

1 Case Report

2 Application of rehabilitation and active pressure

3 control strategies for leakage reduction in a case-

4 study network

5 Camillo Bosco^{1*}, Alberto Campisano², Carlo Modica³ and Giuseppe Pezzinga⁴

- ¹ Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123
 Catania, Italy; <u>camillo.bosco914@gmail.com</u>
- ² Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123
 Catania, Italy; <u>alberto.campisano@unict.it</u>
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123
 Catania, Italy; <u>carlo.modica@unict.it</u>
- ⁴ Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123
 Catania, Italy; <u>giuseppe.pezzinga@unict.it</u>
- 14 * Correspondence: <u>camillo.bosco914@gmail.com</u>
- 15 Received: date; Accepted: date; Published: date

16 Abstract: The paper discusses the results of a simulation analysis to evaluate the potential of 17 rehabilitation measures and active pressure control strategies for leakage reduction in a water 18 distribution network (WDN) in southern Italy. The analysis was carried out by using a simulation 19 model developed under EPANET-MATLAB environment. The model was preliminary calibrated 20 based on pressure and flow measurements acquired during a field monitoring campaign in two 21 districts of the WDN. Three different scenarios of leakage reduction including *i*) pipe rehabilitation 22 (scenario S1), ii) implementation of pressure local control (S2), and iii) introduction of remote real 23 time pressure control (RTC) (S3) were simulated and compared with current scenario of network 24 operation (S0). Results of the simulations revealed that combination of the used strategies can 25 improve the network performance by a significantly reduction of water leakage. Specifically, 16.7%, 26 35.0%, and 37.5% leakage reductions (as compared to S0) can be obtained under scenarios S1, S2, and 27 S3, respectively.

27 35, respectively.

Keywords: water distribution systems; rehabilitation, pressure control; real time control; leakage
 reduction strategies.

30

31 **1. Introduction**

The level of service in water distribution networks (WDNs) is related to criticalities such as the frequency of breaks and the amount of background leakage in the network. Very often such criticalities are the cause of pressure drops in the network pipes, which eventually turn into the detriment of users water demand satisfaction [1].

Modeling of the network coupled with information gained through measurement of flows and pressures can significantly contribute to the identification of anomalies in the WDN, to the proper estimation of leakage levels, as well as to the selection of actions for network rehabilitation and technological renewal [2,3].

For instance, strategies include methods for identifying pipes with high rehabilitation priority [4], as well as methods to reduce pressure (and thus leakage) in the WDN [5,6]. Pipe rehabilitation/replacement programs require acquiring knowledge about the characteristics of the pipes (typically, material, diameter, age, current status, historical frequency of breaks [7]. Most pressure control methods are based on dividing the WDN into district metered areas (DMAs) and on 45 installing pressure control valves (PCVs) at their entrance for limiting pressure values in the 46 downstream conduits [5]. Normally, PCVs allows performing local pressure control (they allow 47 controlling the pressure value locally at the valve outlet) with the aim to control pressure levels in 48 the whole downstream district. Therefore, local control entrusts on the use of hydraulic models of the 49 network to predict pressure levels in the downstream nodes of the district [8,9]. Hydraulic models 50 are also embedded in procedures for the optimal placement of control valves for leakage reduction 51 [10,11]. However, use of models does not assure proper control of pressure in all the circumstances. 52 Indeed, because of the uncertainty in the estimation of the spatio-temporal distribution of nodal water 53 demands and energy losses in the WDN, large network portions might exhibit pressure excess/deficit 54 during the day as compared to set-point values.

55 In the recent years, adoption of remote real time control (RTC) strategies has shown to 56 outperform local control strategies with increased potential for pressure control and leakage 57 reduction in WDNs [12,13,14,15]. Remote RTC systems use (distributed) remote information about 58 the current status of the WDN in order to improve the effectiveness of pressure (and thus leakage) 59 control strategies. Typically, pressure sensors installed in the network (in nodes that are far from the 60 control valve site) acquire pressure measurements in continuous. Such measurements are transmitted 61 in real time (normally using GSM) to controllers that are programmed to adjust dynamically 62 upstream PCVs [16,17], in order to drive the pressure at the remote monitoring node to the desired 63 set-point.

