
1 23

Archive of Applied Mechanics
 
ISSN 0939-1533
Volume 89
Number 10
 
Arch Appl Mech (2019) 89:2033-2051
DOI 10.1007/s00419-019-01560-x

Static condensation method for the reduced
dynamic modeling of mechanisms and
structures

Alessandro Cammarata, Rosario Sinatra
& Pietro Davide Maddìo



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Arch Appl Mech (2019) 89:2033–2051
https://doi.org/10.1007/s00419-019-01560-x

ORIGINAL

Alessandro Cammarata · Rosario Sinatra · Pietro Davide Maddìo

Static condensation method for the reduced dynamic
modeling of mechanisms and structures

Received: 3 December 2018 / Accepted: 7 May 2019 / Published online: 15 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract In this paper, a novel static condensation method is extended to mechanisms and structures with
internal joints. The formulation is framed inside the static reduction techniques in a similar way to the classic
Guyan–Iron reduction. A new class of joint nodes is added to the existing classes of inner and boundary nodes
to consider joint constraints inside the compatibility conditions. Within the set of joint nodes, a reduced subset
of independent nodes can be individuated to perform the static reduction. A simple connection rule is provided
to determine the independent nodes of a mechanical system composed of rigid bodies, flexible components
and joints. The inner and boundary nodes are then expressed in terms of the independent joint nodes to form
a new transformation matrix able to reduce the stiffness and mass matrices of the original system without
connections. Joint stiffness and external forces are also included in the final reduction process. Finally, two
examples prove the efficiency and demonstrate the equivalence and compatibility of the proposed method with
other static reduction techniques in order to create a unique substructuring framework.

Keywords Static reduction · Substructuring techniques · Low-order models

1 Introduction

The static condensation methods are reduction techniques that consider only the first-order approximation
of the exact reduced eigenproblem. These simplified formulations are used to overcome the computational
complexity introduced by other dynamic reduction methods and must be applied carefully to avoid gross errors
and low accuracy of results. The Guyan–Iron (GI) method [13] is the most known static reduction method,
in which the inner nodes of FE models are statically reduced to boundary nodes. The GI method is exact for
static problems, but it does not succeed in reducing a system without damaging its dynamical properties: In
particular, its accuracy strongly depends on the choice and number of the boundary nodes describing the final
reduced system [23]. Quasistatic GI condensation or Higher-Order GI condensation [11] tend to increase the
accuracy, shifting the frequency of reference or considering more terms in the power series of the dynamic
flexible matrix.

Other well-established substructuringmethods are based on theComponentMode Synthesis (CMS) [10,14,
15,17]. Thesemethods rely on theRitz basis assumption to express structure displacements as a combination of
mode sets. When this basis takes into account an infinite number of terms obtained by the power expansion of
the flexibilitymatrix, the associatedmethod is said exact. Theword “exact” refers to the closed-form solution of
the equations of motions without introducing displacement approximations or reduced models and reproduces
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the displacement field for any frequency [19,22,29]. Different CMS methods are classified according to how
they handle interface compatibility: Methods with fixed interface [16] and with free interface modes [20,25]
are among the most common. In a reduced model, the slave nodes are usually more than the boundary nodes
and the dimension of the dynamic flexibility matrix might be large, making the exact computation expensive.

The proposed approach overcomes some limitations of our previous formulations developed in [1,4–8],
related to the classification of parts. The new formulation does not require either classifications or an order
in the couplings. Furthermore, the boundary conditions can be directly included in the definition of the joint
compatibility conditions, therefore, avoidingmanual operations to delete the dofs of the fixed nodes. Following
the linear structural dynamics, our approach combines FE/MSA (Matrix Structural Analysis) techniques and
considers already linearized equations in the neighborhood of a local configuration. The nonlinear holonomic
constraints are substituted by linear constraints expressed in terms of small displacements and rotations.
Subsequently, a projection operation, with linear operators orthogonal to the local joint space, is used to
condense the joint variables without resorting to the use of Lagrangemultipliers.We point out that the proposed
approach is different and cannot be compared to the nonlinear methods used in flexible multibody systems.
The reader is referred to specific books and papers for further information [3,9,12,18,21,26–28].

The rest of the paper is organized as follows. In Sect. 2, the Guyan–Iron method is first recalled to better
understand the differences and similarities with the proposed method. In Sect. 3, the new class of joint nodes is
first introduced. Stiffness and mass matrices of the mechanical system without connections are partitioned into
blocks and referred to inner and boundary nodes. The joint nodes are then used to define the joint constraints:
In particular, each joint yields a vector equation in which the displacements of a joint node are expressed in
terms of the displacements of a reduced set of independent joint nodes. A simple connection rule is provided
to select the independent joint nodes necessary to reduce the system finding a static transformation matrix
similar to that obtained using the Guyan–Iron method. In Sect. 4, the method is first applied to a two-beam
frame chosen as a benchmark example. Comparison to classic Guyan reduction is addressed, and three models
are compared to commercial software for validation. Then, the case study of the Ragnar robot is investigated.
The model of one leg is accurately described using both flexible and rigid parts to help the reader to understand
different modeling strategies. The actuator stiffness is added to the actuated revolute joints of the base platform.
Besides, the reduced stiffness and mass matrices, the latter including also lumped mass/inertia, are obtained.
Finally, a second static reduction is applied to find the Cartesian matrices at the end-effector point.

