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Wave propagation in pantographic 2D lattices with internal discontinuities
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a Université de Lyon-INSA (Institut National des Sciences Appliquées), Laboratoire de Génie Civil et Ingénierie
Environnementale (LGCIE) Bâtiment Coulomb, 69100 Villeurbanne, France

b Department of Mechanical and Aerospace Engineering, Università di Roma La Sapienza, 18 Via Eudossiana, Roma, Italy
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Abstract. In the present paper we consider a 2D pantographic structure composed of two orthogonal families of Euler beams.
Pantographic rectangular ‘long’ waveguides are considered in which imposed boundary displacements can induce the onset of
travelling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The
system undergoes large rotations, which may involve geometrical non-linearities, possibly opening a path to appealing phenomena
such as the propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at
discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems
to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses, and aeronautic/aerospace
panels.
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1. INTRODUCTION

In the present study, we employed the concept, suggested
by dell’Isola [17], of pantographic lattices, whose
technological importance is rapidly increasing and,
especially in nano-technology, could be very relevant.
Pantographic structures are mechanical systems in which
arrays of beams or rods are connected by internal kine-
matic pivots. Actually, a very wide class of objects can
be effectively described and studied by means of suitably
chosen pantographic models (see e.g. [15]). In this work,
a numerical analysis of wave propagation is performed
on the basis of the discrete mechanical model presented
in [17].

Let us briefly recall the model considered therein. In
Fig. 1a, the reference configuration C∗ is shown. Lines
indicate beams, which are divided in two families of
parallel and equally spaced beams (with distance d),
reciprocally orthogonal in C∗. The beams are arranged in

a rectangle (sized
√

2Ld ×
√

2Wd in C∗, where L and W
are integers representing the number of intervals between
the height and the width, respectively) whose sides are
crossed by the beams at 45 degrees in C∗. Each beam
has a standard linearized Euler strain energy given by

E =
∫

Λ

kM(u′′)2 + kN(w′)2

2
. (1)

Here u and w are respectively the values of transverse
and axial displacements u and w with respect to C∗, and
kM and kN are respectively bending and axial stiffness
coefficients, which in the real object depend of course on
the diameter of the beams, while the integral is extended
over the entire length Λ of the beams.

Dots in Fig. 1a represent hinges that allow free
rotations and do not interrupt the continuity of the beams.
The configuration at a given time t can be considered as
characterized by a ‘large’ displacement (with respect to
C∗) due to the contribution of the rigid rotations, and
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(a) (b)

Fig. 1. Reference configuration (a) and time history of the impulse (b).

a ‘small’ displacement due to axial and bending elastic
deformations.

2. NUMERICAL RESULTS

Wave propagation in non-trivial structures is of course
widely studied in the literature (see e.g. [34,35,40]), and
in particular several numerical and experimental results
on woven fabrics can be found (see e.g. [7]). For our
numerical analysis we used a length l of 0.1 m for the
lower and upper sides, while the height h of the rectangle
is either 2 m or 2.5 m in the simulations.

We chose the values 1.96× 10−2 N m2 and 7.85×
104 N for kM and kN respectively, which can be thought
as relative to a beam with an elliptic section of semiaxes
a = 0.001 m and b = 0.00025 m (area A = 7.85 ×
10−7 m2, inertia moment of the cross-section around its
minor axis J = 1.96 × 10−13 m4) rotating around the
minor one. We set d = 0.0(1) m or d = 0.00(5) m for
the simulations.

As for mechanical parameters, we chose the mass
density ρ = 1450 kg/m3, Y = 100 GPa for Young’s
modulus, and ν = 0.2 for Poisson’s ratio. The material
was assumed to be linearly elastic.

For all our simulations, we imposed a displacement
on the points of the system belonging to the upper side

of C∗, oriented along the height of the rectangle. The
displacement is analytically represented by an impulse
function I(t) = u0 ∗ sech[τ(t − t0)], where u0 = 0.05 m
and t0 = 0.005 s, while τ is a parameter affecting the
duration of the impulse; in Fig. 1b the impulse is plotted
with τ = 4000 s−1. In all the figures, times (in s) are
given on the horizontal axis. If not otherwise specified,
the lower side is built in, and the absolute values of the
rotations of the cross-sections are represented by a colour
map.

The numerical problems that may arise when con-
sidering structures of this kind with peculiar geometric
characteristics can be very complex, moreover, the
behaviour of the system can very easily display
instabilities of the type of those discussed in e.g. [4,25–
27,31]. A set of numerical tools has been elaborated to
take care of such problems (the reader is referred e.g.
to [9,10,12,21,30]), also in the direction of extending
the model to the case of inextensible fibres, which
can be numerically addressed by means of Lagrangian
multipliers methods, as performed in [12,13].

Of course, our numerical results are intended as
a first step towards a general homogenized theory of
this kind of systems. Homogenization problems of
this kind can in fact be very difficult, but a series
of related problems have already been attacked in the
literature (see e.g. [3,24,39,42,43]). These homogeniza-
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tion methods are of course at the basis of many nowa-
days active lines of investigations, such as mechanical
phase transition [18,19,32,44], dissipation in particular
structures [8], and anisotropy problems [33].

Considering our pantographic system, it is reason-
able to describe its homogenized limit as metamaterial
(see e.g. [2,5,14,22,29]), and because the system
responds to solicitations like double forces (as we will
numerically show), higher-gradient theories are also
called for (see e.g. [1,16,23,36]).

All numerical simulations were performed with
COMSOL Multiphysics R⃝.