Much of the available studies on adoption of strategies for active control of pressure in WDNs (e.g., [16,17,18,19,20]) have mainly invoked use of simulation approaches. However, in most of the cases, models have been applied to WDNs, without being preliminarily calibrated on the basis of measurements carried out in the network. In line of principle, such an approach cannot always assure accurate evaluation of the level of water leakage in the network due to the predictive error of the used model.

In this paper, a simulation analysis was carried out to evaluate the potential of rehabilitation measures and active pressure control strategies for leakage reduction in a WDN in southern Italy. The reliability of the obtained results is corroborated by the preliminary calibration of the model used for the simulations on the basis of measurements acquired in the WDN during a specific campaign of monitoring. The experimental campaign was carried out separately for two network districts and included monitoring of pressure and flows at different nodes of the network.

The paper is structured in sections. First, the methods are presented, including the modalities of description of the water distribution network, the details of the monitoring campaign, the used simulation model, as well as the considered scenarios of simulation for leakage reduction. Secondly, results of the model calibration are presented, with emphasis on the obtained level of accuracy of the model. Third, simulation results are discussed in order to compare scenarios of application of strategies of rehabilitation and active pressure control for leakage reduction in the WDN.

82 2. Materials and Methods

83 2.1. Case-study network

A portion of the municipal WDN of the town of San Giovanni la Punta (Italy) was selected as case-study to evaluate benefits of some rehabilitation and active pressure control strategies.

The WDN (see Figure 1) consists of about 39 km of pipes and supplies about 6100 users (about 2400 households). Two main DMAs were identified in a conjunct work carried out with the water company that manages the water distribution in the network. The two districts supply the north-west area (district DMA1 in the following) and the south-east area (district DMA2) of the town, respectively.

91 The whole system is supplied by the reservoir "Alto", that is located in the northern part of the 92 town at 422 m a.s.l. (maximum capacity approximately equal to 100 m3). The reservoir is supplied by 93 well pumps operated through use of an inverter-based system that adjusts the inlet to maintain 94 constant water level of 2 m in the reservoir during the 24 hours. A cast iron conduit conveys flow

- 95 from the reservoir to the main branches and loops of the WDN including a 2 km long steel pipeline
- 96 with the function of north-south backbone line (reported in orange in Figure 1). Most of the pipes
- 97 larger than DN200 in the WDN are made of steel and cast iron, and date back to the years '80s and
- 98 2000s, respectively. Conversely, the small conduits are almost entirely in HDPE and were installed
- 99 in the early 2000s. Various surveys carried out during the last decade by the water company have 100 revealed the occurrence of leakages in several branches of the WDN. In this regard, important current
- 101 criticalities concern the described backbone line. Indeed, such line is affected by high leakage levels
- 102 that are cause of pressure problems (and inadequate water supply) for several households belonging
- 103 to DMA1.
- 104

- Figure 1. Sketch of the WDN with identification of the two DMAs (in red DMA1, in blue DMA2).
- 107

105 106

108 2.2. Monitoring campaign

109 A campaign of monitoring was carried out during the research work to explore the behaviour110 of the network in terms of water consumption and pressure in the two districts.

111 Specific objective of the experimental monitoring was to identify criticalities in the current 112 operation of the WDN (e.g., identify areas of leakage, hydraulic malfunctioning, etc.). Further 113 objective was to setup a dataset of measurements to be used for the calibration of the simulation 114 model adopted for the analysis of the WDN.