2 Guyan–Iron static reduction

In this section, theGuyan–Ironmethod [13] is recalled to better introduce the reader to the following sections. In
the Guyan–Iron method, two types of nodes are considered: the inner or “slave” nodes, denoted with subscript
i, and the boundary or “master” nodes, labeled with subscript b. Usually, the boundary nodes are interface
nodes that connect a subsystem to other subsystems. Furthermore, they can include nodes of particular interest
or nodes where external loads are applied. By contrast, the inner nodes are internal nodes of the structure.
The Guyan–Iron method employs a static reduction, in which the inner nodes are condensed and expressed in
terms of the boundary nodes.

In the following description, the node displacement vectoruwill contain three linear displacements, namely
sx , sy , and sz , along three coordinate axes and three small angular rotations, indicated by φx , φy , and φz , around
the same axes. Consider the linearized dynamic system expressed in terms of the global displacement vectors
uI and uB of inner and boundary nodes, respectively:

[
MII MIB
MBI MBB

] [
üI
üB

]
+

[
KII KIB
KBI KBB

] [
uI
uB

]
=

[
0
fB

]
(1)

where the following notation has been used:

– fB: vector of external forces applied to the boundary nodes,
– MK L : partitioned block of the mass matrix,
– KK L : partitioned block of the stiffness matrix.

The Guyan–Iron method considers only the static terms of Eq. (1) to carry out the static reduction; therefore,
[

KII KIB
KBI KBB

] [
uI
uB

]
=

[
0
fB

]
(2)
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From the first equation of system (2), uI can be expressed in terms of uB, i.e.,

KIIuI + KIBuB = 0 ⇒ uI = −K−1
II KIBuB (3)

Using the previous expression, the static transformation matrix Ψ can be defined:
[

uI
uB

]
= Ψ uB ⇒ Ψ =

[−K−1
II KIB
1

]
(4)

The matrix Ψ does not depend on time and is used to transform the dynamic system (1) into its reduced form,
i.e.,

MGüB + KGuB = FB (5)

where “G” stands for Guyan and MG, KG and FB, respectively, are the reduced mass and stiffness matrices,
and the reduced force vector, respectively, defined as

MG = Ψ TMΨ, KG = Ψ TKΨ, FB = Ψ TfB (6)

or in extended form:

KG ≡ KBB − KBIK
−1
II KIB (7a)

MG ≡ MBB − KBIK
−1
II MIIK

−1
II KIB − KBIK

−1
II MIB − MBIK

−1
II KIB (7b)

FB ≡ fB (7c)

The Guyan–Iron is one of the simplest reduction methods used in substructuring techniques since it does
not consider dynamic forces. Unfortunately, its accuracy strongly depends on the boundary nodes definition.
Indeed, the reliability of the reduced model is highly depending on the number and/or the location of the
boundary nodes.

3 Static reduction in multibody systems

This section is composed of three subsections describing the general formulation to obtain a static reduction
in mechanical systems with internal connections. The formulation can be applied to study the linear elasto-
dynamics of multibody systems and structures with joints. In Sect. 3.1, the new class of joint nodes is first
introduced. Then, the independent nodes are selected using the connection rule. In Sect. 3.2, the rigid and
moving connections are first described, and then, their mathematical formulation in terms of constraints is
provided. Finally, in Sect. 3.3 the novel static transformation for multibody systems is derived.

3.1 Classifying nodes

As already highlighted, substructuring methods are generally used to reduce the size of individual components
that are then joined to form bigger structures. In the absence of joints, the assembly is performed combining the
interface nodes of different substructures, that ismerging the corresponding boundary nodes of the substructures
to be assembled.

When two sub-parts must be combined through a joint, a constraint is created between the corresponding
boundary nodes that are involved in the connection and that belong to the two sub-parts. In the so-called
primal assembly, the constraint is expressed in terms of displacements; in the dual assembly, the constraint
is enforced using constraint forces [24]. In the following, we will refer only to the primal assembly and all
constraint equations will be written in terms of displacements. Constraints are mathematically expressed by
means of equations or inequalities connecting several variables to each other. This means that the variables
are no longer independent, but there is a bond that allows expressing a variable in terms of others, chosen as
independent variables. For our purposes, all of this means that two boundary nodes connected through a joint
cannot both be independent. It is noteworthy that this is not the case for the previous Guyan–Iron method, in
which all the inner nodes are dependent and all the boundary nodes are independent.

Author's personal copy
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Fig. 1 Node sets: B—boundary nodes, J—joint nodes,O—independent joint nodes
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Fig. 2 Rules to define the independent nodes: The independent nodes are reported with filled circles; the dependent nodes are
represented with blank circles; J is the generic joint; R is the rigid connection; K represents a flexible component

In order to describe the joint constraints, the set I of inner nodes and the set B of boundary nodes must
be complemented with the introduction of a new set J of joint nodes which includes all nodes subject to
joint constraints. Since the inner nodes are internal to the sub-parts, the sets J and I are separated and their
intersection is the null set ∅, i.e., J ∩ I = ∅. Furthermore, as shown in Fig. 1, the set J includes the set B of
boundary nodes. The remaining set O displayed in Fig. 1 is a particular subset of independent joint nodes. It
can be observed that O may intersect B meaning that the set of independent joint nodes can or cannot contain
boundary nodes. The set O of independent joint nodes is crucial for the proposed formulation, and our scope
in this subsection is that to discover its dimension and the nodes that compose it. In order to find the dimension
nO of O, the concept of connection must be introduced. A connection imposes a displacement constraint to
one or between two or more nodes and can be of three types: rigid, mobile, and imposed. The rigid and mobile
connections involve two or more nodes, while the imposed connection is usually applied to single nodes. As
shown in the boxes A and B of Fig. 2, a mechanical joint J is a mobile connection, whereas a rigid-body
constraint R is a rigid connection. The last type of imposed connection pertains to displacements or boundary
conditions imposed to specific nodes, e.g., the fixed nodes of a mechanism or structure.

