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Abstract: Late-Variscan granitoid rocks of trondhjemitic and granitic composition, intruded in
migmatitic paragneisses in the north-eastern Peloritani Mountains (southern Italy) at ~310 Ma and
~300 Ma, respectively, exhibit a range of deformation microstructures developed under a shear
regime at decreasing temperatures. Non-coaxial deformation is documented by sigmoidal feldspar
porphyroclasts, mica fish, and asymmetric boudins affecting tiny andalusite crystals. Late-Variscan
shearing during granitoid cooling is constrained by largely represented chessboard patterns in quartz
and, especially, submagmatic fractures in plagioclase, indicating deformation at high-temperature
conditions (T > 650 ◦C), in the presence of melt. Submagmatic deformation was extensively superseded
by deformation at lower temperatures. Examples of solid state-high temperature deformation-related
microstructures (T > 450 ◦C) include feldspar bulging, quartz grain boundary migration, and subgrain
rotation recrystallization. Finally, low temperature subsolidus microstructures (T < 450 ◦C) consist of
quartz bulging, mica kinks, and feldspar twinning and bending. A complete sequence of deformation,
operating from submagmatic to low-temperature subsolidus conditions is recorded in both the older
and younger granitoids, suggesting a duration of ~20 Ma for shear zone activity during post-collisional
exhumation of the Variscan middle crust in southernmost Italy.

Keywords: trondhjemites; granites; post-collisional magmatism; syn-magmatic deformation;
shear zones; Peloritani Mountains (southern Italy)

1. Introduction

Shear zones (e.g., [1] and references therein) play a fundamental role in shaping the structure
and composition of the continental crust, in a number of different ways. Among these, they can
control the construction of orogenic edifices [1–5], the extraction, ascent and emplacement of granitoid
magmas [1,6–15], the exhumation of deep crustal rocks [16,17], and the circulation of fluids able to
further influence the rheology of the crust [18,19], as well as the mineral assemblage stability [19–22].

The study of shear zones can therefore provide crucial information on the evolution of the
mountain belts. Nevertheless, the role played by the shear zones in controlling the building and
exhumation of the orogenic crust may be particularly complicate to assess in poly-orogenic terranes,
especially considering that older tectonic structures can be reactivated during subsequent orogenic
cycles (e.g., [23–25]).

Well constrained Alpine shear zones are long known in the Aspromonte Massif and Peloritani
Mountains from the southern Calabria-Peloritani Orogen (CPO; e.g., [1,2,26–35]). Here, Alpine tectonics
locally reworked Mesozoic sedimentary rocks, as well as portions of Variscan and older basements,
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hampering the reconstruction of the pre-Alpine tectono-metamorphic evolution. In more detail,
early- to late-Alpine shear zones were associated first to subduction of basement rocks and related
sedimentary covers to deep crustal levels [1,26,27], and then to their exhumation along detachment
surfaces, causing the present-day nappe stack structure of the Peloritani Mountains and Aspromonte
Massif [1,26,27]. On the other hand, despite late-Variscan shear zones controlled the emplacement
of the granitoids from the Serre and Sila batholiths, in central and northern Calabria [15,36–44],
possible Variscan shear zone occurrence in the southernmost CPO has only been suggested by [45,46].
More recently, [47] highlighted the likely role of late-Variscan shearing in assisting the production of
metasomatic trondhjemitic rocks by infiltration metasomatism affecting late-Variscan leucogranites,
in the north-eastern Peloritani Mountains.

In this contribution, we describe and discuss a variety of shear-related microstructures developed
from submagmatic to low-temperature solid-state conditions, in trondhjemites and leucogranites
emplaced during two separate stages of late-Variscan magmatism, at ~310 Ma and ~300 Ma, respectively
(e.g., [48–50]), to shed light on the deformation mechanisms operating during long-lived shear zone
activity associated with post-collisional exhumation.

Although the present-day features of the basement rocks of the Peloritani Mountains are the
result of a complex poly-orogenic history involving Cadomian, Variscan, and Alpine tectonic events
(e.g., [51] and references therein), we use microstructures, in association with existing geochronological
constraints [48–50], to provide the first unequivocal evidence for the occurrence of a late-Variscan
shearing event in the Peloritani Mountains. Furthermore, the documented complete sequence of
deformation, operating from submagmatic to low-temperature subsolidus conditions in both the older
and younger granitoids, suggests a duration of ~20 Ma for shear zone activity during post-collisional
exhumation of the Variscan middle crust in southernmost Italy. Finally, our results support the
location of the Peloritani basement within a peripheral branch of the East Variscan Shear Zone (EVSZ),
as previously proposed by [52–55].

2. Geo-Petrological Background

The Peloritani Mountains, in NE Sicily (Figure 1), make up the southern termination of the
Calabria-Peloritani Orogen (CPO), a poly-orogenic basement complex comprising remnants of
Variscan and Cadomian mountain belts, incorporated into the Alpine-Apenninic orogenic system
([51]; and references therein). The Peloritani Belt comprises a stack of south-verging Alpine
nappes, consisting mostly of Variscan basement rocks with remnants of Meso-Cenozoic covers.
The belt is subdivided into two complexes with different tectono-metamorphic histories. In the
southern Peloritani, the lower complex consists of sub-greenschist facies Cambrian to Carboniferous
volcano-sedimentary sequences with unmetamorphosed Mesozoic sedimentary covers [56–58]. The
upper complex consists of two tectonic units: (1) the Mandanici Unit, comprising dominant greenschist
to lower-amphibolite facies phyllites, with interbedded levels of metabasites and subordinate marbles
and calc-schists [26,46,59]; (2) the overlying Aspromonte Unit, exposed also in the adjacent Aspromonte
Massif in southern Calabria, which consists of amphibolite-facies paragneisses, augen gneisses and
migmatites, with minor marbles and amphibolites, diffusively intruded by late-Variscan granitoid
plutons [47,60–66]. Both granitoids and host rocks are locally affected by an Alpine overprint, at 28–22
Ma [67,68] and P-T (pressure-temperature) peak conditions of ~0.8 GPa at ~600 ◦C in the southern
sector of Peloritani Mountains [26,27,29] that produced pseudotachylytes and cataclastic to mylonitic
rocks; furthermore, a weakly metamorphosed Mesozoic-Cenozoic sedimentary cover sandwiched
between the Mandanici and Aspromonte units locally occurs ([26]; and references therein).

