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Fig. 21 Numerical simulation of torsion of a square sheet (θ = 60°) using the elastic surface model presented above. Colors
represent qualitatively the out-of-plane component of the displacement u3 (color figure online)

Furthermore, a strain energy density function, which depends on the first and second gradients of the defor-
mation and incorporating the orthotropic symmetry conferred by the reference fiber arrangement, can be
proposed [47]

W = w(λ,μ, J ) + 1

2

(
A1|g1|2 + A2|g2|2 + AΓ |Γ |2 + k1K

2
1 + k2K

2
2 + kT K

2
T

)
(27)

where A1, A2, AΓ , k1, k2, kT are constitutive constants. In Fig. 21, numerical simulations of the torsion of a
square sheet using the elastic surface model presented above are shown. Many fiber reference curvatures have
been considered (e.g., sinusoidal, spiral, parabolic fibers), and for parabolic fibers, experiments (Fig. 22) and
model (Fig. 23) both show that, after a critical load, out-of-plane buckling occurs during bias extension, because
the transverse (curved) beams in the middle of the specimen undergo buckling induced by the shortening of
the middle width of the specimen.

A 2D continuummodel embedded in a 3D space has been also proposed [48] where, relying on a variational
framework, the following strain energy density is proposed

π = 1

2
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[(
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)2 + (
ε2

)2] + Ksγ
2+

+ Kt

[(
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1

)2 + (
κ2
1
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[(
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2

)2 + (
κ2
2
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[(
κ1
3

)2 + (
κ2
3

)2]}
(28)

It corresponds to a system of two orthogonal continuous families “1” and “2” of straight shear-undeformable
beams arranged along the coordinate axes in the reference configuration and resembling the pantographic
microstructure. The fibers of family α are parallel to the direction êα . The contributions 1

2Ke
(
ε1

)2
and
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Fig. 22 Bias extension test on parabolic pantographic fabric. Out-of-plane buckling is observed after critical loading

Fig. 23 Simulation of bias extension test on parabolic pantographic fabrics. Out-of-plane buckling is observed after a critical
loading. Deformed configuration and qualitative out of plane displacement

1
2Ke

(
ε2

)2
stand for the elongation of fibers belonging to, respectively, the families “1” and “2.” The strain

measure εα , with α = 1, 2, is defined as

εα =
∥∥∥∥ ∂ χ

∂Xα

∥∥∥∥ − 1 (29)

and Ke ∈ [0,∞) is the corresponding stiffness, which is assumed to be the same for both families of fibers.
The contribution Ksγ

2 is accounting for the shear deformation of the sheet, i.e., it is due to the relative rotation
of two orthogonal intersecting fibers. It represents the strain energy stored in the pivot because of its torsion
of angle γ . The strain measure γ ∈ [−π

2 , π
2 ], also referred to as the shear angle, is expressed as

γ = arcsin
∂ χ
∂X1

· ∂ χ
∂X2∥∥∥ ∂ χ
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and Ks is a positive constitutive parameter. The terms 1
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are due to twist, normal bending and geodesic bending of beams belonging, respec-
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Fig. 24 Shear test. Qualitative buckled shapes of the first two bifurcation modes. Colors indicate values of the out-of-plane
displacement. a First and b second buckling modes (color figure online)

tively, to families “1” and “2” of fibers. The strain measures κα
1 , κ

α
2 , κ

α
3 are the coordinates, in the augmented

levorotatory reference Cartesian frame, of the axial vector corresponding to the skew tensorWα = (Rα)T ∂Rα

∂Xα
,

which is the so-called current curvature tensor. The orthogonal tensor Rα transforms the augmented levorota-
tory reference Cartesian frame vectors into the following ordered triplet: (1) the unitary vector tangent to the
deformed coordinate line α; (2) the unitary vector normal to the previous one and lying in the plane tangent
to the deformed surface; (3) the unitary vector normal to the plane tangent to the deformed surface. Explicit
(lengthy) derivations can be found in Ref. [48].