The dimension nO ofO can be evaluated considering the dimension nJ ofJ and the number of connections
nc, i.e.,

nO = nJ − nc (8)

The independent nodes are selected according to the following simple rule:

Definition 1 (Connection rule) rigid andmobile connections involve at most one independent node. All nodes
with imposed connections are independent.
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Fig. 3 Leg of the Ragnar robot: (left)—general layout; (right)—subsystems Si , i = 1, 2, 3

From the connection rule, it follows that:

Remark 1 (Rigid connection:) if several joint nodes belong to a rigid body, at most only one of these can be
independent.

The box C reports four nodes coupled by means of two joints and a rigid connection. The three connections
create three constraints between the four nodes that make three nodes dependent on the fourth chosen as
independent. As a matter of fact, using the connection rule only one node can be chosen as independent.

Flexible parts, or more generally elastic couplings, are not considered connections since they impose force
constraints and not displacement constraints between two or more nodes. It is suggested to cut each elastic
coupling and calculate the independent nodes separately in each subsystem. In fact, each subsystem must
comply with the connection rule and the number of independent nodes must be calculated using Eq. (8).

The box D shows a four-node system composed of two joints and a flexible part K, enclosed between
its boundary nodes 2 and 3. In this case, cutting the elastic coupling two subsystems are identified: The first
subsystem is composed of node 1 and 2, and the second subsystem is composed of node 3 and 4. For each of
the two subsystems, it is possible to define only one independent node at this point.

Finally, in box E a more complicated seven-node system is shown. In this case, the system is composed
of seven joint nodes coupled through three rigid connections R, two mobile connections J, and one elastic
coupling K. Cutting the elastic coupling two subsystems are identified. The first subsystem includes only the
node 7 that is chosen as the first independent node. The joint nodes from 1 to 6 form the second subsystem.
The latter follows the same rule of box C; therefore: nO = nJ − nc ⇒ nO = 6 − 5 ≡ 1, meaning that only
one node can be selected as the second independent node.

We finally report the system that will be used in Sect. 4.2 to model one leg of the Ragnar robot. As shown
in Fig. 3, the generic leg is a complex system composed of 15 joint nodes, 5 rigid connections R, 7 mobile
connections J, 3 flexible couplings K, and 1 imposed connection to node 1. By applying Eq. (8), we derive
that the system has two independent nodes, i.e., nO = nJ − nc ⇒ nO = 15 − 13 ≡ 2. In order to select
these two nodes, we must ensure that every subsystem in which the leg is divided fulfills the connection rule.
Therefore, cutting the flexible couplings the three subsystems Si , i = 1, 2, 3 outlined in the right side of
Fig. 3 are individuated. Starting from the first subsystem S1, the first node has an imposed displacement and,
according to the connection rule, must be selected as an independent node. Since node 1 is constrained to be
fixed, its displacements are zero and the node is removed from the set O of independent nodes. In the second
subsystem S2, only one independent node can be selected, i.e., nO = nJ − nc ⇒ nO = 6 − 5 ≡ 1. Finally,
for the third subsystem S3 it stands that nO = nJ − nc ⇒ nO = 7 − 6 ≡ 1. Further details will be provided
in Sect. 4.2.

To sum up, the number nO of independent nodes is determined using Eq. (8). The selection of the inde-
pendent nodes is determined by the designer, but his choice must comply with the connection rule. In the
following list, we recall the steps needed to select the independent nodes of a mechanical system or a structure
with rigid bodies, flexible components, and joints:
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Fig. 4 Rigid connection and mobile connections: prismatic and revolute joints

1. Individuate the joint nodes of the mechanism,
2. Find the rigid, mobile, and imposed connections of the system,
3. Cut the flexible couplings and identify all subsystems,
4. Find the number nO of independent nodes of each subsystem by means of Eq. (8),
5. Select the independent nodes of each subsystem using the connection rule.

3.2 Connections type

In the previous subsection, the number and type of independent joint nodes of a system in the presence of
connections have been determined. Here, we provide a mathematical description of the connections expressed
in terms of constraint equations involving displacements.

The first connection that we describe is the rigid connection. Referring to the left box of Fig. 4, when two
joint nodes A and B are coupled by means of a rigid connection their distance must remain unchanged. In terms
of displacements, the displacements of node A can be expressed using the displacements of the other node B
using the following expression:

uA
j = G j (d)uB

j (9)

where d is the distance vector going from node B to node A and G j (d) is the 6× 6 rigid-body transformation
matrix, defined as

G j (d) =
[

1 −D
O 1

]
(10)

with D skew-symmetric matrix, or cross-product matrix, of d, [2]. Considering another node C, belonging to
the same rigid body, it will be possible to express uC

j in function of uB
j as in Eq. (9). This statement confirms the

remark of the previous subsection which states that in a rigid body only one node can be chosen as independent.
When two nodes, say A and B, are coupled bymeans of a mobile connection, the rigid-body transformation

(9) must be augmented considering the displacements θm permitted by the joint. The vector of joint displace-
ments θm depends on the type of joint and can include translations and/or rotations as vector components.
Furthermore, the joint displacements will take place along or around some geometric features, i.e., unit vectors,
characteristic of the type of joint taken into consideration. These features are collected within a matrix, referred
to as the joint matrix H, that will be used to write the joint constraints. As relevant cases, below we report the
revolute and prismatic joints; all other joints can be built by combining these two fundamental cases.