P-T conditions for the Variscan metamorphism, producing the main field foliation, are in the
range of ~0.5 GPa at ~550–680 ◦C for the Aspromonte Unit in the Peloritani Mountains [69], similar to
those obtained for rocks of the same unit in the Aspromonte Massif (0.4–0.5 GPa at 650–675 ◦C; [70,71]).
Relatively high P peak values of 0.8 GPa at ~600 ◦C ~ and of ~0.9 GPa at ~530 ◦C were obtained
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by [46,72], respectively, through thermodynamic modelling of garnet phyllites and schists, from both
the Aspromonte and the underlying Mandanici Unit.
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Figure 1. Geological sketch map of the northeastern Peloritani Mountains and western Aspromonte
Massif with distribution of the late-Variscan granitoids (after [47]; and references therein). Insets show
(a) distribution of pre-Alpine basements in western Europe and (b) distribution of Alpine and pre-Alpine
basement rocks in the Calabria–Peloritani Orogen and main tectonic alignments (modified after [42]).

In particular, three blasto-deformational events have been detected in upper greenschist-facies
metapelites from the north-eastern Peloritani by [46]: D1, producing an isoclinal folding schistosity
(S1), developed at P ~0.9 GPa and T ~530 ◦C and only preserved as microfold hinge relics; D2,
a non-coaxial deformational event, associated to metamorphic peak conditions of P ~0.8 GPa and T
~540 ◦C and generating the field foliation (S2), that consists of a pervasive crenulation schistosity; D3, a
retrograde non-coaxial shearing event, developed at 0.60–0.30 GPa and 460–420 ◦C, and producing a
schistosity surface well visible only in the porphyroclast pressure shadows, or between fragments of
pinch-and-swell garnet porphyroclasts. According to [46], the reconstructed P-T path depicts a typical
clockwise P-T evolution, with a prograde stage involving burial at middle-lower crustal levels during
collision-related thickening, followed by a retrograde evolution during a post-collisional shearing
stage, likely related to late-Variscan exhumation under an extensional regime.

A similar P-T evolution has been outlined by [72] for an amphibolite-facies garnet schist, with a
baric peak at P = 0.72–0.82 GPa and T = 565–585 ◦C (D1), followed by decompression for which,
however, only relatively high pressure of P = 0.46–0.70 GPa at T = 500–600 ◦C, reflecting the early
stages of late-Variscan exhumation (D2), have been constrained by the authors.

In a more general framework, the whole CPO is considered one of the peri-Gondwanan crustal
blocks of the former Galatian superterrane [73] that, with neighbouring areas such as Sardinia, Corsica,
West Carpathians and parts of the Alps, belonged to the future south Variscan terranes. These basement
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areas were located at the northern Paleotethys margin, while terranes such as Saxothuringia, Bohemia
and Armorica faced to the north the Rheic–Rhenohercynian Ocean (e.g., [74,75]). The sequential closure
of the two oceans led to the final collision and amalgamation of Gondwana, peri-Gondwanan terranes
and Laurussia, finally resulting in the formation of Pangea at ca. 300 Ma. Extensive crustal anatexis
and granitoid magmatism in the south Variscan terranes, at c. 320–280 Ma, is considered to have
been triggered by a change from a compressional to a transtensional/transpressional regime, locally
associated with significant crustal thinning and asthenosphere upwelling, producing a complex pattern
of strike-slip shear zones, collectively known as East Variscan Shear Zone (EVSZ; e.g., [52,53,55,74]).
According to reconstructions by [54,55], the CPO was also possibly part of EVSZ.

The latest stages of the Variscan Orogeny were indeed marked also in the CPO by widespread crustal
melting and voluminous granitoid magmatism [15,36,38,47,49,65,76,77]. The late-Variscan magmatism
gave rise to the composite Serre and Sila batholiths in central and northern Calabria [15,26,38,48,76–78],
as well as to isolated anatectic plutons of weakly to strongly peraluminous trondhjemites and strongly
peraluminous leucogranodiorite-leucogranites, in southern Calabria and north-eastern Sicily (Aspromonte
Unit) [36,47,49].

Unlike the batholiths of the Sila and Serre Massifs, which are 10–13 km thick and are emplaced
into high- to low-grade metamorphic rocks, the late-Variscan granitoids of the Aspromonte Unit occur
as isolated plutons of a few km2, typically emplaced into migmatitic paragneisses [49,61,63,64,79].

Available geochronological constraints indicate that the late-Variscan granitoid magmatism in
the southern CPO started with the emplacement of the trondhjemite plutons at ~310 Ma, and was
followed by the intrusion of the strongly peraluminous granitoid plutons at ~300 Ma (monazite U-Pb
ID-TIMS, [48]; zircon U-Pb SHRIMP, [49,50]). The largest volumes of granitoid magmas were produced
afterward more to the north, forming the Serre Batholith, in the 297.3 ± 3.1 Ma to 292.2 ± 2.6 Ma
time span (zircon U-Pb SHRIMP, [15] and references therein). Late-Variscan magmatism in the area
ended with an extensive subvolcanic activity producing swarms of medium- to high-K calcalkaline
dacitic-rhyodacitic to andesitic dykes [44,80–82], which intruded both the batholith and the upper
crustal host rocks. These products represent the transition from a late-orogenic to a post-orogenic
setting, documented by sodic-alkaline and tholeiitic Triassic basalts from northern Calabria [83] and
central-western Sicily [84,85], associated with the early breakup of Pangea.

The late-Variscan strongly peraluminous leucogranodiorites and leucogranites from the
Aspromonte Unit form plutons up to ~40 km2 in size, typically displaying sharp discordant contacts
with the upper-amphibolite facies host rocks. The rocks contain variable amounts of Al-silicates,
cordierite and garnet, in addition to abundant muscovite and inherited zircon with a wide spread of
ages [64], and are mostly considered as S-type granites formed by decompression melting involving
muscovite ± biotite incongruent breakdown [49,60,61,79]. In particular, a strong connection with a
magma source similar to the paragneisses that represent the dominant rock type in the Aspromonte
Unit, has been recently inferred for the Villa S. Giovanni-Capo Rasocolmo leucogranodiorites, based
on diagnostic bulk rock geochemical features and zircon inherited patterns [64].

The weakly to strongly peraluminous trondhjemites crop out as small bodies displaying a variety
of field relationships with the host high-grade metamorphic rocks; the largest bodies are about 10 km2

in size and their contacts range from sharp (discordant or concordant) to gradual. Trondhjemites
are sometimes associated in the field with leucogranodiorites–leucogranites. The origin of the
trondhjemitic rocks from the north-eastern Peloritani Mountains has been strongly debated. The rocks
have been variously interpreted as the products of metasomatic alteration of metasediments [79],
isochemical metamorphism of arkoses [86], partial melting of biotite paragneisses [47,60], fluid-assisted
metamorphic differentiation of muscovite schists [87], and alkali metasomatism of the strongly
peraluminous granites [63].