It is worth noting that (1) since the beams are assumed to be shear-undeformable (2) both R1 and R2

transform the third vector ê3 of the augmented levorotatory reference Cartesian frame into the same vector,
(3) assuming that principal inertia axes of the cross sections for the two families “1” and “2” of beams in the
undeformed configuration are considered to be, respectively,

(
ê2, ê3

)
and

(−ê1, ê3
)
, the cross sections of the

beams belonging to the two families “1” and “2” are eigen-inertia vectors in the deformed configuration the
unitary vectors of points (2) and (3) above and, hence, they share the second principal inertia axis at point
(3) above. Such vector is also interpreted as the current axis of the elastic cylindrical pivot. This means that
deformationmodes of the pivots other than their torsion are kinematically excluded in thismodel, i.e., the pivots
are assumed to remain orthogonal to both fibers in the current configuration and only their torsion contributes
to the strain energy. Further, κα

1 , κα
2 , κα

3 can also be interpreted as geodesic torsion, normal curvature and
geodesic curvature of the deformed surface multiplied, respectively, by ‖ ∂ χ

∂Xα
‖, since Xα is not a unitary speed

parameterization. Last, the fibers intersecting in one point cannot detach or have a relative displacement, since
their motion is described by the same placement function. (This is not a so-called mixture model.) Using the
above model, shear test simulations have been performed reporting the occurrence of out-of-plane buckling
(Fig. 24).

1.7 Analytical identification of elastic plate models

Let us consider a two-dimensional body, whose points can be put in a bijective correspondence with a closed
subset B of the Euclidean space R2. The set B represents the shape of the body in the reference (undeformed)
configuration. A Cartesian coordinate system

(O,
(
ê1, ê2

))
is introduced, with X = (X1, X2) the coordinates

of the generic point in the Euclidean space R2.
Working in a Lagrangian framework, a placement function χ : B0 → R

2 such that the image x = χ (X)
of X through χ is the current position of point X . The displacement field u : B0 → R

2 is defined as
u (X) = χ (X)− X . The placement, or equivalently the displacement, is the independent kinematic descriptor
of the system. The image B = χ (B) of B through χ is the current shape of the body. Let F = ∇Xχ be the
gradient (with respect to the Lagrangian coordinate X ) of the placement function χ . The tensor F belongs to
Lin+, the group of second order tensors with positive determinant, i.e., orientation preserving. An objective
strain measure G = [

FT F − I
]
/2 (Green-Lagrange strain tensor) is then defined. Henceforth, the subscript

X will be omitted in ∇X and each space derivative will be considered a material derivative. When the strain
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energy density Û (G, ∇G) is considered to be depending quadratically upon the deformation tensor G and its
gradient ∇G, the following representation formula applies [49]

Û strain = 1

2
εTC3×3ε + 1

2
ηT A6×6η (31)

with
ε = (

G11 G22
√
2G12

)T
(32)

and
η = (

G11,1 G22,1
√
2G12,2 G22,2 G11,2

√
2G12,1

)T
(33)

In order to account for anisotropy of the material, we must assume invariance of the strain energy density under
the action, on the Cartesian coordinate system O,

(
ê1, ê2

)
labeling points of the reference configuration, of

some symmetry group S of transformations, which could be any subgroup ofOrth. When the symmetry group
is the dihedral group D4 (orthotropic material), the representations for the matrices C3×3 and A6×6 read

CD4
3×3 =

⎛
⎜⎝
c11 c12 0

c12 c22 0

0 0 c33

⎞
⎟⎠ (34)

and

AD4
6×6 =

(
AD4
3×3 0

0 AD4
3×3

)
(35)

with c11 and c12 in CD4
3×3 corresponding to the two Lamé coefficients

AD4
3×3 =

⎛
⎜⎝
a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎟⎠ (36)

In Refs. [50–52], compatible identifications of the constitutive parameters appearing in Eq. (31) have been
carried out, thus completely characterizing the set of constitutive parameters in terms of the fiber base material
parameters (i.e., Young’s modulus), of the fiber cross section parameters (i.e., area and moment of inertia),
and of the distance between the nearest pivots. In particular, the constitutive parameters have been identified in
the small strain case |∇u| � 1, modeling fibers as (geometrically linear) Euler–Bernoulli beams and pivots as
rotational (elastic) springs with a quadratic potential in the relative rotation (torsion of pivots) angle between
fibers belonging to two different families. The following expressions for the matrices CD4

3×3 and AD4
3×3 are the

outcome of the investigation [52]

CD4
3×3 =

⎛
⎜⎜⎝

E A
d 0 0

0 E A
d 0

0 0 2kR

⎞
⎟⎟⎠ (37)

