wide range of scenarios, we explore several levels of
both factors. These levels are chosen according to the following con-
siderations:

• To ensure the long-term stability of the system, CoCm and CoCr must
be greater than the unity, i.e., the manufacturing system needs to be
able to meet the average net demand and the remanufacturing
system needs to be able to process the average returns.

• Preliminary simulation experiments revealed that the three perfor-
mance metrics tend to stabilize as the relevant coefficients of ca-
pacity increase, like in the traditional SC (see e.g. Ponte et al.,
2017). More specifically, this happens for CoCm > 3 and CoCr > 3,

as per mc and rc (these values are lower for ns). Thus we exclude
from the analysis the region above these values, since they give no
further information about the system.

Since these parameters are the effects of interest in our study, we
analyze several levels for each capacity, in intervals of 0.5. Specifically,
they range from 1.1 (the system operates close to its maximum capa-
city) to 3.1 (the system has sufficient spare capacity and behaves si-
milarly to an unconstrained system), i.e. =CoC {1.1, 1.6, 2.1, 2.6, 3.1}m
and =CoC {1.1, 1.6, 2.1, 2.6, 3.1}r .

As it seems reasonable, several research studies (see e.g. Ponte et al.,
2017) have shown that the impact of capacity constraints on the dy-
namics of SCs strongly depends on the variability of the sources of
stochasticity. For this reason, we introduce the variability of the
random variables generating the demand and the return yield in the
experimental design. Again, we do it through relative instead of abso-
lute values, i.e., the coefficients of variations. In both cases, we employ
three levels. In the former, =CV {0.15, 0.30, 0.45}d , as they are inside the
common interval of variability of demands for retailers according to
Dejonckheere et al. (2003). In the latter, =CV {0.20, 0.40, 0.60}r , which
also covers a wide enough interval that allows us to explore the impact
of capacity where there is a strong correlation between demand and
returns (yield variability low) and where this correlation is small (yield
variability high). It is important to note that these factors can be in-
terpreted as uncontrollable factors, as opposed to the coefficient of
capacities that may be understood as controllable factors.

The rest of the parameters have been defined as fixed. In this regard,
the mean demand has been set to =µ 100 units per period, while the
average return yield has been set to = 0.5. For the lead times, we
explore a scenario where the manufacturing and remanufacturing lead
times are equal, = =T T 4m r . The reason behind this decision is that it
represents a “target scenario”, according to the conclusions by Hosoda
and Disney (2018). While it is common to assume that remanufacturing
lead times are shorter than manufacturing lead times (e.g. Tang &
Naim, 2004), Hosoda and Disney (2018) show that the aforementioned
lead time paradox —according to which reducing remanufacturing lead
times has a negative impact on SC performance— is very likely to ap-
pear in these scenarios. To avoid this from happening, the authors
highlight the benefits of shortening the manufacturing lead time until
both lead times are equal. Note that other authors have also considered
equal lead times, e.g. Teunter and Vlachos (2002). Furthermore, we
have considered a consumption time of =T 32c in order to illustrate that
this tends to be significantly higher than the rest of lead times in the
CLSC (e.g. Tang & Naim, 2004). Lastly, we employ = 1 for the safety
stock policy. The same value is used in Cannella et al. (2016).

Table 2
Experimental design protocol.

Experimental factors Role Levels

Coefficient of manufacturing capacity CoCm Controllable 1.1, 1.6, 2.1, 2.6, 3.1
Coefficient of remanufacturing capacity CoCr Controllable 1.1, 1.6, 2.1, 2.6, 3.1
Coefficient of variation of the demand CVd Uncontrollable 0.15, 0.30, 0.45
Coefficient of variation of the return yield CVr Uncontrollable 0.20, 0.40, 0.60

Fixed factors
=µ 100, = 0.5, =T 4m , =T 4r , =T 32c , = 1

Experimental approach
Type of DoE Full factorial
No. of experiments 225
No. of replications 10
No. of simulation runs 2250

Simulation parameters
Time horizon 2100 periods
Warm-up period 100 periods
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From this perspective, we have designed a full factorial experiment,
based on exploring the 225 scenarios resulting from combining the
different values of the selected factors (5 × 5 × 3 × 3). Each scenario
has been explored through 10 different simulations of 2100 periods,
where the first 100 periods are not considered for the results reported to
avoid the impact of the initial state of the system. The number of re-
plications aims to reduce the confidence intervals, and hence increase
the soundness of our results. Overall, Table 2 summarizes the experi-
mental design protocol.

5. Results

In this section, we analyze the results obtained from the simulations
for the metrics mc, rc, and ns using Minitab. Numerical results from
ANOVA are shown in Appendix A. The three main assumptions of the
ANOVA (i.e. normality, homoscedasticity, and independence of cases)
were checked and validated prior to the analysis.