Figure 4 shows a revolute joint and a prismatic joint along with the corresponding geometric features. The
two joint nodes A and B, respectively, belong to each of the two kinematic pairs in which the joint can be
divided. For the revolute joint, the displacement vector uA can be expressed as

uA
j = G j (d)uB

j + h jθm, h j = [
0T eT

]T (11)

The six-dimensional vector h j contains the geometric feature of the revolute joint. It is noteworthy that e is
present only in the rotational part of h j because the revolute joint allows only for a relative rotation about its
revolute axis. For the prismatic joint, it stands that

uA
j = G j (d)uB

j + h j s, h j = [
eT 0T

]T (12)
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In this case, the unit vector e is present only in the translational part of h j . Notice that the rigid-body trans-
formation G j (d) becomes the 6 × 6 identity matrix if the two nodes occupy the same position in space, i.e.,
d = 0. More complex joints can be created assembling several revolute and prismatic joints. The final joint
matrix H will contain as many columns as the elementary joints composing the complex joint. For example,
the joint matrix H of a spherical joint will contain three columns referred to three non-planar revolute joints. In
this case, the joint displacements θm will be composed of three rotations around the axes of the three revolute
joints. It is remarked that the assembling order of a complex joint is arbitrary since the proposed formulation
is linear and all displacements are considered small.

3.3 Static transformation matrix for mechanisms

Suppose that a system is composed of nJ joint nodes coupled by means of nc connections and that the number
nO of independent joint nodes can be determined by means of Eq. (8). Following the results obtained in the
previous subsection, it is possible to find a system F of nc linear constraint equations, defined as:

F(uJ , θM ) = 0, uJ =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(1)
j

u(2)
j

...

u(nJ )

j

⎤
⎥⎥⎥⎥⎥⎥⎦

, θM =

⎡
⎢⎢⎢⎢⎢⎣

θ (1)
m

θ (2)
m

...

θ (nM )
m

⎤
⎥⎥⎥⎥⎥⎦

(13)

where nM is the number of mobile connections (nM ≤ nc). Using the linearity of F, it is possible to derive uJ
in function of the vector uO of independent joint displacements:

uJ = GJuO + HJ θM , uO =

⎡
⎢⎢⎢⎢⎢⎣

u(1)
o

u(2)
o

...

u(nO)
o

⎤
⎥⎥⎥⎥⎥⎦

(14)

where GJ is the (6 · nJ ) × (6 · nO) global matrix of rigid-body transformations and HJ is the (6 · nJ ) × nM
global joint matrix. Since the set of boundary nodes B is contained in J , it is possible to extract the vector uB
containing all the boundary node displacement vectors from uJ , that is

uB = GBuO + HBθM (15)

where GB is a (6 · nB) × (6 · nO) matrix of rigid-body transformations and HB is the (6 · nB) × nM joint
matrix. Both matrices refer only to the boundary nodes.

The linearized dynamic equations are similar to those reported in Eq. (1) except for the vector rB of
constraint forces due to the joints contribution, i.e.,[

MII MIB
MBI MBB

] [
üI
üB

]
+

[
KII KIB
KBI KBB

] [
uI
uB

]
=

[
0

fB + rB

]
(16)

It is noteworthy that rI = 0 since the joints pertain only to the boundary nodes. Following the same approach
used in the Guyan–Iron method, we aim to find a novel static transformation matrix including joints. Omitting
the acceleration terms, the static equations of the mechanical system become[

KII KIB
KBI KBB

] [
uI
uB

]
=

[
0

fB + rB

]
(17)

Combining the latter with Eq. (15), we obtain the following system of three equations:⎧⎪⎪⎨
⎪⎪⎩

KIIuI + KIBuB = 0

KBIuI + KBBuB = fB + rB

uB = GBuO + HBθM

(18)
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with five unknowns, namelyuI,uB,uO , rB, and θM . The vector rb of constraint forces has components different
from zero along the degrees of constraint of the corresponding joint. For instance, considering the revolute
joint of Fig. 4 the corresponding constraint vector rb, composed of one force and one torque, is normal to the
joint vector hb. On the other hand, it is well known from the screw theory that the wrench vector associated
with a joint is normal to the corresponding twist vector [2]. For our purposes, rb is a wrench vector and hb is
a twist vector; therefore,

hT
b rb = 0, ∀b ∈ B ⇒ HT

BrB = 0. (19)

Exploiting the orthogonality property HT
BrB = 0, the system (18) turns into

⎧⎪⎪⎨
⎪⎪⎩

KIIuI + KIBuB = 0

HT
BKBIuI + HT

BKBBuB = HT
BfB

uB = GBuO + HBθM

(20)

which allows to express all the unknowns uI, uB, and θM in function of uO . In particular, it is possible to
derive a new static transformation matrix ΨL , such that[

uI
uB

]
= ΨLuO (21)

Using ΨL , the following reduced system can be derived:

ML üO + KLuO = FL (22)

where ML , KL , respectively, are the reduced mass and stiffness matrices, defined as

ML = Ψ T
L MΨL , KL = Ψ T

L KΨL (23)

and FL is the array of reduced forces. We have reported all symbolic calculations in “Appendix”.

4 Numerical results

In the following, the benchmark example of a two-beam frame and the model of a parallel robot are presented.
The proposed examples have the dual function of helping the reader to understand the proposed methodology
and to compare the method with the classic Guyan–Iron static reduction.

4.1 Two-beam frame

The first example is chosen as the benchmark for the validation and comparison with the Guyan static reduction
method. As shown in Fig. 5, two cantilevered beams are connected by a joint, aligned along the z-axis. The
geometrical, inertial, and structural parameters used in this example are reported in Table 1.