AD4
3×3 = E I

d

⎛
⎜⎜⎝
0 0 0

0 1 −√
2

0 −√
2 2

⎞
⎟⎟⎠ (38)

with E , A and I being, respectively, the Young’s modulus, the cross-sectional area and the inertia moment
of the cross section of beams, and d being the spacing between adjacent beams. Finally, kR is the equivalent
elastic torsional stiffness of the cylindrical pivots. The shear strain relative to the directions v and w is defined
as (with −π

2 < γ < π
2 )

sin γ = cos
(π

2
− γ

)
= Fv · Fw

‖Fv‖ ‖Fw‖ = wT FT Fv

‖Fv‖ ‖Fw‖ = wT (2G + I ) v

‖Fv‖ ‖Fw‖ . (39)
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Fig. 25 Circular pantographic specimen. Qualitative color maps of the strain energy density for: bias extension test (a), shear test
(b), rotation test (c)

In the present case w = ê1 and v = ê2. Thus, assuming that −π
2 ≤ γ ≤ π

2

γ = arcsin

⎛
⎝ 2G12√(

1 + u1,1
)2 + u22,1

√(
1 + u2,2

)2 + u21,2

⎞
⎠ . (40)

In the case of small strains, i.e., geometrically linear case |∇u| � 1

γ � arcsin
(
u1,2 + u2,1

) � u1,2 + u2,1. (41)

Equation (31) yields the following remarkable expression for the strain energy density

Û strain = 1

2
kR

(
u1,2 + u2,1

)2
︸ ︷︷ ︸

shear (pivot torsion) contribution

+ E A

2d

(
u21,1 + u22,2

)
︸ ︷︷ ︸
extension of fibers

+ E I

2d

(
u21,22 + u22,11

)
︸ ︷︷ ︸
bending of fibers

(42)

In Ref. [50], numerical solutions using the strain energy density (42) are presented for a circular panto-
graphic specimen and three exemplary problems: bias extension, shear, and rotation tests (Fig. 25).

In Ref. [53], two pantographic sheets with an aspect ratio 3:1 are considered, having (1) the same fiber
directions and (2) a part of their common sides interconnected by terminal clamping constraints, i.e., the
displacements in the interconnected regions are pointwise equal for the two pantographic sheets. In the region
corresponding to the cut separating the two sheets, no kinematic constraint is assumed for their relative
displacement and the results shown in Fig. 26 are obtained for a standard bias extension test. Pantographic
sheets without any internal cut are considered as well, see Fig. 27, where Eulerian representations of the strain
energy densities are given for two nonstandard bias extension tests and in presence (absence) of the shear
energy contribution. In particular in the first (higher) two plots in Fig. 27 the left side of the specimen have
been clamped and the other sides are free, while the vertices of the right side are displaced along the direction
of the longer sides. Instead, in the lower two plots, the left side of the specimen has been clamped and the
lower half of the right side has been displaced along the direction of the longer sides, while the remaining
boundaries are free. Second gradient energies allow for external actions on 2D continua not only on edges, but
also on vertices, as vertex boundary conditions and vertex-forces.

1.8 Wave propagation in discrete arrangements of Euler beams

In Ref. [54], a model for studying the dynamics of pantographic fabrics has been introduced and subsequently
employed [55,56]. Pantographic rectangular “long” waveguides are studied and time-dependent boundary
displacements inducing the onset of travelingwaves are considered. In thismodel, the two families of orthogonal
fibers are regarded as two families of 1D orthogonal straight continua arranged in a rectangle in the reference
configuration. Each continuum Ci has a standard linearized Euler elastic potential given by

Ui = 1

2

∫
Ci
kM

(
u′′(s)

)2 + kN
(
w′(s)

)2 ds (43)
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Fig. 26 Effect of a cut inside a sheet. Eulerian representation of the elastically stored energy density for a sheet with lower shear
stiffness (left) and for a sheet with higher shear stiffness (right), both subject to a standard bias extension test

Fig. 27 Nonstandard bias extension test: Eulerian representation (including deformed shape and deformed sampled material
lines) of the strain energy density for a sheet whose expression does not include the shear contribution (left) and for a sheet whose
strain energy includes the shear contribution (right)

with s an abscissa introduced on each Ci , kM the bending stiffness, kN the axial stiffness, u andw, respectively,
the transverse and axial displacements. Dots in Fig. 28 (left) indicate the presence of frictionless hinges that do
not interrupt the continuity of the beams. The displacement prescribed on the structure is an impulse function
I = u0 ∗ sech [τ(t − t0)], with τ being a parameter affecting the duration of the pulse [Fig. 28 (right)].