We note that the three models ( mc, rc, and ns) show highly ad-
justed R2, thus confirming their reliability, as the observed performance
variations are well explained by the variations in the experimental
factors. Furthermore all factors and their two-way interactions are
statistically significant at a 95% confidence level (p < 0.05), with the
exceptions of CoCm (and all its associated two-way interactions) for rc,
as outlined below. Therefore, in all these cases (p < 0.05) we can re-
ject the null hypothesis that there is no difference in means between
groups.

In the following paragraphs, we first analyze the main effects of the
four experimental factors (i.e., CoCm, CoCr, CVd, and CVr), and then we
investigate the first order interactions.

5.1. Main effects

The main effects plots are shown in Figs. 2–4. The main effect of CVd
is not discussed in detail here, as the impact of demand variability on

Fig. 2. Main effects plot for mc.

Fig. 3. Main effects plot for rc.
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the dynamics of SCs is well known in the problem-specific literature.
Meanwhile, the main effect of CVr confirms previous results in CLSCs,
such as those provided by Hosoda et al. (2015). As it can be expected,
the variability of indicators mc, rc and ns increases as the coefficient
of variation of the return yield grows. This illustrates how returns un-
certainty negatively impacts on the dynamic behavior of CLSC.

Our results show that the main effect of CoCm is similar to that in
previous studies of capacitated systems in traditional forward SCs. It
can be seen from Fig. 2 that reducing this factor results in a lower mc,
and this decrease is more significant as CoCm becomes closer to 1.
Nevertheless, ns slightly increases by reducing CoCm, and a sudden
increase is observed when CoCm is below 1.6. This finding is aligned
with previous studies (Cannella et al., 2008; Spiegler & Naim, 2014;
Hussain et al., 2016; Ponte et al., 2017, among others) reporting that a

reduction in the capacity of the manufacturer acts as a BWE limiter at
the expense of decreasing the SC capacity to fulfill consumer demand in
time. Interestingly, we do not find evidences of a significant impact of
CoCm on rc, which can be interpreted as consequence of the push
policy employed in the recoverable inventory.

The main effect of CoCr on rc is similar to that of CoCm on mc (both
curves have similar shapes). The effect of CoCr on ns also has similar
features as that of CoCm on ns, i.e., reducing CoCm has almost no impact
on ns for medium and high values of this parameter, while a sudden
increase of ns is observed for values of CoCm below 1.6. However, the
strength of the sudden increase of ns is lower for CoCr than for CoCm.
Finally, we observe that CoCr does have a significant impact on mc. In
fact, since the reverse flow is considered in the order policy of the
manufacturer, and the remanufacturer is governed by a push policy, the

Fig. 4. Main effect plots for ns.

Fig. 5. Interaction plot for mc.
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effect caused in rc by increasing/decreasing CoCr has direct implica-
tions on mc. This result implies that reducing CoCr between 2.6 and 1.6
slightly reduces mc, while a more significant reduction is observed for
values between 1.6 and 1.1. Clearly, the impact of CoCr on mc is always
lower than the impact of CoCm.

5.2. Interactions

The first order interactions are shown in Figs. 5–7. Firstly, looking
into Fig. 5, we observe significant interactions between CoCm and the
other three factors. These interactions are particularly strong for the

factors CVd and CVr (see also F-Values in Appendix A), i.e., the reduction
obtained for mc by decreasing CoCm is more significant for higher va-
lues of CVd and CVr . The interaction between CoCm and CoCr is only
observed for very low values of CoCr (CoCr = 1,1), where mc is less
sensitive to CoCm.CoCr shows relatively lower interaction strength with
CVd and CVr . This result implies that reducing CoCr from 2.1 to 1.1
produces a higher reduction of mc for lower/higher values of CVd and
CVr , respectively, being the former interaction more significant than the
latter (see also F-Values in Appendix A). Finally, there is also a sig-
nificant interaction between CVd and CVr . Thus, we can conclude that

mc is more sensitive to CVr for lower values of CVd.

Fig. 6. Interaction plot for rc.

Fig. 7. Interaction plot for ns.
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In Fig. 6 the interaction plots for rc are shown. As CoCm has no
impact on rc, the most significant interactions take place between CoCr
and the other two factors, CVd and CVr , being more significant the in-
teraction with the latter factor (see F-Values in Appendix A). More
specifically, the reduction of rc resulting from reducing CoCr is more
significant for higher values of CVd and CVr .

Finally, we analyze the interaction plots for Σns (see Fig. 7). The
most significant interactions take place between CoCm and CVd, and
between CoCr and CVr , being the former more significant than the latter
(see F-Values in Appendix A). More specifically, it can be observed that,
when CoCm is reduced below 2.1, the increase in ns is higher for high
values of CVd. Similarly, when CoCr is reduced below 1.6 the increase in

ns is more pronounced for high values of CVr .