First, a superelement of the single beam is created by the Guyan–Iron method. Subsequently, the two
superelements are combined by our method in a second reduction process to obtain a reduced model to a single

+

x

y

Fig. 5 Two cantilevered beams connected by a revolute joint
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Table 1 Geometric and structural parameters of the two-beam frame

Notation Description Value Unit

n Number of nodes for each link 16 (–)
L Links’ length 1 (m)
b Base of the cross section 0.025 (m)
h Height of the cross section 0.025 (m)
E Young’s modulus 200 (GPa)
ν Poisson’s ratio 0.33 (–)
ρ Material density 7860 (kg/m3)

Guyan

reduced model

reduced model

(a) (b)

=

Fig. 6 Subfigure a shows the two equivalent approaches that can be used to obtain a reduced model (in this case the 1N model);
subfigure b shows the reduced model 3N

Table 2 Comparison of the first six natural frequencies (Hz) of three models, with increasing complexity, and ANSYS© results

No. 1N 3N FN ANSYS

1 20.00 19.83 20.58 20.36
2 32.93 32.45 32.40 32.37
3 118.70 87.88 86.87 89.11
4 140.88 90.19 89.31 89.11
5 747.26 125.10 128.05 127.23
6 1390.54 179.00 175.02 174.37

central node positioned on the joint. This two-step reduction process is then compared to a single reduction
directly obtained by applying the proposedmethod to the entire system, as shown schematically in the subfigure
a) of Fig. 6. We have verified that both the two approaches lead to the same reduced model even if the first
approach is faster in terms of computational speed. Carrying out 1000 runs on each approach, we have found
that the average time of the first approach varies from 2.9 to 3.1 (ms), while that of the second from 3.5 to
3.7 (ms). This is explained by noting that although the number of input lines is lower in the second approach,
the inversion of dimensionally larger matrices slows down the execution of the second approach. From this
first analysis, we realize that the method can be applied directly to the starting model or can be applied after
the Guyan reduction in the single components. This second strategy is particularly attractive for large-scale
systems, where the number of dofs might involve the inversion of large matrices.

We have created two additional models for further analysis. The first model, displayed in the subfigure (b)
of Fig. 6, is a reduced model with three nodes (18 dofs): the middle nodes of each beam and the central node at
the joint position. This model will be denoted with the name 3N to distinguish it from the previous one-node
model, denoted with 1N. Finally, we created a model without reduced inner nodes, i.e., with 174 dofs, denoted
with FN. These three models have been compared to ANSYS results, and the first six natural frequencies are
reported in Table 2.

As expected, the model 1N fails to capture the internal dynamics of the system and its frequency range is
accurate only for the first two values. The 3N model, with the addition of the two central nodes of each beam,
is considerably more precise while maintaining a very reduced computational burden. Finally, the third model
shows the values closest to those obtained using ANSYS. The computational time takes 4 to 5 (ms) for the
3N model, while the FN model ranges from 23 to 28 (ms), almost one order of magnitude more than the 1N
model.

From this analysis, we conclude that our method can be easily combined with the Guyan–Iron method
and offers all the advantages and disadvantages of a static method, that is ease of application, reduced use of
resources; but also poor precision for low-order models.
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4.2 The Ragnar robot

For the second example, the proposed method is applied to the Ragnar robot. Thanks to its architecture and
to the use of different end-effector tools, this robot can accomplish either three translations (3T) for pick-
and-place tasks or three translations and one rotation (3T1R) [30]. Here, only the 3T solution is studied. In
this configuration, each leg of the Ragnar robot has an RRΠR architecture with R denoting a revolute joint,
while Π denotes a parallelogram joint. The leg layout is shown in Figure 7. A proximal link, with length b, is
connected to the base platform F at point A by means of a revolute joint R of unit vector eA. The proximal
link, in turn, is linked to a parallelogram joint Π by means of a revolute joint with the axis parallel to the unit
vector eA at the point B. The parallelogram has four revolute joints with axes parallel to the unit vector eΠ ,
and it is composed of two distal links of length l and two short sides of length c. One short side is coupled to
the proximal link, while the opposite one is coupled to the moving platformM by means of a revolute joint of
unit vector eA at the point C . The first revolute joint at point A is actuated with actuator stiffness identified by
ka . All geometric and inertial parameters that we used for the dynamic reduction are extracted from [30–33]
and recalled in Tables 3, 4, and 5 for convenience.

Readers interested in the kinematics and dynamics of the Ragnar robot are referred to [30] for details.
Denoting with P the proximal link of one of the four legs, as shown in Fig. 8, let P1 . . . Pm be the nodes

after the discretization in three-dimensional beams. Likewise, denoting with Dl and Dr , respectively, the left
and right distal links composing the parallelogram, let Dl1 . . . Dln and Dr1 . . . Drn be the two series of nodes
after the meshing process. Here, the two short sides of the parallelogram and the moving platform M have
been modeled as rigid bodies. It should be remarked that this is only a design choice to show how to couple
rigid-to-flexible bodies, and all bodies can thus be modeled as flexible components as well.

ka

b

c

l

A

E

M

Π

eA

eΠ

B

r

F

C

Fig. 7 Leg layout of the Ragnar robot with 3T architecture

Table 3 Design parameters of the Ragnar robot (from Table I of [33])

ax ay α β b l r γ c

300 100 15◦ 45◦ 375 800 100 30◦ 100

All lengths are expressed in (mm), while the angles are in degrees (◦)
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Table 4 Material properties (from Table II of [33])

Proximal b (φ 60/54 mm) Distal l (φ 16/14 mm)

E (Gpa) G (Gpa) ρ (kg/m3) E (Gpa) G (Gpa) ρ (kg/m3)