In Fig. 29 (left) plots of the deformed shape of a pantographic strip during the propagation of a wave
generated by a vertical impulse, uniformly applied on the upper side of the specimen while its lower side
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Fig. 28 Reference configuration (left) and time history of the impulse (right)

Fig. 29 Qualitative displacement plot of a wave propagating after a prescribed vertical displacement on the upper side (left).
Wave propagating after double impulse (right)

remains clamped, are shown. Colors represent the magnitude of the total rotation of the cross section of the
beams. In Fig. 29 (right), plots of the deformed shape of a pantographic strip during the propagation of a
wave, generated by a double impulse applied at the middle height of the specimen, are shown, along with
colors representing the magnitude of the total rotation of the cross section of the beams. By double impulse,
we mean a couple of displacements, having the same orientation but opposite directions, oriented in one of the
two orthogonal characteristic directions of the pantographic sheet. Such displacements are prescribed on two
points at the opposite ends of two adjacent beams, i.e., consecutive beams belonging to the same orthogonal
family of 1D continua, and their amplitude over time is shown in Fig. 28.

Such a double impulse corresponds, in the continuous homogenized limit case, to a double force, i.e.,
to a pair of forces with null resultant and moment. Figure 30 shows that the energy of the system remains
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Fig. 30 Qualitative displacement of wave propagation in two identical lattices connected by an array of vertical beams

substantially confined in the upper half of the waveguide and propagation of waves beyond the discontinuity
is negligible. Therefore, such type of discontinued pantographic structures induces damping.

2 Damage and failure in pantographic fabrics

So far the study of damage mechanisms in pantographic fabrics has been addressed from a modeling stand-
point [57,58]. Further experimental data can be found [10,59]. In Ref. [57], in the aforementioned discrete
quasi-static Hencky spring model (Sect. 1.3) a simple irreversible rupture mechanisms is considered for the
springs. A spring is ruptured if its strain level exceeds (upper threshold) or is less than (lower threshold) a
certain (constant) threshold. In particular, the criterion for rupture of a spring at iteration t , which discriminates
whether that spring has to be removed from the computations at iteration t + 1 or not, is based on (constant)
thresholds for the relative elongation of extensional springs, e.g., (‖pi+1, j − pi, j‖ − ε) (upper and lower
thresholds are employed for this deformation measure). Upper thresholds for the relative rotation of adjacent
springs belonging to the same fiber like, e.g., (cosϑ1

i, j + 1) and for the relative rotation of adjacent springs

belonging to different fibers like |ϑ3
i, j − π

2 | are contemplated but are not considered. Since the analyzed pan-
tographic sheet is made out of a ductile material (polyamide), damage is governed by fiber breakage due to
excessive extension rather than fiber breakage due to excessive bending or pivot failure due to torsion.

An experimental evidence [10] is providedbydisplacement-controlled uniaxial bias extension tests (Fig. 31)
when performed on three different polyamide specimens. The first failure event was observed at the corners
of the specimen, where the elongation of fibers is the highest.

This evidence is confirmed, through a different test [57] (see Fig. 32), since fiber elongation is the highest at
the lower-left and upper-right corners. When the sample is made out of a brittle material, damage is governed
by excessive shear strains (i.e., torsion of pivots) that, in the displacement-controlled uniaxial bias extension
test, reaches its maximum near the two internal vertices of the quasi-rigidly deforming triangles.

In Ref. [57], a slow-rate (15 mm/min) of uniform horizontal displacement on the top of the specimen is pre-
scribed. From the prescribed horizontal displacement u, a non-dimensional displacement λ can be calculated.
First fiber breakage is observed for a horizontal displacement u = 139.96 mm (Fig. 32), which corresponds to
a non-dimensional displacement λ = 0.976. By comparing Figs. 32 and 33, the model correctly predicts the
location of fiber breakage. The “generalized” (because of the introduction of damage) numerical model fits
well the force-displacement curve throughout the experiment, up to the onset of fiber breakage (Fig. 34).