2.1. Basic wave propagation and double impulse

In Fig. 2 a basic case of wave propagation after an
impulse of the type depicted in Fig. 1b is shown.
This results in quite ordinary (continuous-like) wave
propagation. Dispersion is clearly observable, as the
length of the perturbed zone is unquestionably increasing
in time, and a reflection on the lower side is also visible
in the last snapshots.

In Fig. 3 the effect of a double impulse applied in
the middle height of the structure is shown. By double
impulse we mean a displacement oriented in the beam
direction and imposed on two points belonging to the
opposite ends of two adjacent beams, i.e. the ends are
almost in line with one of the two families of beams.
Both the upper and lower sides are built in. The idea is
to show that such a structure can respond to a stimulus
that, in the continuous homogenized limit case, is a
double force (i.e. a pair of forces with null resultant and
moment). Indeed, the onset of standard travelling waves
is visible.

Fig. 2. Wave propagation after an imposed vertical displace-
ment on the upper side (τ = 4000 s−1, h = 2.5 m, d =
0.00(5) m).

Fig. 3. Wave propagation after a double impulse (h = 2.5 m,
d = 0.00(1) m).

2.2. Internal discontinuities

In Fig. 4 the structure is provided with a horizontal set
of hinges at the middle height. In the plot the local
bending moment is represented by means of a colour
map (in N m). The hinges, in this case, do interrupt the
continuity of the beams, allowing energy-free angular
displacements between the upper and the lower part of
each beam. However, as it can be observed, due to the
kind of internal connections between the whole system
of beams, this does not change the overall character of
wave propagation.

Fig. 4. Bending moment in two lattices connected by hinges
(h = 2 m, d = 0.00(1) m).
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Fig. 5. Wave propagation in two lattices connected by an array
of vertical beams (h = 2 m, d = 0.00(5) m).

In Fig. 5 the upper and lower half of the system
are connected by an array of vertical beams (kM =
1.96× 10−2 N m2 and kN = 7.85× 104 N). In this case,
the imposed displacement is parallel to one of the two
families of beams. It is interesting that the energy of
the system remains more or less confined in the upper
half, and waves practically do not propagate beyond
the discontinuity, which therefore results in a simplified
but potentially useful model for damping filters in the
considered kind of structures.

2.3. Waves travelling in opposite directions

Finally, in Fig. 6 the initial impulse (parallel to one of the
two families of beams) is imposed on both the upper and

Fig. 6. Propagation of two waves travelling in opposite dir-
ections (h = 2.5 m, d = 0.00(5) m).

lower sides. Two waves travelling in opposite directions
appear, and their interaction is shown. As one can
see, the velocity of both wave fronts remains more or
less unchanged after the crossing over. Moreover, in
every snapshot a rather well-circumscribed travelling
region displaying maximum perturbation is observable.
These characteristics are shared by the well-known
self-supporting, localized travelling perturbations, called
‘solitons’, originating in particular non-linear systems.

3. CONCLUSIONS

A conjecture that can be validly proposed in this context
is the possibility of the emerging of solitons, i.e. solitary
waves propagating without changing their shape and
speed due to the balance of all physical effects (e.g.
between dispersion and nonlinearity [38]). Solitons were
first observed in numerical simulations while studying
the well-known Korteweg–de Vries (KdV) equation,

ut = Kuux −uxxx, (2)

first applied in problems of hydrodynamics. The solu-
tions of equations of this kind can be decomposed in
localized perturbations with a well-defined shape that
propagate at different velocities and preserve their shape
and velocity when interacting with other waves. A
short but very clear historical review on solitons in
elastic solids is presented by Maugin [28]. Zabusky
and Kruskal [45] demonstrated the emergence of a
train of solitons from a harmonic initial condition for
a given dispersion constant in the case of the KdV
equation. The KdV equation is solved numerically
using the pseudospectral method (see [20,37] for details).
Soliton solutions are also appearing in nonlinear Cosserat
models with a special coupling between rotations and
deformations [6].

In fact, the study of the propagation of a pulse
along the fabric can be made using a discrete model
consisting of two linear orders of one-dimensional beams
of identical geometrical and mechanical characteristics,
interacting with each other through constraints, which
impose the continuity of the displacement in a finite
number of pivot points. The intensity of the coupling
can be adjusted by varying the value of the elastic
constants and the mass density of the beams. In a one-
dimensional context, a beam discretized by means of
concentrated masses and linear springs is studied e.g.
in [41]. A case with dispersion is obtained by suitably
adjusting the parameters that characterize the system.
If we reduce the pulse duration and increase the value
of the coupling constant, the width of the wave packet
(train) will begin to be comparable with the pitch of the
two rows of beams. The dispersion effects, as observed,
are already visible in the simulations. Furthermore, the
structure exhibits large rotations and hence the problem
can be modelled taking into account the deformation of
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the structure when formulating the dynamic equations.
On the whole, the structure and the model appears to
be rich enough to allow the onset of true solitons if
suitable non-linearities are considered. The soliton-like
character of the perturbations shown in Fig. 6 suggests
that further investigation in this direction would indeed
be very interesting.
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Lainelevi kahemõõtmelises sisemiste katkevustega pantograafilises võres

Angela Madeo, Alessandro Della Corte, Leopoldo Greco ja Patrizio Neff

On vaadeldud kahest ortogonaalsest Euleri talade perest koosnevat kahemõõtmelist pantograafilist võret. Võret
moodustavatele lainejuhtidele rakendatud rajasiirded võivad tekitada levivaid laineid, mis oma omadustelt võivad olla
ka mittelineaarsed. Autorid on teostanud numbrilisi simulatsioone ja vaadelnud siin mõningaid dünaamika seisukohast
huvitavaid juhte. Juhul kui võres tekivad suured pöörded, võib see kaasa tuua geomeetrilise mittelineaarsuse ja avada
tee solitonide tekkimiseks.