The experimental campaign was carried out separately for the two districts (in the months of October 2018 and April 2019 for DMA2 and DMA1, respectively). A flow meter (at the inlet of the district) and five pressure sensors were installed in nodes of each DMA (see Figure 1) for two consecutive weeks. During such periods, flows and pressures were monitored at intervals of 1 min and 10 min, respectively. Used flow meters allowed flows to be measured with accuracy of 0.5%, 120 while pressure sensors provided pressure measurements with 0.1% accuracy. All the data were

121 stored locally and downloaded at the end of the monitoring period for the successive analyses. In

122 particular, recorded measurements enabled determining the daily pattern of the pressure in the two

districts, thus identifying areas at low or high pressure (thus more or less prone to leakage) in the

- network during the 24 hours. Also, the analysis of the data allowed determining the daily pattern of flows supplied to the two DMAs, thus enabling a measure of the total sum of household
- 126 consumptions and of water leakages in the two districts.
- 127 Moreover, the comparison of the data of flow with quarterly data of grouped billed 128 consumptions (provided by the water company for each household of the WDN) allowed to 129 unbundle leakage contribution by the total measured flow.

130 2.3. *Model of the network*

A hydraulic model of the network was setup to assess benefits determined by implementation
 of scenarios of rehabilitation and active pressure control in order to reduce leakage levels in the WDN.
 The EPANET-MATLAB environment [21] was used to model the network. The extended period
 simulation (EPS) of the WDN was performed, i.e., the simulation was run assuming successive
 conditions of steady state for the 24 hours of the day.

Overall, the network was skeletonized using 921 links and 869 nodes. Preliminarily, pipe roughness was estimated based on the available information from surveys concerning pipe material and level of pipe corrosion. On this background, values of Hazen-Williams roughness coefficients were set equal to 140, 95, and 75 for pipes in HDPE, cast iron, and old steel, respectively.

140 Network leakage was evaluated using a pressure-driven approach, based on the equation 141 proposed by [22]:

142 143

$$Q_{k} = \beta P_{k}^{\alpha} \sum_{J=1}^{n_{j,k}} \frac{L_{j,k}}{2}$$
(1)

144 where Q_k [L/s] and P_k [m] are the k-node leak and pressure, respectively; $n_{j,k}$ is the total 145 number of *j*-pipes converging to node *k*; $L_{j,k}$ [m] is the length of pipe *j* converging to node *k*; and α 146 and β are leakage coefficients to be calibrated.

147 A pressure control module was developed in MATLAB. The module was coupled to the 148 hydraulic model to allow simulation of potential benefits deriving from adoption of active control of 149 pressure in the WDN based on remote RTC [12]. The control module allows implementing 150 architectures of RTC systems and to use various types of PCVs (e.g., screw-based valves; plunger 151 valves, etc.) for pressure control in the WDN. A control strategy derived from the literature [16] was 152 implemented in the module. The strategy assumes that pressure at each of the two DMAs is 153 controlled on the basis of the pressure value in one node (critical node) of the district. Specifically, 154 pressure measurements acquired at the critical node are remotely transmitted in real-time to the 155 controller that operates the adjustment of the PCV.

156 The control algorithm implemented in the pressure control module provides (at each control 157 time step) the value shutter displacement Δa [-] based on the deviation e_t [m] at time t between the 158 current pressure value and the related set-point value at the critical node:

 $\Delta a = a_{t+\Delta t_c} - a_t = -K e_t \tag{2}$

160 where a_t and $a_{t+\Delta t_c}$ are value opening degrees at time t and $t + \Delta t_c$, respectively; Δt_c is the 161 control time step, and K [m⁻¹] is the controller gain.

162 Eq. 2 shows that Δa is proportional to e_t through *K*. Therefore, with respect to the shutter 163 position *a*, the adopted algorithm shows the characteristics of an integral-type controller. Moreover, 164 the negative sign in Eq. (2) allows considering the negative proportionality between Δa and e_t , if 165 gain *K* is assumed intrinsically positive.

Finally, valve regulation is constrained by the limits 0 and 1 (saturation), corresponding to valve fully closed and fully open, respectively. The control module allows also including limits (of the valve manufacturer) to the mechanical velocity of the shutter of the valve, to prevent risks of unwanted transients in the network [12].