Two different types of trondhjemites occur in the Peloritani Mountains [47]: (a) magmatic
trondhjemites formed at ~310 Ma by water-fluxed melting of metagreywackes at relatively high pressure
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and low temperature, close to the collision-related baric peak and (b) younger, low-Ca trondhjemitic
rocks, formed by alkali metasomatism at expenses of the ~300 Ma leucogranodiorites-leucogranites.

As mentioned earlier, all the granitoid rocks from the north-eastern Peloritani Mountains,
were locally affected by shearing. Deformation features are rarely visible in the field, also due to the
low biotite amounts (0–7% vol.), associated to a coarse to very coarse feldspar and quartz size. On
the other hand, shear-related microstructures are commonly observed in the late-Variscan granitoids,
and are particularly well developed in the Forte Cavalli area (FC area, [47]; and references therein).

Post-Variscan shear-zone activity associated with Alpine tectonics is well known in the Peloritani
Mountains ([51]; and references therein), even though the development of a discernible Alpine foliation
is localized at the tectonic contact between the Mandanici and Aspromonte Units [26], and in a small area
northwest of Messina ([88]; and references therein). A more intense Alpine reworking of older basement
rocks, producing a pervasive mylonitic foliation and an evident stretching lineation, has been widely
documented by several authors in different areas of the Aspromonte Massif [1,2,28,30,33–35,70,71].

The entire Alpine deformational history in the Peloritani Mountains has been constrained by [26]
by studying the mylonitic rocks developed at the contact between the Aspromonte and Mandanici units.

Such mylonites form a quite continuous horizon of ~100 m in thickness due to repetition by
near-isoclinal folding, dislocated by recent faults at the boundary between the uppermost high-grade
metamorphic rocks and the underlying medium to low-grade metapelites [26]. Quartz c-axis patterns
together with pseudotachylyte geothermometry constrained the shearing temperature from ≤600 ◦C to
450 ◦C for the exhumation of the tectonic slices forming the Upper Complex [26,51]. Subsequently,
the shear zone developed under shallower conditions, accompanied by greenschist-facies assemblages,
up to very low grade to cataclastic brittle regime.

In contrast, no ultimate evidence of Variscan shearing in the Peloritani Mountains has been up
to date provided. [45] proposed that late-Variscan shear-zone activity was responsible for the nappe
stacking of the Peloritani orogenic edifice, based on an age of 301 ± 2 Ma obtained by 39Ar–40Ar dating
of white mica from a mylonitic augen gneiss from the tectonic contact between the Aspromonte Unit
and the underlying Mandanici Unit. Nevertheless, the age of ~300 Ma is considered to reflect the
climax of high-temperature Variscan metamorphism throughout the Peloritani Mountains and the
Aspromonte Massif (e.g., [48,89,90]), and not the nappe stacking for which an Alpine tectonic phase at
28–22 Ma has been soundly demonstrated [1,26,67].

Fiannacca et al. [46] obtained for a garnet schist of the Mandanici Unit a clockwise P-T path
consistent with late-Variscan crustal thickening up to deep crustal levels (P = 0.9 GPa at ~530 ◦C) followed
by exhumation along an extensional shear zone under greenschist facies conditions. Nevertheless,
also in this case, no indisputable evidence about the Variscan age of the shear zone activity, was obtained.

On the other hand, clear evidence of shearing affecting late-Variscan cooling granitoids in the Forte
Cavalli area of north-eastern Peloritani (Figure 2) has been recently provided by [47]. The late-Variscan
granitoids in this area consist of trondhjemites and granites, which are associated in the field with
upper amphibolite-facies rocks mainly comprising metasedimentary migmatites, with minor granitoid
gneisses and amphibolites. Shear-related deformation, including also considerable grain size reduction,
is considered by [47] to have played a significant role in aiding fluid infiltration and associated
production of metasomatic trondhjemites at expense of part of the original granites; according to the
above authors, the metasomatic fluids were likely released during crystallization of the large volumes
of granitic magmas of the Serre Batholith.

3. Granitoid Rocks in the Study Area

In this section we report the main field and petrographic features of the studied rocks, largely
deriving from previous work from part of the same team [47], but integrated here by new field and
thin-section images, to provide the reader with an exhaustive background on these rocks, before
presenting the deformation microstructures which are the focus of the present work. Studied granitoid
rocks crop out in the Forte Cavalli area, in the north-eastern Peloritani Mountains (Figure 2), intruding
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upper-amphibolite facies rocks composed of dominant biotitic paragneisses and migmatites (metatexites
and rare diatexites), with minor amphibolites, micaschists and granitic gneisses. The main foliation dips
35–40◦ to NW and two main systems of brittle structures occur, with NE-SW and NNW-SSE directions.

Based on petrographic and geochemical features (see [47] for a detailed description), two main
types of granitoid rocks occur in the FC area: trondhjemites s.s., with typical CaO contents of
1.5–3.0 wt.%, hereafter called trondhjemites (emplacement age: ~310 Ma; [19,20]) and low-Ca granitoids
(emplacement age: ~300 Ma; [48–50]). The latter have CaO < 1.50 wt.%, range in composition from
granite to low-Ca trondhjemite. Both rock groups are light-colored, with a very similar appearance
in the field. In fact, although grain size is typically coarse to very-coarse for the trondhjemites and
medium to coarse in the low-Ca granitoids, many exceptions occur.
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Trondhjemites make up subconcordant to discordant bodies with thickness ranging from a few
metres to ~300 metres (Figure 3a,b). They mainly consist of plagioclase and quartz, with minor biotite
(<0–7 vol%), muscovite (0–5 vol%), tartan-twinned K-feldspar (0–5 vol%), and accessory zircon, apatite,
ilmenite and monazite. Common secondary mineral phases produced by deuteric alteration are
clinozoisite–epidote s.s., sericite, chlorite and opaques. Texture is mainly hypidiomorphic, coarse- to
very coarse-grained and inequigranular (dominant grain-size >1.5 cm), with plagioclase and quartz
typically larger than the other mineral phases; plagioclase can occur as crystals up to 4 cm long
(Figure 4a). K-feldspar occurs mostly as medium-sized interstitial patches and thin rims bordering
plagioclase crystals. A small amount of myrmekites and metasomatic turbid plagioclase, grown at the
expense of primary K-feldspar, locally occur (Figure 4b).
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Low-Ca granitoids include granites and low-Ca trondhjemites, cropping out as discordant bodies
up to 100 m thick (Figure 3c,d). Both granitic and trondhjemitic varieties are characterized by a
dominant medium to coarse-grained texture (dominant grain-size <7 mm), but inequigranular textures
with feldspar megacrysts up to 5 cm long sometimes occur (Figure 4c–f).