110 42.31 1600 92 35.4 1600

Table 5 Lumped masses/inertias and actuator stiffness

mB (kg) mC (kg) mE (kg) IEzz (kgm
2) ka (Nm/rad)

0.7 0.2 2.2 0.026 50,000

ka

c

c

A

E

F

MeA

eA

eA

eΠ

C

B

r

Dl

Dl1

Dln

Dr

Dr1

Drn

P

P1

Pm

Bl Br

Cl Cr

Ec

Fig. 8 Leg layout of the Ragnar robot

The leg of the Ragnar robot has been already introduced in Sect. 3.1. It is important to outline that the four
legs are not independent but connected to a rigid moving platformM. This connection creates the subsystem
shown in Fig. 9 in which, using Eq. (8), only one independent node can be selected. As a matter of fact, this
subsystem is given by the assembly of the four subsystems S3, one for each leg, displayed in Fig. 3. In order
to ease the symbolic expressions that will be derived in the following, the central node of the moving platform
M, referred to as the end-effector node E, has been selected as the only independent node of the subsystem of
Fig. 9. Following what has been described in Sect. 3, the following sets of nodes are defined for each leg:

– inner nodes i: {P2 . . . Pm−1, Dl2 . . . Dln−1, Dr2 . . . Drn−1}
– joint nodes j: {A, P1, Pm, B, Br , Bl , Dl1, Dln , Dr1, Drn ,C,Cl ,Cr , Ec, E}
– boundary nodes b: {P1, Pm, Dl1, Dln , Dr1, Drn }
– independent nodes o: {B, E}
Notice that the independent nodes refer only to one leg of the robot. Considering that each leg contains one node
B and that the node E is in common between the four legs, five independent joint nodes are finally obtained.
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I
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M
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J
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J

J

J J
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J

J
J

J

J

Ec

Fig. 9 Robot subsystem composed of the four (I,II,III,IV) leg subsystems S3 of Fig. 3 and the moving platform M. The end-
effector node E (displayed with a red circle) has been identified as the only independent node of the subsystem
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Fig. 10 Stiffness matrix partitioned into blocks of inner and boundary nodes

Here, we used six beams to model the proximal link and 12 elements for each distal link of Π for a total
of 792 dofs. After the partitioning into inner and boundary nodes, the stiffness matrix K of the model appears
as shown in Fig.10. The block matrices have been distinguished, and there is no coupling between nodes
belonging to different bodies as the joints have not yet been considered.

In the following, the boundary node displacements of one leg will be expressed in terms of the independent
node displacements of the same leg. Following the results of Sect. 3.2, the joint vectors h are defined for all
the revolute joints, i.e.,
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hA ≡ hB ≡ hC =
[

0
eA

]
, hΠ =

[
0

eΠ

]
. (24)

Starting from the boundary nodes of the proximal link, since point A is a point of the base frame F , it follows
that the boundary condition uA = 0 is imposed, resulting in

uP1 = hAθA (25a)

uPm = uB + hBθB (25b)

where θ is the rotation of the corresponding revolute joint coming from the deformation of the robot.
Considering the rigid-body assumption, the nodes {Bl , Br } depend on B, while the nodes {Cl ,Cr } depend

on C , that is, in turn, depending on E . For the left and right distal links Dl and Dr , we write

uDl1
= uBl + hΠθBl = G(+c/2eA)uB + hΠθBl (26a)

uDln
= uCl + hΠθCl = G(+c/2eA)uC + hΠθCl (26b)

uDr1
= uBr + hΠθBr = G(−c/2eA)uB + hΠθBr (26c)

uDrn
= uCr + hΠθCr = G(−c/2eA)uC + hΠθCr (26d)

where the rigid-body displacement matrices G(•) have been defined in Eq. (10). In the previous Eq. (26), the
array uC can be written in terms of the end-effector array uE , in fact

uC = G(c − p)uE + hCθC (27)

where c nd p are the positioning vectors of points C and E , respectively. By means of Eq. (27), Eq. (26) turns
into:

uDl1
= G(+c/2eA)uB + hΠθBl (28a)

uDln
= G(+c/2eA)G(c − p)uE + G(+c/2eA)hCθC + hΠθCl (28b)

uDr1
= G(−c/2eA)uB + hΠθBr (28c)

uDrn
= G(−c/2eA)G(c − p)uE + G(−c/2eA)hCθC + hΠθCr . (28d)

Then, noting that G(+c/2eA)G(c − p) ≡ G(cl − p) and G(−c/2eA)G(c − p) ≡ G(cr − p), we finally
combine Eqs. (25) and (28) to obtain the same form of Eq. (15), i.e.,

uB = GBuO + HBθM (29)

where the arrays uB, uO and θM are:

uB =

⎡
⎢⎢⎢⎢⎢⎣

uP1
uPm
uDl1
uDln
uDr1
uDrn

⎤
⎥⎥⎥⎥⎥⎦

, uO =
[

uB
uE

]
, θM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θA
θBl
θB
θBr
θCl

θC
θCr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

while GB is a (36 × 12) matrix and HB is a (36 × 7) matrix, defined as

GB =

⎡
⎢⎢⎢⎢⎢⎣

O O
1 O
G(+c/2eA) O
O G(cl − p)
G(−c/2eA) O
O G(cr − p)

⎤
⎥⎥⎥⎥⎥⎦

(31)

HB =

⎡
⎢⎢⎢⎢⎢⎣

hA 0 0 0 0 0 0
0 0 hB 0 0 0 0
0 hΠ 0 0 0 0 0
0 0 0 0 hΠ G(+c/2eA)hC 0
0 0 0 hΠ 0 0 0
0 0 0 0 0 G(−c/2eA)hC hΠ

⎤
⎥⎥⎥⎥⎥⎦

. (32)
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Fig. 11 Stiffness matrix of the reduced model: the four nodes B of the legs are coupled to the end-effector node E by means of
off-diagonal block matrices highlighted in grayed boxes

The expressions of GB and HB are referred to the generic leg and must be assembled to create the matrices of
the global model. The assembly procedure, not reported here for brevity, can be carried out following common
FE techniques.