170 2.4. Model calibration

171 The availability of measurements in the network allowed the calibration of the simulation model, 172 thus increasing the reliability of the simulation results concerning the potential benefits due to 173 implementation of leakage control strategies in the WDN.

174 Calibration was carried out using the Genetic Algorithm Toolbox available in MATLAB 175 environment. The adopted procedure is based on the recent application by [23] and consists in 176 calibrating simultaneously the optimal values of the hourly multipliers of the daily curve of 177 consumptions, and the optimal values of coefficients α and β of Eq. 1 for leakage evaluation. The 178 value of the two coefficients was assumed equal for all the pipes of the network, except for coefficient 179 β related to the backbone line in steel that was evaluated separately, to improve model results.

Average hourly measured values of flow and pressure at each DMA were provided as modelinput with the aim of minimizing the following objective function:

182
$$OF = \sum_{h=1}^{n_h} \sum_{i=1}^{n_i} \left(\frac{P_{C_{i,h}} - P_{M_{i,h}}}{P_{M_{i,h}}} \right)^2$$
(3)

being P_C [m] and P_M [m], computed and measured pressure values, respectively; n_i the total number of installed pressure sensors; n_h the number of hourly values considered.

185 Use of Eq. 3 was subject to the constraint that total inflow to each DMA is always equal to the 186 sum of household consumption and leakage in the district, at any time step of the simulation.

187 2.5. Scenarios of simulation

188 Three main scenarios were considered for the simulations that include options of 189 rehabilitation/active pressure control of the WDN.

190 The first scenario (S1) concerns the rehabilitation of the described backbone line in steel in order 191 to eliminate leakages identified during the field surveys. Such scenario includes improvement of 192 water supply to users of DMA1 as determined by of the re-arrangement of circulation of flows in the 193 conduits.

194 The second scenario (S2) adds up to S1 the installation of two PCVs to allow local control of the 195 pressure in the network. The two PCVs are assumed to be conventional screw-based valves and to 196 be installed at the inlet of each DMA (PCV1 at node 2 of the DMA1 and PCV2 at node 3 of the DMA2, 197 as shown in Fig.1). In this scenario, each valve is set with the objective of reducing as much as possible 198 pressure levels in the respective DMA, while ensuring the full demand satisfaction to all the users of 199 the district. This is obtained by identifying preliminary the critical node of each DMA, that is the node 200 with the lowest value of pressure in the district during the 24 hours (nodes 13 and 14 for DMA1 and 201 DMA2, respectively). Then, the scenario considers that pressure at the critical nodes can never drop 202 down below the minimum value of 30 m. Accordingly, local pressure setpoint at PCV1 and PCV2 203 outlet is set to 7.5 m and 33 m for DMA1 and DMA2, respectively.

204 The third scenario (S3) considers adoption of remote RTC for pressure control in the WDN. Two 205 plunger valves (DN300 for DMA1 and DN80 for DMA2) are assumed to be installed at the same sites 206 as in scenario S2. Recent laboratory experiments have shown this type of valves to provide potential 207 for accurate RTC in WDNs [24]. The scenario assumes the same pressure setpoint (30 m) at the two 208 critical nodes as for scenario S2 (nodes 13 and 14). However, in comparison to scenario S2 the valves 209 are directly controlled on the basis of the remote pressure measurements acquired in real time at the 210 critical nodes. Simulation of scenario S3 included preliminary identification of a suitable value of the 211 controller gain K to perform effective pressure control in the two districts without the occurrence of 212 permanent pressure oscillations [25]. In agreement with previous literature results (e.g., [19,26], the 213 simulations under RTC were carried out using control time Δt_c =5 min.

Scenarios S1, S2, and S3 were compared to scenario zero (S0), the current reference scenario inwhich no actions are taken to reduce leakage levels in the network.