The granites include granites s.s. and alkali feldspar granites, with K-feldspar (either microcline
and orthoclase) mainly occurring as medium–coarse-sized subhedral crystals or megacrysts, sometimes
intergrown with large quartz. Muscovite (3–6 vol%, sometimes up to more than 15% vol) is usually
more abundant than biotite. Zircon, apatite, monazite, together with rare garnet and andalusite,
occur as accessory phases; deuteric phases consist of chlorite, sericite, clinozoisite and opaques.
Small amounts of myrmekites and turbid plagioclase replacing microcline, are often present.

Low-Ca trondhjemites, derived from alkali metasomatism of the granites, comprise transitional,
low-Ca s.s. and high-Na low-Ca varieties reflecting progressive replacement of magmatic K-feldspar
(either microcline and orthoclase) by secondary turbid plagioclase and myrmekites ([47]) (Figure 4e–h).
The metasomatic trondhjemites are dominated by plagioclase and quartz, like the magmatic
trondhjemites, but have many similarities with the granites, such as the dominant medium-coarse
grain size, similar muscovite contents (2–6 vol%; up to 15 vol%), and the presence of andalusite and
garnet among the accessory phases.
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Figure 4. General petrographic features of the studied granitoids (crossed polars). Abbreviations: Pl,
plagioclase; Qtz, quartz; Kfs, K-feldspar; Myrm, myrmekite. (a) Thin section scan of a trondhjemite
sample showing the typical coarse- to very coarse-grained hypidiomorphic texture, with euhedral to
subhedral plagioclase, subhedral micas and anhedral quartz and rare K-feldspar.; (b) Microdomain of
trondhjemite sample with interstitial K-feldspar partly replaced by secondary plagioclase (Pl2) and
myrmekites; (c) Granite sample showing the dominant medium- to coarse grained hypidiomorphic
texture with euhedral to subhedral plagioclase, subhedral micas, subhedral-anhedral K-feldspar (mainly
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orthoclase in this sample) and anhedral quartz; (d) Low-Ca (metasomatic) trondhjemite showing
the same texture and mineral assemblage of the granite in (c), but with large amount of secondary
plagioclase (Pl2) formed by metasomatic replacement of the primary K-feldspar; (e) example of the
coarse- to very-coarse grained variety of metasomatic trondhjemite with abundant turbid secondary
plagioclase replacing large crystals of microcline; (f) very large relic crystal of microcline intergrown
with large quartz, preserved in a strongly metasomatized low-Ca granitoid. The image shows
early-stage replacement of the microcline by secondary pseudomorphic plagioclase, typically nucleating
at the microcline-quartz boundaries or in crystallographic continuity with exsolution perthites;
(g,h) magnifications of (f) showing in detail the pseudomorphic growth of secondary plagioclase which
develops magmatic features, such as the Albite polysynthetic twinning, running parallel to the twinning
in the replaced microcline; tiny relic islands of microcline are preserved in the magmatic-like Pl2 in (h).
Figure 4c,d are modified after [47].

All the rock types exhibit shear-related deformation microstructures (Figure 5) that will be
described in detail in the following section. It is here only highlighted that tectonic grain-size reduction
has been considered by [47] to have played a significant role in facilitating fluid infiltration and
metasomatic reactions by producing an increase of both the rock permeability and surface-controlled
reactivity. Evidence for a link between shearing and metasomatism is provided by common growth
of myrmekites and secondary plagioclase along mm-sized shear zones and over sigmoid feldspar
porphyroclasts. In particular, in the metasomatic granitoids, the final texture results from the relative
number of shear-related microstructures and late to post-shearing crystallization of pseudomorphic
secondary plagioclase.
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Figure 5. Relationships between shearing and infiltration metasomatism in metasomatic trondhjemites
(crossed polars). Abbreviations: Pl, plagioclase; Qtz, quartz; Kfs, K-feldspar. (a–c) growth of secondary
plagioclase after grain size reduction in the original granite; (d) growth of myrmekitic plagioclase at
expense or relic feldspar porphyroclast. Figure 5a,d are modified after [47].
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4. Materials and Methods

During the field survey, 144 specimens of both magmatic and metamorphic host rocks were
collected. In particular, in this paper, we dealt with a set of thirty thin sections over the entire sample
collection, which have been selected to study in detail the microstructural features in the two granitoid
units of different emplacement ages: trondhjemites (15 samples; c. 310 Ma) and low-Ca granitoids
(15 samples, c. 300 Ma). We acquired high resolution images of the entire thin sections by using a
flatbed scanner (Epson Perfection 3490 Photo) at a resolution of 4800 dpi (both at crossed and parallel
polarizers), together with several photomicrographs of deformed domains taken by an Axios Camera
mounted on a Zeiss Microscope (model Axioscope 2), both hosted at the Department of Biological,
Geological Environmental Sciences, Earth Science Section, University of Catania.

5. Shear-Related Microstructures

Studied rocks display a magmatic texture, with euhedral to subhedral micas and plagioclase,
subhedral to anhedral K-feldspar and anhedral quartz, that do not define a magmatic foliation.

Nevertheless, all the granitoids exhibit, at different extents, several types of shear-related
deformation microstructures (Figures 6–8). Deformation affected all the rocks in the study area
(~70 km2) but, in the field, it did not produce thick horizons of intensely sheared rocks. Rather,
shear-related mesoscopic structures (e.g., foliation, preferred orientation of minerals) are weakly
developed and only discernible at few locations. On the contrary, deformation is more evident at
the thin-section scale, and restricted to domains typically forming networks of variously spaced and
oriented ‘bands’ (e.g., Figures 6–8). Protomylonitic structures occur in the most sheared samples from
both rock groups (e.g., Figure 6a,b). Recrystallized fine-grained minerals (Qtz, Pl, Wm) in the strain
shadows of plagioclase porphyroclasts have been observed (Figure 6i).

In the following two sub-sections we describe in detail shear-related microstructures developed
in the two groups of rocks (trondhjemites, emplaced at ~310 Ma, and low-Ca granitoids, emplaced at
~300 Ma), from high-temperature sub-magmatic conditions to progressively lower temperatures.