In Ref. [58], pivot damage due to shear, i.e., fibers detaching due to friction in pivots, is taken into account,
thereby allowing for sliding between the two families of fibers. Thus, the nonlinear homogenized quasi-static
model for the discrete system in Fig. 11 (for more details about the homogenization procedure the reader is
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Fig. 31 Force versus prescribed displacement for a uniaxial bias extension test. a Sample before first beam breakage (i.e.,
breakdown onset); b upper-left corner beam breakage; c–f further fiber breakage

Fig. 32 a Reference configuration (λ = 0), b damage onset (λ = 0.976) of a shear test

Fig. 33 Deformed configuration at the onset of damage. The broken fiber is colored in black, and it is pointed by the green arrow
(color figure online)

referred to Ref. [13]) is modified by introducing, in the spirit of mixture theory, two independent placement
functions χ1 and χ2 (the placement functions of body points belonging to horizontal and vertical fibers,
respectively) defined on the same reference domain and, accordingly, considering the following nonlinear
(elastic) strain energy to be minimized at each iteration
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Fig. 34 Force (N ) versus non-dimensional displacement for the shear test of a pantographic sheet up to the onset of fiber breakage.
The black curve is the experimental data, and the red curve has been obtained via numerical simulation (color figure online)

Fig. 35 Dependence of the resistance to sliding Kint on δ
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+
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relative sliding of the two layers

.(45)

In Ref. [58], the relative sliding of two families of fibers is considered. A criterion based on thresholds for the
relative distance δ = ‖χ1 − χ2‖ between χ1 and χ2 (e.g., the fitted Kint in Fig. 35) is presented.

A numerical example where an aluminum specimen is subject to uniaxial bias extension is shown. Con-
stitutive parameters K α

e , K
α
b , Kp and Kint were fitted using experimental data (Fig. 36), showing a very good

agreement. The experiment is studied only up to the first rupture (i.e., as long as Kint > 0 ∀X ∈ B0). For
the discrete model [57], and in turn for the continuum homogenized model [58] (as for their respective purely
elastic counterparts), it is straightforward to implement the case of non-orthogonal initially straight fibers [60].

Further, the twomodels have been extensively tested when dealingwith pure (nonlinear) elasticity, and they
show a nearly perfect agreement with experimental results. In Fig. 37b, the onset of damage is observed at the
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Fig. 36 Force versus applied displacement for a uniaxial bias extension test of an aluminum pantographic sheet. The black curve
is the experimental measurement and the red obtained via numerical simulation (color figure online)

Fig. 37 A sample subject to uniaxial bias extension. a Sample before the first beam breakage (i.e., breakdown onset); b upper-left
corner beam rupture; c–f rupture of further fibers

upper-left corner beam only. This is due to undesired asymmetries in the experimental setup (e.g., specimen,
loading, clamping).

3 Feasibility of digital image correlation analyses

Up to now, the only reported kinematic data were prescribed macro-displacements or discrete measurements
(e.g., control angles, see Fig. 17). In the future, it is desirable to have a richer experimental database in order to
calibrate and validate in a more thorough way the previously discussed models. Since very large displacement
levels occur, digital image correlation (DIC [61,62]) is a natural choice for the measurement technique. The
feasibility of DIC on pantographic samples was shown very recently [63]. In that case study, a series of 30
load steps was analyzed with global DIC using meshes made of 3-noded triangles with linear shape functions
(i.e., T3-DIC). Since the mesh was not compatible with the pantograph mesostructure, elastic regularization
was used (i.e., so-called RT3-DIC [64]). In order to avoid any significant bias, the regularization length was
identical to the element length (i.e., 25 pixels).

This example is further analyzed hereafter. Figure 38 shows the initial configuration, the last configuration
prior to damage inception (i.e., 30th load step), and the broken sample. The grips were speckled for DIC
purposes, and the hinges of the pantographic sheet were marked in black. A red background was used in order
to create high contrast with the white color of pantographic sheet.

The first type of analysis consists in meshing the rectangular region of interest with T3 elements inde-
pendently of the underlying mesostructure [63]. Such discretizations may then be compared with numerical
simulations performed at the macroscale (as discussed above). Three different mesh densities are considered
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Fig. 38 Gray-level images of the pantograph in the reference configuration (a), last analyzed deformed configuration (b), and at
failure (c)

Fig. 39 Finite element meshes overlaid with the gray-level picture of the reference configuration

(Fig. 39a–c). The characteristic mesh size �, which is defined as the square root of the average element surface,
is equal to 34 pixels for the first mesh, 28 pixels for the second one, and 18 pixels for the third. Second, a fourth
mesh was tailored to the pantograph surface (Fig. 39d). Thanks to the uniform background, simple morpho-
logical operations were performed in order to construct this mesoscale mesh from a mask. The characteristic
mesh size is equal to 3.5 pixels.