216

217 3. Results

219 On the one hand, results of the analysis of the data of the monitoring campaign with specific 220 reference to flow measurements at node 2 show that average daily flow to the whole WDN is equal 221 to 56.5 L/s. Moreover, flow measurements at the inlet of DMA2 reveal that average daily inflow to 222 this district is 11.8 L/s. By difference, nodes of DMA1 are supplied with total average daily flow of 223 44.7 L/s.

224 On the other hand, the analysis of the billed consumptions (from the database of the households) 225 points out consumptions for the whole WDN corresponding to an average value of the flow of 14.9 226 L/s. The same analysis at the scale of DMA, provides 9.9 L/s and 5.0 L/s for DMA1 and DMA2, 227 respectively. This last result is consistent with the spatial distribution of population, since about 2/3 228 of the total population served by the WDN belongs to DMA1.

229 Based on above, comparison of the results of the monitoring campaign and of the billed 230 consumption would confirm a huge level of leakage in the WDN (about 73.6% of the total inflow, i.e. 231 about 92.2 m3/d/km). The same comparison at the scale of DMA shows that leakage levels for DMA1 232 and DMA2 are equal to 78% (107.4 m³/d/km) and 58% (53.4 m³/d/km), respectively.

233 3.2. Results of model calibration

1.8

234 Figure 2 reports optimal values of the hourly demand multipliers M_h for consumptions at both 235 DMA1 and DMA2 as result of the model calibration in the scenario of simulation S0.

236 The figure shows that the two patterns are rather similar with the occurrence of three main peaks 237 of consumption (the first at early morning, the second at lunch time, and the third at dinner time) as 238 well as with the minimum flow value occurring during the night. Slight differences are shown 239 between the two DMAs with first peak being larger and in advance for DMA1 as compared to DMA2 240 due to the widespread presence of commercial activities in DMA1.

> 1.3 1.2 1.1 1.0 M_h [-] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 DMA1 - DMA2 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time [h]

241 242

Figure 2. Results of model calibration. Hourly demand multipliers for the two DMAs.

243 Also, the calibration returned the optimal values of leakage coefficients of Eq. 1. Specifically, the 244 calibration procedure returned α =0.87 and β =2.85×10⁻⁵. Such values were attributed to both types of 245 pipes in stainless steel and in HDPE. It was not considered the opportunity to differentiate the 246 coefficients for the two types of pipe material given the very modest incidence of pipes in stainless 247 steel as compared to that of pipes in HDPE. As expected, according to the results of the optimization, 248 a larger value of the coefficient was obtained (β =4.77×10⁻⁴) for the backbone line in steel.

249 250 (RMSPE) as obtained by the optimization process for flow and pressure values at the various nodes 251 of installation are shown in Table 1 for DMA1 and DMA2, respectively. Remarkably, the table shows 252 maximum value of MAPE for pressure values to be 4% and 2% for DMA1 and DMA2, respectively, 253 while the largest value for the flow is 1.7% as obtained for DMA1. Consistently, maximum RMSPE 254 values obtained for the two DMA are 5.1% and 2.5% at nodes 11 and 8, respectively.

255 256

	DMA1						DMA2				
	Flow	Flow Pressure						Pressure			
Node	2	10	11	12	4	5	3	6	7	8	9
MAPE	0.017	0.037	0.040	0.032	0.031	0.022	0.006	0.016	0.014	0.020	0.014
RMSPE	0.020	0.045	0.051	0.038	0.039	0.026	0.008	0.020	0.017	0.025	0.018

Table 1. Results of model calibration. Values of MAPE and RMSPE for flow and pressure.

257

258 3.3. Results of simulation scenarios

259 Scenarios of intervention described at previous section 2.5 were simulated in order to evaluate 260 the potential for leakage reduction. The simulations were run with reference to water demands of a 261 "average" day as obtained based on the measured flow discharges during the monitoring campaign. 262 Results of the simulations are summarized in Figure 3.