5.1. Trondhjemites

The trondhjemites (Figure 6a,c–e and Figure 7) exhibit clear evidences of deformation at
sub-magmatic conditions. The most striking evidence is represented by the widespread occurrence
of submagmatic fractures (Figures 6c and 7a–d), indicating deformation in the presence of melt.
These microstructures are typical of rigid or semi-rigid crystal mushes, where a melt fraction still occurs
and late magmatic crystals grow in fractures breaking apart early-crystallized minerals (e.g., [91–93]).
In the studied rocks, medium- to fine-grained euhedral-subhedral plagioclase and larger interstitial
quartz crystallize within veins propagating into large fractured plagioclase (Figures 6c and 7c,d),
consistently with melt migration into dilatation sites. Magma flow within these fractures is further
testified by impressive examples of micro-scale filter-pressing (Figure 7c), with mechanical accumulation
of plagioclase crystals against narrowing portions of the fracture (Figure 7c), or single euhedral crystals
which remained caught in such fracture narrowings during flow of the residual magma (Figure 6c).
In Figure 6c it is interesting to note the occurrence of a second system of submagmatic fractures,
(sub-horizontal in Figure 6c), affecting the same plagioclase crystal; the two systems appear to be
correlated since they coexist in the same portion of the crystal, whereas the other part of the crystal is
fracture-free. The second system is formed by a set of narrow fractures which reveal their submagmatic
nature because they are also confined within the plagioclase.
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Figure 6. Shear-related microstructures in studied trondhjemites (a,c,e,f,g) and low-Ca granitoids
(b,d,h,i,l) (crossed polars) Abbreviations: Pl, plagioclase; Qtz, quartz; Kfs, K-feldspar; Wm, white
mica; Bt, biotite. (a) Protomylonitic texture in trondhjemite sample; (b) protomylonite texture in
granite sample; (c) magnification of Figure 4a, illustrating a submagmatic fracture in plagioclase from a
trondhjemite sample. The arrow indicates a euhedral plagioclase crystal caught in the narrowing part
of the fracture; see the following text for more details; (d) magnification of figure b illustrating a set of
submagmatic fractures in K-feldspar filled by quartz; it is possible to observe that the quartz in the
two fractures from the right portion of the feldspar crystal is continuous with the quartz outside the
feldspar; see the following text for more details; (e) preferred orientation of quartz ribbon, plagioclase
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and muscovite fish-like crystals defining an incipient foliation; (f) asymmetrically anastomosing Bt/Ms
folia and σ-type plagioclase porphyroclast indicating a dextral shear-sense; (g) micaceous layer and
elongated quartz grains defining a foliation deflected around a plagioclase porphyroclasts; (h) aligned
stretched quartz grains and white mica flakes forming a mylonitic foliation (embryonal S-C foliation
pattern indicating a dextral shear sense); (i) large sigmoidal quartz clast with biotite tails indicating a
sinistral sense of shear; (l) fish-shaped white mica suggesting a sinistral sense of shear.

Deformation at submagmatic conditions is also supported by chessboard pattern extinctions in
quartz (Figure 7d,e) [94], resulting from combined activation of basal <a> and prism <c> slip systems,
which is mostly referred to occur at T above 650 ◦C for pressure up to 1.0 GPa [95–98].

Evidences of solid state-high temperature (HT-Ss) deformation come from grain boundary
migration (GBM) recrystallisation [95–97,99,100] of quartz crystals (500–700 ◦C; [98]) with examples of
inequigranular grain size and interlobate and sutured crystals boundaries, where the new forming
grains tend to obliterate the neighbour ones (Figure 7h). Ribbon-like quartz crystals with undulose
extinction, showing elongation parallel to the preferred stretching direction, occur locally (Figure 7g,h).
Quartz and plagioclase crystals with irregular and lobate boundaries, as a result of bulging (BLG)
recrystallisation, indicate sub-solidus deformation at 450–600 ◦C ([98]; Figure 7f). Few examples of
myrmekitic intergrowths may also indicate deformation at high- to medium- temperatures. Lower
temperature sub-grain rotation (SGR) recrystallisation [95–101] occurs locally as oriented polycrystalline
quartz aggregates (Figure 7h) indicating deformation temperatures of 400–500 ◦C [98]. Rarely, quartz
forms a core-and-mantle structure.

Bulging and impingements of plagioclase porphyroclasts with quartz grains (Figures 6f and 7f)
suggest deformation temperatures between 500 ◦C and 700 ◦C [63,65]. Core and mantle microstructures,
typical of HT solid-state deformation, are also quite diffuse (Figure 7i). Very-fine grained quartz,
and subordinately plagioclase, recrystallize at the boundaries of large plagioclase porphyroclasts.
A temperature of deformation ranging between 400 and 500 ◦C is mainly indicated by deformed
polysynthetic albite twins in plagioclase and, in rare cases, by eye-catching examples of kink-folded
crystals (Figure 7m). Sometimes, in the rare K-feldspar crystals deformation twins also occur. Bulging
(BLG) recrystallization of quartz crystals [95,98] indicates for these rocks temperature of deformation
under 400 ◦C (Figure 7i). Other microstructures here observed developed probably below 450 ◦C [98],
mainly consisting of undulose extinction of quartz (Figure 7g,i), mica kink banding (Figure 7l), feldspar
bending and fracturing (Figure 7d,f,m); subgrains and new grains characterizing recrystallization
domains in quartz and feldspars have also been observed (Figure 7i).

Evidences of late cataclastic-flow have been also observed, consisting of mm-thick conjugate sets
of cataclastic shear bands, with fragmented quartz and feldspar grains (Figure 7a–d).
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Figure 7. Shear-related deformation microstructures developed in the trondhjemites from sub-magmatic
to low-temperature subsolidus conditions (Ss-HT = Solid state High Temperature; Ss-LT = Solid state
Low Temperature) (crossed polars). Abbreviations: Pl, plagioclase; Qtz, quartz; Kfs, K-feldspar; Wm,
white mica; Bt, biotite. (a) thin section scan of a representative trondhjemite specimen; (b) microtectonic
sketch drawing of (a); (c) submagmatic fracture (please see ‘a’ for location within the thin section) filled
by quartz dislocating a large feldspar grain showing internal plastic deformation given by twinning;
(d) gently left-dipping cataclastic band crosscutting sub-vertical submagmatic vein (please see ‘a’ for
location in the thin section); (e) chessboard pattern in quartz grain in contact with plagioclase showing
lobate grain boundaries; (f) white mica and plagioclase grains intensely deformed; (g) recrystallization
subgrains (SGR) and bulging (BLG) at the edge of a stretched quartz grain showing undulose extinction;
(h) ribbon-like quartz showing undulose extinction; (i) quartz subgrains at the boundaries of intensely
deformed large grains with undulose extinction; (l) pervasive kink bands in micaceous layers; (m) twins
planes bent in plagioclase.
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5.2. Low-Ca Granitoids

The rocks belonging to the second suite of granitoids, consisting of granites and metasomatic
trondhjemites with the same low-Ca amount (dated at ~300 Ma [48–50], Figure 8), also show microstructures
typically associated to submagmatic conditions, as well as to solid state deformation, from high- to low-
temperature conditions.

High-temperature deformation microstructures, such as submagmatic fractures (Figures 6d and 8a–d)
and quartz chessboard pattern (Figure 8e,m), are also frequent in these granitoids.