6. Summary of findings and managerial implications

We now summarize the main findings and contributions of our
work. We also present interesting implications for managers, suggesting
different ways to improve the dynamic performance of a capacitated
CLSC.

(1) The capacity restriction in the manufacturing line of a CLSC limits
the BWE suffered by the manufacturer (like in a traditional forward SC).
This limitation is more significant when the return yield and/or the customer
demand present high variability. However, the capacity constraints of the
manufacturing line has no significant impact on the BWE suffered by the
remanufacturer.

Firstly, we reassert the evidence that capacity constraints may im-
prove the dynamic performance of a SC by reducing the BWE of the
manufacturer. As a practical implication, managers may consider to
smooth the manufacturing process by limiting its maximum capacity,
obtaining a higher performance improvement as the capacity limit
becomes lower. This effect is especially important when there is a
turbulent market demand or when the return yield is very uncertain.
However, the limitation in the capacity of the manufacturing line does
not affect the BWE of the remanufacturing line.

(2) The capacity restriction of the remanufacturing line in a CLSC limits
the BWE suffered by the remanufacturer, especially when the return yield
and/or the customer demand present high uncertainty. In addition, the ca-
pacity constraints of the remanufacturing line may enable to reduce the BWE
suffered by the manufacturer, especially for high variability of the return
yield and/or low variability of the customer demand.

This novel finding allows one to understand the impact of the capa-
city constraints of the remanufacturing line on the dynamic behavior of
capacitated CLSCs. Limiting the capacity of the remanufacturing line has
a positive impact on the stability of the remanufacturing process, also
obtaining higher improvements as the capacity limit decreases. As in the
previous case (1), this impact is especially important when the market
demand or the return yield present very variable conditions. In addition,
the manufacturing line may also benefit from the limitation of the re-
manufacturing capacity, but in a lower magnitude. More specifically, this
benefit could be only appreciated when the capacity of the re-
manufacturing line is below a certain threshold value (see Fig. 5). Fur-
thermore, this effect is exacerbated when there is a high uncertainty of
the return yield and (contrarily to the previous case) a more stable
market demand. In summary, in capacitated (real-life) CLSCs, a way to
improve the dynamic behavior of both manufacturing and re-
manufacturing lines is to limit the capacity of the remanufacturing line,
which is able to indirectly smooth instabilities in the manufacturing line.

(3) Reducing either the capacity of the manufacturing line (particularly
in case of high variability of customer demand) or the remanufacturing line
(particularly in case of high variability of the return yield) below a certain
threshold value has a strong negative impact on the variability of the net
stock. This negative impact is more sensitive to the capacity of the manu-
facturing line than to the capacity of the remanufacturing line.

This finding goes in countertendency with the previous findings,
since it highlights the negative impact of capacity limitations of both

lines on the variability of the net stock. While reducing capacity of the
manufacturing/remanufacturing lines produce a continuous improve-
ment in terms of BWE, the variability of the net stock does not present
significant changes until a threshold capacity value is reached. From
that point on, the variability of the net stock suddenly increases as the
capacity is smaller (see Fig. 7). Interestingly, such threshold value
seems to be very similar for both lines.

In the light of the above findings, we would recommend managers
of CLSCs to strategically consider the capacity planning of both man-
ufacturing and remanufacturing processes. In fact, while the capacity of
the manufacturing line has a major effect on the dynamics of the SC, the
capacity of the remanufacturing line also plays an important role. By
limiting both capacities (i.e., avoiding over-capacitated manufacturing/
remanufacturing processes), it is possible to smooth the production of
both new and remanufactured products. This decision needs to be taken
carefully, since reducing capacity limits over a capacity threshold may
have a negative impact on the dynamics of the net stock, thus in-
creasing costs related to inventory holding costs and stock-outs. In this
sense, and considering that both lines may share a common capacity
threshold, it would be advisable to reduce the capacity of both pro-
cesses until such threshold is achieved, thus smoothing both processes
while maintaining a good performance of the net stock. Additional
capacity reduction over such threshold could be recommended only
after a proper trade-off analysis between inventory holding costs/target
customer service level and production and remanufacturing costs.
Finally, uncertainty in market demand and return yield accentuates the
positive and negative effects discussed above. Thus, if the SC is char-
acterized by uncertainty in both market demand and return yields,
managers would be more willing to reduce capacity of both processes in
order to alleviate the negative consequences of such uncertainties,
while, in the other hand, more consideration should be given to over-
stepping the capacity threshold.