263 The figure shows that scenario S1 of rehabilitation of the leaking segments of the backbone line 264 allows to reduce total daily leakage volume from about 3600 m³/d to about 3000 m³/d (about 2082 265 m³/d and 918 m³/d for DMA1 and DMA2, respectively). Globally, this would mean recovering about 266 16.7% (about 6.95 L/s) of the current network leakage. In addition, the rehabilitation of the pipeline 267 leads to improved pressure levels in the WDN, that is reflected into an improved satisfaction of the 268 nodal water demands with specific reference to nodes od DMA1 that were characterized by supply 269 deficit.

270 As scenario S2 is considered, Figure 3 shows that the total leakage volume in the WDN drops 271 down to 2330 m³/d (1726 m³/d in DMA1) and 604 m³/d in DMA2), that is 35% leakage reduction with 272 respect to the current scenario S0 (about 14.7 L/s recovered). The figure shows also that replacement 273 of the two PCVs with valves controlled by remote RTC (scenario S3) has further potential to improve 274 the pressure control action with respect to scenario S2. The total leakage volume in the WDN drops 275 down to about 2252 m³/d, that is 37.5% leakage reduction as compared to S0 (about 15.6 L/s recovered). 276 Leakage reduction obtained in both scenarios S2 and S3 is strictly depending on the decreasing 277 of the pressure level in the network during the 24 hours of the day. The results of local control of the 278 pressure as obtained by using the two PCVs are shown in Figure 4. The figure shows pressure to 279 decrease at the two critical nodes 13 and 14 for DMA1 and DMA2, respectively. However, the desired 280 set-point of 30 m is achieved only in some hours, while the pressure remains higher than the set-point 281 for the rest of the day (on average 31.5 m and 31.3 m for the two critical nodes). Figure 4 also reports 282 the results of the simulation of scenario S3 with the adoption of remote RTC. The simulation was 283 performed using K=0.005 m⁻¹ (as obtained by preliminary runs aimed at the tuning of the controller). 284 The figure shows that the used value of the gain allows driving the pressure (at both critical nodes) 285 to the set-point without incurring in the generation of oscillations of the pressure during the day. 286 Remarkably, the RTC system is able to maintain pressure set-points in an accurate way during the 24 287 hours. Specifically, the figure highlights that maximum pressure deviation from the set-point is 288 smaller than 1 m at both DMAs (against 3-4 m in case of local control of S2). Figure 4 also reports the 289 curve of the valve opening settings aDMA1 and aDMA2 in the two districts. As shown, 290 openings/closures of the valve shutter are consistent with the daily water demand pattern at the two 291 DMAs. In fact, the two plunger valves are adjusted by the control algorithm in order to close majorly

292 during night hours (when pressure levels are normally higher) and to open during the peaks of the

293 water demand.

As already discussed, the simulations under EPS were performed considering a day with average characteristics among the days of the monitoring campaign. However, it should be stressed that benefits of remote RTC as compared to local control of pressure are normally emphasized under conditions of high spatio-temporal variability of water demands in the WDN. In fact, while local control remains affected by uncertainty in water demands, in principle remote RTC systems are able to assure appropriate pressure control in real time in all the circumstances.

An important aspect that deserves discussion concerns the concurrent use of the two PCVs installed at the two DMAs. In fact, PCV2 reduces significantly pressure levels at DMA2 while determining pressure sustain in the upstream DMA1, thus reducing beneficial effects of pressure reduction as determined by PCV1. In this regard, the results of a further simulation (not presented here) of the WDN that includes implementation of PCV1 only, allowed quantifying that pressure value at node 4 (upstream of PCV2) would be about 4 m less than pressure value determined at the same node in scenario S2.

The accuracy (thus the transferability into practice) of the simulation results obtained deserves specific discussion. The availability of measurements from the monitoring campaign allowed appropriate calibration of the simulation model, with average MAPE (Table 1) corresponding to absolute error in pressure in the order of 0.5 m (for a 30 m set-point). Based on the results of the simulations, such an error is generally smaller than pressure differences as obtained by the comparison of the different scenarios, thus confirming the reliability of the results of leakage reduction.