Submagmatic fractures affect large K-feldspar and plagioclase crystals. It is, however, to be
highlighted that, also in the case of fractures, apparently cutting the secondary plagioclase, the fractures
affected the feldspar when it was still a magmatic K-feldspar. This is illustrated in Figure 4f–h, where the
interfaces between the original K-feldspar and the quartz veins acted as a preferential path for the
fluids involved in the metasomatic crystallization of the pseudomorphic secondary plagioclase.

Another aspect to highlight is that, in the low-Ca granitoids, quartz is the sole mineral phase filling
the fractures. In this case the submagmatic nature of the fractures is only testified by the continuity
between the quartz in the vein and the large quartz patches surrounding the feldspar, demonstrating
that all the quartz crystallized at the same stage from the residual melt. In the same rocks there are
many examples of other types of quartz-filled fractures that are instead clearly post-magmatic since
they cross indistinctly all the mineral phases, including quartz (Figure 8f).

Evidences of solid state high-temperature deformation (T > 530 ◦C) are provided by quartz
grain boundary migration (GBM) recrystallisation [95,97], as frequent as in the trondhjemites,
and indicating temperature of deformation between 500 ◦C and 700 ◦C ([98]; Figure 8g). At deformation
temperatures between 450 ◦C and 600 ◦C [63] dislocation climb becomes possible in plagioclase and
recrystallisation starts to be important, occurring mainly by BLG (Figure 8d,g). Subgrain rotation
recrystallisation [95,101] occurs in quartz crystals, where old grains are partially replaced by new
forming ones, suggesting temperature of deformation of ~500 ◦C [98] (Figure 8f). Finally, small
dynamic recrystallised quartz grains around older quartz cores or plagioclase porphyroclasts forming
core-and-mantle structures, are common in this suite of rocks (Figure 8h–l).

Subsolidus low-temperature conditions are dominantly represented by deformation twins in
plagioclase, and in a few cases, in K-feldspar, which according to [98], they typically occur between
400 ◦C and 500 ◦C (Figure 8m). Deformation microstructures developed under relatively lower
temperature (~400 ◦C) mostly consist of mica fish and stretched andalusite (Figure 8i), as well as
kinking of micas (Figure 8l). Quartz shows lobate and sutured grain-boundaries due to bulging,
indicating deformation at temperature of ~300–400 ◦C (Figure 8m), even if it is less frequent than
in trondhjemites. Ribbon-like quartz is also frequent, defining a clear micro-scale anisotropy for
these rocks (Figure 6b,h and Figure 8h). The occasional presence of subgrains elongated subparallel
with respect to a preferred stretching direction suggests that deformation protracted during cooling.
Plagioclase shows intracrystalline plastic deformation evidenced by twin planes bending (Figure 8m).
Undulose extinction, as well as deformation bands, occur frequently in quartz grains (Figure 8l),
pointing to deformation at temperature under 300 ◦C [98]. Mica fish (Figure 6l) and kink bands
indicate intracrystalline plastic deformation (Figure 8i–l). Later, brittle fracturing occurred at lower
temperatures (T < ~250 ◦C; [98]). Rare examples of tectonic grain size reduction by cataclastic flow are
usually confined to narrow shear bands.
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Figure 8. Shear-related deformation microstructures developed from sub-magmatic to low-temperature
subsolidus conditions in the low-Ca granitoids (Ss-HT = Solid state High Temperature; Ss-LT = Solid state
Low Temperature) (crossed polars) Abbreviations: Pl, plagioclase; Qtz, quartz; Kfs, K-feldspar; Wm,
white mica; Bt, biotite; And, andalusite. (a) thin section scan of a representative a low-Ca specimen; (b)
microtectonic sketch drawing of (a); (c) submagmatic fracture filled with quartz in plagioclase; (d) detail
of quartz vein shown in c showing a lobate grain boundary between plagioclase and quartz, the latter
showing subgrains as well as undulose extinction, due to subsequent deformation; (e) Chessboard
pattern extinction in quartz; quartz sub-grain rotation recrystallization (SGR) microstructure also
occur in the top left corner of the image; (f) subgrain rotation (SGR) associated with grain boundary
migration recrystallization (GBM) at the edges of quartz relic grains; subvertical fractures dismembering
feldspar grains also occur; (g) quartz domain with GBM and SGR; (h) stretched quartz grains showing
ribbon-like shape, kinked plats of mica, and bended plagioclase twin planes; (i) two coupled kinematic
indicators, given by mica-fish and boudinaged andalusite grain suggesting a dextral sense of shear
(σ1 orientation is given by red arrows; see sketch in the inset for interpretation); (l) highly deformed
mica in the centre of picture shows intense bending of (001) planes, whereas larger quartz grains show
core-and-mantle structures together with bulging; (m) thin quartz-rich domain developed at the edge
of a quartz grain with chessboard extinction pattern, that shows recrystallization of subgrains defining
an oblique foliation near the border of the adjacent plagioclase grain.
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6. Discussion

6.1. A Late-Variscan Shear Zone in the Peloritani Mountains

Until now, only Alpine shear zones had been well-constrained in the Aspromonte Unit from
Peloritani Mountains and Aspromonte Massif, associated first to early-Alpine subduction and then
to late-Alpine exhumation [26,27,29,34]. Alpine mylonitic events in the region took place in a
compressional regime and the whole orogenic cycle developed up to upper amphibolite facies,
but entirely subsolidus, conditions ([51]; and references therein). In particular, Alpine shearing mostly
produced LT deformation microstructures (T ≤ 450 ◦C), and an evident Alpin foliation developed
along the tectonic contacts between the Mandanici and Aspromonte Units ([26]; and references therein)
(Figure 1). Peak metamorphic conditions of ~0.8 GPa at ~600 ◦C [26,29] and the development of an
evident Alpine foliation were only attained at the above tectonic contacts and in a small area northwest
of Messina ([90] and references therein), many km apart from the study area.

Conversely, non-coaxial deformation microstructures detected in this study in late-Variscan cooling
granitoids provide, for the first time, evidence for a late-Variscan shear phase in the Peloritani Mountains.

The occurrence of rare micro-boudins affecting mm-sized andalusite crystals in the studied low-Ca
granitoids (Figure 8i) might indicate a general extension-type deformation. This finding is consistent
with the occurrence of stretched and pinch-and-swell garnet porphyroclasts in phyllites from the
central Peloritani Mountains [46], leading those authors to tentatively suggest a late- to post-orogenic
shearing stage related to late-Variscan exhumation.