Two types of registration routes are followed, namely the first one is an incremental approach that consists in
updating the reference configuration that becomes the deformed configuration of the previous analysis. Its main
advantage is that the elastic regularization only acts incrementally (i.e., equivalent to a hyperelastic description
with Hencky strains). The convergence condition on the norm of the mean displacement correction was set to
10−3 pixel. The regularization length was selected to be equal to 45 pixels in that case. This choice enables the
second, third and fourthmeshes to be analyzed even though they arefiner than the underlyingmesostructure. The
drawback is that measurement uncertainties are cumulated as more pictures are analyzed. A second option is to
perform direct calculations that register the nth picture with that of the reference (i.e., unloaded) configuration.
The measurement uncertainties are no longer cumulated. However, the elastic regularization may become too
strong for the actual kinematics as it acts as a low-pass filter. Consequently, the regularization length was
lowered to 30 pixels. The convergence condition on the norm of the mean displacement correction was set
to 10−2 pixel since the measured displacement amplitudes will be significantly higher than in incremental
registrations.
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Fig. 40 RMS residual as a function of the picture number for the four meshes shown in Fig. 39. The extension U corresponds to
updated registrations, and the extension D designates direct registrations

Fig. 41 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 10th
picture. The fields are shown on the deformed configuration

In T3-DIC, the quality of the registration is probed with the gray-level residual field, namely the pixelwise
difference between the picture in the reference configuration and the picture in the deformed configuration
corrected by the measured displacement field. The root-mean-square (RMS) average is reported in Fig. 40
for all eight situations considered herein. The first general trend is that the registration quality degrades as
more steps are analyzed, thereby signaling that the measured fields do not fully capture the complex kinematics
associatedwith the studied pantograph at the end of the experiment. Second, the direct registrations have always
lower levels in comparison with updated registrations. This result validates the choice of the regularization
strategy. Last, there is a clear difference between the first three meshes and the last one. This proves that a
mesh tailored to the actual pantograph surface is able to better capture the kinematics of the test, even with
the same regularization length as for the coarser meshes. In terms of measurement quality, the three meshes
lead to similar overall residuals, which is to be expected because the regularization length is larger than the
element size. For mesh 4, the gain between direct and updated registration is the highest.

In the following discussion, only two sets of results are reported, namely those of meshes 3 and 4 for direct
registrations. Figure 41 shows the longitudinal and transverse displacements measured for the 10th picture.
The transverse displacement field ux shows that there is a huge contraction, which is of the order of magnitude
as the longitudinal motions uy . Given the fact that the width of the sample is one-third of its length, it proves
that transverse deformations are much more important than the longitudinal component. This is due to the
geometry of the pantographic sheet. The same observation applies for both meshes. In the present case, both
measurements have approximately the same quality in terms of overall registration residuals (Fig. 40).
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Fig. 42 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 20th
picture. The fields are shown on the deformed configuration

Fig. 43 Longitudinal (a–c) and transverse (b–d) displacement fields measured with meshes 3 (a, b) and 4 (c, d) for the 30th
picture. The fields are shown on the deformed configuration

In Fig. 42, the same fields are shown for the 20th picture. The pattern of the transverse and longitudinal
displacement fields is very similar with higher overall levels. The displacement ranges still are of the same
order of magnitude for the longitudinal and transverse displacements. Consequently, the central part of the
sample has become even thinner. The kinematic details are more easily observed for mesh 4. In this case, there
is a clearer difference that translates into lower registration residuals for mesh 4 (Fig. 40).

The last load level prior to damage inception (i.e., first strut failure) is reported in Fig. 43. In that case, the
gray-level residuals (Fig. 40) are significantly higher for mesh 3 in comparison with mesh 4. In both cases,
the chosen kinematic basis is no longer able to completely describe the actual motions of the pantographic
structure. For the parts of the pantographic sheet closer to the grips and the grips themselves, the registration
quality is significantly better. This result validates the choice of including part of the speckled grips in the
analysis. For this last step, the highly deformed region has grown toward both ends of the pantographic sheet,
which can be understood by the fact that when struts touch each other, the deformation mechanism moves
away from these zones.