321 4. Conclusions

A simulation analysis was carried out to evaluate the potential of rehabilitation measures and active pressure control strategies for leakage reduction in a WDN in southern Italy.

Three main scenarios were considered for the simulations. The first scenario (S1) concerned the rehabilitation of a steel backbone line of the WDN in order to eliminate leakages that were identified during the survey of the network. The second scenario (S2) added up to S1 the installation of two PCVs to allow local control of the pressure in the network. The third scenario (S3) considered adoption of remote RTC for pressure control in the WDN by means of two plunger valves in place of the PCVs adopted in S2. The three scenarios were compared to scenario zero (S0), i.e. the current reference scenario in which no actions are taken to reduce leakage levels in the network.

The analysis has shown that combination of the used strategies can significantly improve the network performance. Specifically, rehabilitation of the backbone line (scenario S1) would provide a significant reduction of the current leakage level of the WDN. Addition of local pressure control (scenario S2) would add further benefits. The adoption of remote RTC (scenario S3) in comparison with local pressure control increases leakage reduction. Additional benefits of remote RTC as compared to local control of PCVs would be observed under conditions of high spatio-temporal variability of water demands in the WDN.

Two main aspects played an important role on corroborating the reliability of the results of the analysis. Firstly, simulations were based on the results of accurate calibration of model parameters on the basis of a program of measurements carried out during the monitoring campaign. Secondly, the modeling of the pressure control processes by using local control of PCVs and remote RTC was carried out based on the literature results of consolidated experimental investigations.

Evidently, the results of this analysis must be considered as preliminary and open to further research work. In real cases, the choice of measures of intervention to adopt would require the evaluation of the benefit in terms of leakage reduction, but can not prescind also on a comprehensive analysis of the costs (including economic, environmental, and social costs) of each scenario of implementation.

Author Contributions: Methodology, C.B., A.C., C.M., and G.P; Development of the models, C.B.; Analysis of
 results, C.B., A.C., C.M. e G.P; Writing and editing, C.B., A.C., C.M., and G.P. All authors have read and agreed
 to the published version of the manuscript.

Funding: This research was partially supported by the Department of Civil Engineering and Architecture of the
 University of Catania, under the Research Programme "Piano Triennale della Ricerca 2016/2018".

353 **Conflicts of Interest:** The authors declare no conflict of interest.

354 References

- Berardi, L., Laucelli, D. B., Simone, A., Mazzolani, G., & Giustolisi, O. (2016). Active leakage control with
 WDNetXL. Procedia Engineering, 154, 62-70.
- Wu, Z. Y., Sage, P., & Turtle, D. (2010). Pressure-dependent leak detection model and its application to a district water system. Journal of Water Resources Planning and Management, 136(1), 116-128.
- 359 3. Romano, M., Kapelan, Z., & Savić, D. A. (2013). Geostatistical techniques for approximate location of pipe
 burst events in water distribution systems. Journal of Hydroinformatics, 15(3), 634-651.
- 361 4. Berardi, L., Giustolisi, O., Kapelan, Z., & Savic, D. A. (2008). Development of pipe deterioration models for
 362 water distribution systems using EPR. Journal of Hydroinformatics, 10(2), 113-126.
- 363 5. Thornton, J. Water Loss Control Manual 2002.
- 6. Ciaponi, C., Franchioli, L., Murari, E., & Papiri, S. (2015). Procedure for defining a pressure-outflow relationship regarding indoor demands in pressure-driven analysis of water distribution networks. Water resources management, 29(3), 817-832.
- 367 7. Le Gat, Y., & Eisenbeis, P. (2000). Using maintenance records to forecast failures in water networks. Urban water, 2(3), 173-181.
- 8. Prescott, S. L., & Ulanicki, B. (2008). Improved control of pressure reducing valves in water distribution
 networks. Journal of hydraulic engineering, 134(1), 56-65.