Finally, the observed gradual transition from submagmatic to low-temperature subsolidus
microstructures, developed at progressively decreasing temperatures, points to a continuous change
in the deformation mechanisms during cooling of the granitoids (e.g., [19,95,102,103]). Although an
Alpine overprint might have been superimposed on the Variscan microstructures, all the above exposed
arguments are reasonably in favor of a continuous evolution of late-Variscan shearing. This shearing
involved the granitoid bodies at suprasolidus conditions, as documented by the widespread occurrence,
in both groups of studied granitoids, of typical submagmatic deformation microstructures such as
chessboard extinction in quartz and submagmatic fractures (Figure 7). In this respect, it is to be remarked
that chessboard subgrain pattern in quartz have been alternatively considered to reflect deformation
at submagmatic (e.g., [92,102–107]) or HT subsolidus (e.g., [19,99,108–110]) conditions. Nevertheless,
independently from their suprasolidus vs. subsolidus categorization of the chessboard pattern,
most researchers agree that this microstructure indicates deformation at T > 650 ◦C, which typically
correspond to melt-present conditions in a crystallising felsic granitoid system (e.g., Figure 3 in [91]).

In addition, several examples of submagmatic veins provide a direct evidence of deformation in
presence of melt, therefore clearly indicating that the shear zone was active, in the Aspromonte-Peloritani
sector of the CPO, during late-stage crystallization of the late-Variscan granitoid magmas.

It is thus possible to trace a spatial connection and a temporal continuity with the activation of the
crustal-scale shear zone, evolving from deep-seated to upper crustal conditions, which controlled the
emplacement of the granitoid magmas of the 13 km-thick Serre Batholith, in central Calabria, between
~297 and ~292 Ma ([15,36,38,42,77,111,112]; and references therein). Syn-shearing crystallization of
late-Variscan granitoids (~304-300 Ma; [48]) has been also ascertained for the Sila Batholith, in northern
Calabria, where continuous shear-related deformation from magmatic to low-temperature solid state
conditions has been documented by [39,40,43,44].

At a larger continental scale [51], in agreement with [54,55], proposed that the formation of the Sila
and Serre Batholith in northern and central Calabria could be framed in the activity of East Variscan
Shear Zone (EVSZ) [52–55].

The EVSZ is a branch of a complex network of coeval strike-slip shear zones, [54,55,113–117],
which were involved in the final assembly of Pangea, up to around 300 Ma, in regions of oblique
collision of Gondwana, Gondwana-derived microcontinents and Laurussia [118–120]. In particular, the
EVSZ has been mostly described as a dextral transpressive shear zone running from the external massifs
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of the Alps to the Corsica-Sardinia-Maures–Tanneron Massifs [53,121–123]. Padovano et al. [54,55]
have recently proposed that also the Northern Apennines and the CPO were involved in the EVSZ,
and that all these regional shear zones were characterized by a transpressional and/or transtensional
kinematics, associated with exhumation of deep-middle crust and syntectonic granitoid emplacement.

The late-Variscan shear zones from the Sila and Serre Massif of northern and central Calabria are
long known, whereas the proposition from [54,55] that also Peloritani Mountains could be involved in
the EVSZ was based on the late-Variscan Ar-Ar muscovite age of 301 ± 2 Ma obtained for a mylonitic
augen gneiss by [45]. The latter authors proposed indeed that the age of 301 ± 2 Ma was associated
with mylonitisation during thrusting of the Aspromonte Unit over the Mandanici Unit. Nevertheless,
the contact between the two units is marked by a 30 m-thick cataclastic to mylonitic shear zone that
also involves Triassic to Cretaceous greenschist-facies metasediments from the original cover of the
Mandanici Unit ([124]; and references therein), therefore demonstrating the Alpine age of that shear
zone. In fact, the age of ~ 300 Ma in the mylonitic augen gneisses cannot be univocally ascribed to a
shearing phase, because it corresponds to the age of the thermal peak of the Variscan metamorphism
in the CPO, which is recurrently recorded in both sheared and unsheared rocks (e.g., [48,90,125,126]).

On the other hand, shear-related deformation microstructures in the presence of late-Variscan melt
found for the first time in this study are a clear evidence of late-Variscan shearing, and might therefore
better support the hypothesis that the Peloritani Mountains were also possibly involved in the EVSZ.

In this respect, it is interesting to note that [51] suggested a different location of the CPO massifs
with respect to strike-slip domains developed in the last stages of the EVSZ activity, based on the
distribution of the late-Variscan magmatic products. In particular, by considering the observed
strict connection between activation of late-Variscan shear zones and emplacement of large syn-shear
granitoid complexes along the EVSZ, the presence of only small anatectic plutons, rather than composite
batholiths, in the Aspromonte-Peloritani has been tentatively considered related to their more peripheral
position in the shear zone system.

This suggestion appears now consistent with the style of deformation observed in the granitoids
from the Peloritani Mountains which do not form thick horizons of strongly foliated rocks, like the
syn-tectonic Serre and Sila granitoids, but are instead characterized by less pervasively sheared rocks.

Another aspect to be considered is the age of the recorded shearing events in NE Sicily,
with reference to those recorded in different segments of the EVSZ. ([122] and references therein)
remark indeed that the EVSZ is a network of interconnected shear zones that developed progressively
according to a tectonic linkage model in the time interval of about 335–300 Ma.

The end of late-Variscan shearing in the CPO can be set between ~292 Ma, which is the age
of weakly deformed upper crustal granodiorites from the Serre Massif [15,127] and the age, similar
within error, of 281 ± 8 Ma of undeformed felsic dykes intruding the sheared granitoids of the Sila
Batholith [44].

On the other hand the oldest dated syn-shear magmatic rocks in the CPO are the studied
trondhjemites from the Peloritani Mountains, emplaced at ~310 Ma [49,50], that indicate it as the
minimum age for initiation of the shear zone activity. Rb-Sr Bt cooling ages [48,128] together
with thermobaric modelling [112] suggest that the granitoids emplaced into the upper crust of
Aspromonte-Peloritani and Serre areas took more than ~ 10 Ma to cool at a T of ~300 ◦C; this would
indicate that deformation in the ~300 Ma low-Ca granitoids lasted until ~290 Ma, indicating a total
duration of the shear zone event of ~20 Ma, from intrusion of the trondhjemites at ~310 Ma to LT
subsolidus deformation in the ~300 Ma granites.
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6.2. Supra- to Sub-Solidus Deformation in Granitoids Cooling at Middle to Upper Crustal Depth

Deformation microstructures developed from a submagmatic to low-temperature solid-state
regime in trondhjemites and granites from the Peloritani Mountains give the opportunity to investigate
the relationships between fabric development and syn-tectonic cooling of granitoids emplaced at
middle to upper crustal conditions. Changing temperatures during prograde or retrograde orogenic
evolution are largely considered to exert the main role influencing the mechanisms of deformation in
crustal rocks (e.g., [98,129]). Nevertheless, other factors can also affect the rheological behaviour of
the crust, such as the rock composition and grain size, the limiting pressure, the strain rate, the flow
vorticity, and the presence of a fluid or a melt phase [130,131].