The results reported herein show that DIC analyses can be run on pantographic structures at macroscopic
and mesoscopic levels. Significant gains were observed in terms of registration quality by moving from the
macroscopic to the mesoscopic scale (i.e., more than a factor of two at the end of the picture series). However,
the final gray-level residuals indicate that even more refined approaches should be followed. What is missing
in the mesoscopic analysis is the fact that pivots were not accounted for. This would require meshes to be
constructed in such a way that the actual geometry of the pantographic structures would be described. Two
options are possible. The first one would consist in using beam elements that are interconnected at the pivots.
DIC analyses may then be easier since the number of degrees of freedom would be significantly reduced [65].
Second, instead of using beam elements, finite elements may also be considered with explicit descriptions
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Fig. 44 a Three-point flexural test on a 3D pantographic specimen. b Pantographic sheet with “perfect” hinges

of the pivots (as in the 3D Cauchy model, see Fig. 20). One challenge is to measure surface displacements
with such very fine meshes since each element will contain very few pixels. This approach requires elastic
regularizations to be considered [64] as performed herein. Last, integrated approaches may also be considered
in which the displacement fields are derived thanks to numerical simulations and the material parameters then
become the unknowns. In that case, the mesh can be as fine as wished since the number of unknowns has been
drastically reduced [66,67].

4 Conclusion and outlook

Pantographic fabrics proved to be a very interesting subject of study, involving the work of, at least, (compu-
tational) mechanicians (modeling), experimentalists (experiments), numerical analysts (model solving), data
analysts (image correlation), mathematicians (well-posedness andΓ -convergence) andmany other researchers
and professionals. We believe that what has been presented in this survey can thus be considered our manifesto
about how commitment from different groups of researchers should be directed for the study of metamaterials
and, more generally, for the study of every scientific subject. Mechanics, as any other natural science, cannot
proceed without a continuous interplay between experimental evidence and theoretical modeling.

However, this is just a first simple step toward the study of more complex structures and experiments. A
famous quote by Hilbert states that “the art of doing mathematics consists in finding that special case which
contains all the germs of generality.” This statement can be extended to every scientific discipline, including
those that have been applied in the studies presented in this survey and that pantographic fabrics can be
considered as one of the simplest examples leading to treat nonstandard problems in mechanics of materials
and its related disciplines. In this sense, pantographic structures provide the minimal setting for the study of
relevant issues in mechanics. The solution of a general problem is easier to face once that of its particular cases
has been addressed, as, very often, particular cases help to understand better the real nature of the problem.
Currently, new tests and structures are being studied, along with their technological realization challenges, like
the three-point test shown in Fig. 44a and the pantographic sheet with “perfect” pivots, i.e., hinges that do not
oppose to variations of the shear angle between two intersecting fibers, shown in Fig. 44b.
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64. Tomičevć, Z., Hild, F., Roux, S.: Mechanics-aided digital image correlation. J. Strain Anal. Eng. Des. 48(5), 330–343 (2013)
65. Hild, F., Roux, S., Gras, R., Guerrero, N., Marante, M.E., Flórez-López, J.: Displacement measurement technique for beam

kinematics. Opt. Lasers Eng. 47(3), 495–503 (2009)
66. Leclerc, H., Périé, J.-N., Roux, S., Hild, F.: Integrated digital image correlation for the identification of mechanical properties.

In: Gagalowicz, A., Philips, W. (eds.) International Conference on Computer Vision/Computer Graphics Collaboration
Techniques and Applications, Volume LNCS 5496, pp. 161–171. Springer, Berlin (2009)

67. Lindner, D., Mathieu, F., Hild, F., Allix, O., Ha Minh, C., Paulien-Camy, O.: On the evaluation of stress triaxiality fields in
a notched titanium alloy sample via integrated DIC. J. Appl. Mech. 82(7), 071014 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1007/s10659-017-9660-3
https://doi.org/10.1098/rspa.2017.0636
http://arxiv.org/abs/1412.3926

	Pantographic metamaterials: an example of mathematically driven design and of its technological challenges
	1 Modeling and experiments in elastic regime
	1.7 Analytical identification of elastic plate models
	1.8 Wave propagation in discrete arrangements of Euler beams

	2 Damage and failure in pantographic fabrics
	3 Feasibility of digital image correlation analyses
	4 Conclusion and outlook
	Acknowledgements
	References