- 371 9. Nicolini, M., & Zovatto, L. (2009). Optimal location and control of pressure reducing valves in water
 372 networks. Journal of water resources planning and management, 135(3), 178-187.
- Pezzinga, G., & Gueli, R. (1999). Discussion of "Optimal Location of Control Valves in Pipe Networks by
 Genetic Algorithm" by LFR Reis, RM Porto, and FH Chaudhry. Journal of Water Resources Planning and
 Management, 125(1), 65-67.
- 376 11. Creaco, E., & Pezzinga, G. (2018). Comparison of algorithms for the optimal location of control valves for
 377 leakage reduction in WDNs. Water, 10(4), 466.
- Campisano, A., Modica, C., Reitano, S., Ugarelli, R., & Bagherian, S. (2016). Field-oriented methodology for real-time pressure control to reduce leakage in water distribution networks. Journal of Water Resources Planning and Management, 142(12), 04016057.
- Berardi, L., Simone, A., Laucelli, D. B., Ugarelli, R. M., & Giustolisi, O. (2018). Relevance of hydraulic
 modelling in planning and operating real-time pressure control: case of Oppegård municipality. Journal of
 Hydroinformatics, 20(3), 535-550.
- 14. Page, P. R., Abu-Mahfouz, A. M., & Mothetha, M. L. (2017). Pressure management of water distribution
 systems via the remote real-time control of variable speed pumps. Journal of Water Resources Planning
 and Management, 143(8), 04017045.
- 387 15. Creaco, E., & Walski, T. (2018). Operation and Cost-Effectiveness of Local and Remote RTC. Journal of
 388 Water Resources Planning and Management, 144(11), 04018068.
- Campisano, A., Creaco, E., & Modica, C. (2010). RTC of valves for leakage reduction in water supply networks. Journal of Water Resources Planning and Management, 136(1), 138-141.
- 391 17. Giustolisi, O., Ugarelli, R. M., Berardi, L., Laucelli, D. B., & Simone, A. (2017). Strategies for the electric
 392 regulation of pressure control valves. Journal of Hydroinformatics, 19(5), 621-639.
- Bakker, M., Rajewicz, T., Kien, H., Vreeburg, J. H. G., & Rietveld, L. C. (2014). Advanced control of a water
 supply system: a case study. Water Practice and Technology, 9(2), 264-276.
- 395 19. Page, P. R., Abu-Mahfouz, A. M., & Yoyo, S. (2017). Parameter-less remote real-time control for the adjustment of pressure in water distribution systems. Journal of Water Resources Planning and Management, 143(9), 04017050.
- 398 20. Creaco, E., Campisano, A., & Modica, C. (2018). Testing behavior and effects of PRVs and RTC valves
 399 during hydrant activation scenarios. Urban Water Journal, 15(3), 218-226.
- 400 21. Eliades, D. G., Kyriakou, M., Vrachimis, S., & Polycarpou, M. M. (2016, November). EPANET-MATLAB
 401 toolkit: An open-source software for interfacing EPANET with MATLAB. In Proceedings of the 14th
 402 International Conference on Computing and Control for the Water Industry, CCWI.
- 403 22. Germanopoulos, G. (1985). A technical note on the inclusion of pressure dependent demand and leakage
 404 terms in water supply network models. Civil Engineering Systems, 2(3), 171-179.
- 23. Di Nardo, A., Di Natale, M., Gisonni, C., & Iervolino, M. (2015). A genetic algorithm for demand pattern
 and leakage estimation in a water distribution network. Journal of Water Supply: Research and
 Technology-AQUA, 64(1), 35-46.
- 408 24. Campisano, A., Modica, C., Musmeci F., Bosco C. & Gullotta, A. (in press). Laboratory experiments and
 409 simulation analysis to evaluate the application potential of pressure remote RTC in water distributions
 410 networks.
- 411 25. Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).
- 412 26. Creaco, E., & Franchini, M. (2013). A new algorithm for real-time pressure control in water distribution networks. Water Science and Technology: Water Supply, 13(4), 875-882.
- 414

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

415