7. Conclusions

In this paper we explore the dynamic behavior of a capacitated
CSLC. To do so, we modelled a hybrid manufacturing/remanufacturing
system characterized by a capacity limitation in both manufacturing
and remanufacturing processes. We adopted difference equation mod-
elling approach and a rigorous DoE for assessing the impact of four key
factors, i.e., the variability of the return yields, the capacity factor at the
manufacturing line, the capacity factor at the remanufacturing line, and
the variability of the customer demand. The most interesting result
concerns the impact on the BWE of the remanufacturer capacity, which
may influence the dynamics of the manufacturer. More specifically,
capacity constraints in the remanufacturer line may create a smoothing
effect in the fabrication of both new and remanufactured products, but
it can also generate detrimental consequences in terms of the trade-off
between inventory holding costs and customer service level. From a
managerial viewpoint, this work suggests that capacity constraints in
both remanufacturing and manufacturing processes can be adopted as a
BWE-dampening method. However, a proper tuning of these constraints
should take into account the market environment and the degree of
uncertainty in the return yield.

As this work is the first attempt to explore the dynamics of a CLSC
with capacity constraints in both manufacturing and remanufacturing
processes, it is clear that future research is needed to deepen our ana-
lysis. Firstly, more complex and real-life CLSC structures need to be
analyzed (e.g., multi-echelon and divergent structures; see Dominguez,
Cannella, Barbosa-Póvoa, & Framinan, 2018; Cabral & Grilo, 2018). As
we do not focus on the impact of remanufacturing and manufacturing
lead times, further studies may explore the effect of the interaction
between lead times and capacity constraints, and investigate how such
limits affect the “lead-time paradox” advocated by Hosoda et al. (2015).
Also, we assumed an i.i.d. demand, but other demand processes can also
be studied, such as the auto-correlated demand (see e.g. Babai, Boylan,
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Syntetos, & Ali, 2016). Furthermore, modelling the capacity is still an
issue, since all the complexities of a real manufacturing system cannot
be captured by considering a limitation in order quantity, limitation to
the orders placed to suppliers or limitation to the orders’ acceptance
channel. Thus, new studies may consider load-dependent lead times, by
adopting empirical results from scheduling theory (see e.g. CT-TP curve
and clearing functions; see Orcun, Uzsoy, & Kempf, 2009; Mönch,
Fowler, & Mason, 2013). Finally, the impact of inventory obsolescence
(Babai, Dallery, Boubaker, & Kalai, in press) should also be explored in
capacitated CLSCs.
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Appendix A

See Table A1–A3.

Table A1
Analysis of variance for Σmc.

Source DF Adj SS Adj MS F-value P-value

Analysis of variance
Model 64 271,018 4,234.7 5,897.49 0.000
Linear 12 255,121 21,260.0 29,608.22 0.000

CV_R 2 11,569 5,784.4 8,055.74 0.000
CV_D 2 32,461 16,230.7 22,604.00 0.000
CoC_R 4 3094 773.6 1,077.35 0.000
CoC_M 4 207,996 51,999.0 72,417.44 0.000

2-Way Interactions 52 15,898 305.7 425.78 0.000
CV_R*CV_D 4 3,910 977.5 1,361.27 0.000
CV_R*CoC_R 8 140 17.5 24.36 0.000
CV_R*CoC_M 8 2,380 297.5 414.26 0.000
CV_D*CoC_R 8 392 49.0 68.21 0.000
CV_D*CoC_M 8 7,928 990.9 1,380.06 0.000
CoC_R*CoC_M 16 1,149 71.8 100.01 0.000

Error 2,185 1,569 0.7
Lack-of-Fit 160 1,059 6.6 26.31 0.000
Pure Error 2,025 510 0.3

Total 2,249 272,587

Model summary

S R-sq R-sq(adj) R-sq(pred)

0.847376 99.42% 99.41% 99.39%

Table A2
Analysis of variance for Σrc.

Source DF Adj SS Adj MS F-value P-value

Model 64 140,479 2,195.0 8,930.68 0.000
Linear 12 127,987 10,665.6 43,394.85 0.000

CV_R 2 40,370 20,184.8 82,125.35 0.000
CV_D 2 15,792 7,896.1 32,126.66 0.000
CoC_R 4 71,825 17,956.3 73,058.44 0.000
CoC_M 4 0 0.0 0.12 0.975

2-Way Interactions 52 12,492 240.2 977.41 0.000
CV_R*CV_D 4 1,699 424.7 1,727.83 0.000
CV_R*CoC_R 8 7,819 977.4 3,976.79 0.000
CV_R*CoC_M 8 1 0.1 0.33 0.956
CV_D*CoC_R 8 2,969 371.2 1,510.22 0.000
CV_D*CoC_M 8 1 0.1 0.29 0.970
CoC_R*CoC_M 16 3 0.2 0.80 0.682

Error 2,185 537 0.2
Lack-of-Fit 160 159 1.0 5.34 0.000
Pure Error 2,025 378 0.2

Total 2249 141,016

Model summary

S R-sq R-sq(adj) R-sq(pred)

0.495762 99.62% 99.61% 99.60%
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