The elastic wrench wa coming from the actuator stiffness ka has the following expression reported in
“Appendix”:

wa = −kahAθA ≡ −KEHBθM , KE = diag(ka16, O6, O6, O6, O6, O6). (33)

The actuator stiffness matrix KE is then used to obtain θM from Eq. (46) and LB from Eq. (39). For the follow-
ing results, we considered that fB = 0 and LF = O in Eq. (39). Using LB, the reduced stiffness matrix KL can
be obtained. The latter includes the dofs of five nodes, respectively, the four nodes at points B of each leg and
the end-effector node E of the moving platform M, for a total of 30 dofs. As shown in Fig. 11, the shape of
KL reflects the robot architecture: Four diagonal blocks pertain to the nodes B of the legs and are decoupled
among them and coupled to the last diagonal block of node E through off-diagonal blocks.

It is important to remark that when a mechanism changes its posture, its stiffness and mass matrices, and
the joints vectors must be updated. Nevertheless, unless the system changes topology with the introduction or
removal of some kinematic chain, the symbolic expression of the reduction matrix LB will remain the same.

Sometimes, designers are interested only in the stiffness matrix reduced to a specific point, for instance
the end-effector point E of the Ragnar robot, usually referred to as the Cartesian stiffness matrix. In our for-
mulation, this is easily obtained by means of a second Guyan–Iron reduction applied to the dofs of KL . In this
second reduction, the nodes to be condensed are considered as the inner nodes in a similar way to the classic
static reduction applied to structures. For the Ragnar robot, the four nodes B are considered inner nodes, while
the node E remains the only boundary node.

The reduced mass matrix ML follows the same transformation of KL , but lumped mass/inertia and the
way to include it in the model are worthy of particular attention. Lumped masses can be added both to inner
and boundary nodes. For instance, the lumped masses at nodes B and E are added directly to the final ML
since the independent nodes B and E do not appear among the initial inner and boundary nodes. Finally, to
take into account the mass at the joint node C this must first be referred to the independent node E by means
of the following expression derived from the kinetic energy equivalence:

MCE = G(c − p)TMCG(c − p). (34)

Author's personal copy



Static condensation method for the reduced dynamic modeling… 2047

−0.5 0 0.5 1
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−1

−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

xx

x

xx

yy

y

y

yy
z

f1 = 26.63 (Hz) f2 = 29.17 (Hz)

f3 = 36.50 (Hz) f4 = 54.41 (Hz)

f5 = 98.21 (Hz) f6 = 126.12 (Hz)

Fig. 12 The first six modes of the Ragnar robot calculated at p = [0, 0, −0.5] (m). The starting undeformed configuration is
superimposed on the mode shape

The latter can be added to the corresponding dofs of E in the final ML . The shape of ML is similar to that of
KL , shown in Fig. 11, and it is not reported for brevity.

To report some feasible results, the natural frequency and modes have been calculated when point E is
individuated by the positioning vector p = [0, 0,−0.5] (m). This configuration has been chosen to help the
reader to understand the modes and to identify the planes of symmetry.

Figure 12 plots the first six modes. It can be observed that the first three modes pertain to the three degrees
of freedom of the Ragnar robot, i.e., the three rigid translations along the directions of x, y and z, respectively. It
is worthy of attention that the first two modes follow the rectangular symmetry of the robot; in fact, the points
A are positioned at the vertices of a rectangle. From the fourth mode onward, the modes involve deformations
of the legs. In particular, the fourth mode is a rotation around the z-axis that reveals low z-rotational stiffness
of the robot. This is confirmed by the Cartesian stiffness matrix KLE obtained after a second static reduction
to the end-effector point E , i.e.,

KLE = 105 ·

⎡
⎢⎢⎢⎢⎢⎣

1.5597 0 0 0 −0.2524 0
0 2.0619 0 0.1683 0 0
0 0 7.2343 0 0 0
0 0.1683 0 0.1760 0 0

−0.2524 0 0 0 0.5614 0
0 0 0 0 0 0.0466

⎤
⎥⎥⎥⎥⎥⎦

.
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Fig. 13 The first 30 natural frequencies (Hz) of the Ragnar robot at p = [0, 0, −0.5] (m). The reduced model is plotted with solid
line and markers with blank circles, and the full model is plotted with dashed line and dotted markers

As it can be observed, the z-rotational stiffness is one order of magnitude lower than the x- and y-rotational
stiffness. For the sake of completeness, the Cartesian mass matrix MLE is also reported.

MLE =

⎡
⎢⎢⎢⎢⎢⎣

5.3821 0 0 0 −0.3594 0
0 5.9435 0 0.235 0 0
0 0 13.4442 0 0 0
0 0.2350 0 0.0505 0 0

−0.3594 0 0 0 0.0979 0
0 0 0 0 0 0.0397

⎤
⎥⎥⎥⎥⎥⎦

.

The previous Cartesian matrices reveal that the method is perfectly integrated with other static substruc-
turing methods. Unlike the previous two-beam example, we used the Guyan method for a second reduction
necessary to condense all boundary dofs into a single node.

Figure 13 shows the first 30 natural frequencies for the fullmodel, i.e., without reduction, and for the reduced
model. It can be observed that the two models are similar in the low-frequency range, while the differences
become wider for high frequencies. This behavior is not surprising as it is typical of static CMS methods.

We finally show in Fig. 14 four mesh plots of the first four natural frequencies evaluated on a rectangular
workspace of 480 × 900 (mm2) and with fixed height pz = −570 (mm). It is interesting to note how the
frequencies are more influenced by the x- than the y-coordinate and how the performances decay at the edges
of the chosen workspace.

5 Conclusions

The classic Guyan–Iron reduction has been extended to mechanisms combining the linear structural dynamics
to FE/MSA. Compatibility conditions have been written by means of a new class of joint nodes completing the
existing classes of inner and boundary nodes, already used in static reduction techniques.We demonstrated that
only a reduced set of independent joint nodes can be identified and a simple connection rule has been defined to
select the independent joint nodes of amechanical system composed of rigid parts, flexible parts, and joints. The
compatibility conditions and the governing statics equations have been combined to find a static transformation
matrix. The new transformationmatrixmaintains a form similar to theGuyan–Iron transformationmatrix.Actu-
ation stiffness and external nodal forces have been also considered to obtain the final reducedmodel. The formu-
lation has been first applied to a two-beam frame chosen as benchmark example. We have verified that the pro-
posed method can be perfectly integrated with the Guyan–Iron reduction method. Then, we applied the method
to the Ragnar robot, a commercial pick-and-place parallel robot. In this second example, rigid and flexible bod-
ies have been combined togetherwith joints to provide a complex elastodynamic system. The novel formulation
offers a global treatment of the couplings and is highly flexible allowing to obtain concisemodelswith a reduced
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Fig. 14 The first four natural frequencies (Hz) on a rectangular workspace of 480×900 (mm2) and with fixed height pz = −570
(mm)

number of dofs. Besides, imposedmotions and boundary conditions can be directly included in the definition of
the joint constraints. The proposed method does not replace the classic static methods but aims to be integrated
and combined with them in order to create a unique substructuring framework. When considering problems
with large-scale components, it is possible tomake a first static reduction on the individual components and then
apply the proposed method on the reduced system. Vice versa, it is possible to do the opposite making a second
static reduction after a primary reduction carried out through our method, as performed in the Ragnar robot
example to find the stiffness andmassCartesianmatrices of the robot. Therefore, themethod combines the exist-
ing techniques and is an enhancement when one wants to create superelements with joints condensed inside.
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Appendix

In Sect. 3.3, the following system (20) has been derived:⎧⎪⎪⎨
⎪⎪⎩

KIIuI + KIBuB = 0

HT
BKBIuI + HT

BKBBuB = HT
BfB

uB = GBuO + HBθM

(35)

It can be recognized that from the first equation of this system, the Guyan–Iron transformation is recovered.
Then, after substituting the third equation into the second one, we derive

HT
BKBIuI + HT

BKBBGBuO + HT
BKBBHBθM = HT

BfB (36)

After computation, θM is obtained, i.e.,

θM = −(HB
TKBBHB)−1(HB

TKBIuI + HT
BKBBGBuO − HT

BfB). (37)
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Substituting θM into the third equation of the system, we finally obtain

uB = LBuO + LF fB (38)

where

LF = Γ −1
B (HBΔB

−1HB
T) (39a)

LB = Γ −1
B (HBΔB

−1HB
TKBBGB − GB) (39b)

Γ B = HBΔB
−1HB

TKBIKII
−1KIB − 1B (39c)

and ΔB = HB
TKBBHB . Without changing the sense of the explanation, let us impose fB = 0, and then, the

expression between uB and uO is reduced to

uB = LBuO (40)

where LB is used to create a new transformation matrix ΨL , defined as

[
uI
uB

]
= ΨLuO ⇒ ΨL = Ψ LB (41)

where Ψ has been defined in Eq. (4) for the Guyan–Iron condensation. It can be verified by direct substitution
that when all joints are locked, that is when HB ≡ O, it follows that LB ≡ GB and ΨL ≡ Ψ GB. The latter
expresses that the Guyan–Iron transformation can be recovered simply by blocking the joints. Considering
ΨL , the following reduced system is written

ML üb + KLub = FL (42)

where ML , KL , respectively, are the reduced mass and stiffness matrices, defined as

ML = Ψ T
L MΨL , KL = Ψ T

L KΨL (43)

and FL is the array of reduced forces. The expressions of ML , KL and FL are not reported for brevity. Com-
pared to the previous formulations proposed by the authors in [4,6,7], the new approach is global and does
not require different cases of coupling between bodies.
In particular cases, the vector fB may include elastic forces. Therefore, suppose that an elastic force/torque is
applied to the boundary node of a generic joint, the corresponding generalized force vector fb becomes

fb = −kehbθm (44)

where ke is the stiffness at the joint location. This expression can be extended to the global vector fB, i.e.,

fB = −KEHBθM , KE = diag(O6, . . . , ke16, . . . , O6) (45)

where KE is the generalized stiffness matrix containing all joint stiffness. By substituting this expression into
the right-side term HT

BfB of Eq. (36), we obtain

HT
BKBIuI + HT

BKBBGBuO + HT
BKBBHBθM = −HT

BKEHBθM (46)

from which it can be obtained that θM becomes

θM = −[HB
T(KBB + KE )HB]−1(HB

TKBIuI + HT
BKBBGBuO) (47)

This expression replaces Eq. (37) and allows for obtaining the transformation matrix ΨL in a manner similar
to what has been done previously.
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