In the Peloritani Mountains, two continuous sequences of shear-related deformation at
submagmatic to low-temperature subsolidus conditions developed during cooling of granitoids
emplaced at different times and different depth. The two granitoid intrusions have a similar composition
from a rheological point of view, having the same silica content [47] and being composed by comparable
amounts of quartz, feldspars and micas. Furthermore, evidences of deformation in the presence of melt
occur in both granitoids. The main difference between them is that the grain size is dominantly coarse
to very-coarse in the trondhjemites and medium to coarse in the younger low-Ca granitoids. We do
not have information about the strain rate and the flow vorticity and, therefore, the factors that we take
into account in addition to temperature, to assess their possible role in controlling the development of
specific deformation mechanisms in a natural shear zone, are the grain size and the confining pressure.

In this latter respect, precise pressure condition estimates are not available for the Peloritani
Mountains granitoids, also due to the lack of suitable mineral assemblages but, according to [47]
and [65], the ~310 Ma trondhjemite magmas intruded the migmatite host rocks after leucosome
solidification and migmatite equilibration at ~0.5 GPa (i.e., ~14 km) (e.g., [69,70]). On the other
hand, final crystallization of the ~300 Ma granites is likely to have occurred at upper crustal levels,
at a pressure of ~0.3 GPa (i.e., ~8 km), as suggested by the occurrence of local granophyric and
graphic textures, which are typically associated to crystallization under strong undercooling conditions
(e.g., [132,133]). Low-pressure crystallization of the granitic magmas is also supported by the occasional
presence of magmatic andalusite in the studied low-Ca granitoid rocks. It is therefore interesting to
compare the different types of diagnostic deformation microstructures developed in the trondhjemites,
that were intruded at deeper crustal levels (~14 km) during the early evolution of the shear zone and
in the granites that were intruded 10 Ma later at shallow depth (~8 km).

Comparison between the two granitoid associations shows similar sequences of deformation
microstructures, developed at progressively lower temperatures, that indicate continuous shear zone
activity during cooling of the granitoids.

Unlike the syn-tectonic tonalites and granodiorites of the Serre and Sila batholiths, both Pelolritani
Mountains trondhjemites and granites do no show a pre-full crystallization [134], or magmatic
fabric [108]. This fabric indicates a free rotation of the crystals in the magma, with a melt fraction
greater than ~40% (e.g., [108]). The absence of magmatic fabrics in the trondhjemites would indicate
that shearing probably started soon after the emplacement of the trondhjemitic magmas. This would
imply, in turn, that magma emplacement assisted the nucleation of the shear zone in the study area,
(e.g., [10,135]).

Neves et al. [135] (and references therein) have indeed suggested that nucleation of shear zones
in crystallizing plutons is a plausible mechanism, due to marked reduction of the effective viscosity
in melt-bearing rocks, even at low melt fractions (<10–20%), compared to melt-free rocks, that could
therefore favor strain localization in these weak domains.
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Activation of early shear zone domains in the trondhjemite plutons according to these
considerations is, however, at odds with the lack of magmatic fabrics also in the granites, that were
emplaced when the shear zone was already operating in the area for several million years. On the other
hand, the recurring spatial association of “old” trondhjemites and “young” granites throughout the
Peloritani Mountains and Aspromonte Massif, as visible in Figure 1, suggests that the ascent pathways
used by the trondhjemite magmas were then re-used by the granites.

Furthermore, for both types of granitoid plutons, a similar tight connection between emplacement
and tectonics, is suggested by the elongation of the plutons along the same trends, which is especially
evident in the Aspromonte Massif (e.g., E-W elongated Punta d’Atò pluton; [34]).

In this respect, the absence of a pre-full crystallization fabric in the granites might indicate that the
granite magmas were emplaced by reusing the ascent pathways of the trondhjemites during a phase of
tectonic quiescence. Shearing in the Peloritani-Aspromonte sector of the CPO then resumed, at a time
when those granites were largely crystallized, and the main shear zones of the CPO started to operate
in central and northern Calabria, leading to syn-tectonic construction of the Serre and Sila batholiths
and to associated 13-km displacement of deep-crustal gneisses, that were finally exhumed to shallow
upper crustal levels at ~ 290 Ma (e.g., Mammola paragneisses [15,41,111,136]).

An alternative explanation is that also the peloritanian granitoid magmas were emplaced
syntectonically, but the magmatic fabric was obliterated by subsequent deformation, possibly already
at near solidus conditions, involving differential grain rotation, grain interference, and grain fracturing
([108]; and references therein).

Despite the apparent lack of magmatic fabrics in the studied trondhjemites and low-Ca granitoids
from the Peloritani Mountains, quartz chessboard extinction and, especially, submagmatic fractures,
indicate that deformation started anyway in the presence of melt. In particular, submagmatic fractures
are considered to reflect deformation at low melt fractions <0.4 and, more typically, within the 0.3–0.1
range (e.g., [91,103,137]).

A fundamental aspect to be considered is that both granitoid units share the same sequence of
fabrics developed from submagmatic to low temperature subsolidus conditions (Figure 9). This implies
overprinting of low temperature microstructures on earlier submagmatic and HT subsolidus relics,
making difficult to establish the relative role of the different deformation mechanisms in the two
granitoid units and their relative implications. Nevertheless, some significant inferences can be drawn
by estimating the incidence of each recorded deformation microstructure in both units.

By first reviewing the microstructures typical of submagmatic conditions observed in the two
granitoid units, common and distinctive features can be observed. Submagmatic fractures in feldspars
and chessboard patterns in quartz are quite equally distributed in the two groups of rocks, suggesting
that the larger grain size of the trondhjemites, or the relatively greater emplacement depth, did not
make them particularly prone to fracture or deform at low melt fractions.

Most of the SS-HT deformation microstructures, such as feldspar bulging, sub-grain rotation
dynamic recrystallization, and grain-boundary migration also have a similar distribution in the two
granitoid types of rocks.

Similarly, ribbon-like quartz is largely represented in all the granitoid types, as well as quartz
grain boundary migration and subgrain rotation. In contrast, core and mantle structures of quartz
grains are distinctly more frequent in low-Ca granitoids than in the trondhjemites. This diversity might
reflect the significant grain-size difference in the two rock types, due to the higher amount of grain
boundaries per volume unit in the finer-grained low-Ca granitoids.

Regarding the SS-LT microstructures, no significant difference has been detected in the two
granitoid units in terms of incidence of both quartz bulging, plagioclase deformation twinning and
mica kinking.
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Figure 9. Submagmatic to solid state thermal ranges of deformation mechanisms and associated
microstructures for various minerals (feldspar, quartz, and mica) recognized in the studied granitoid
rocks (temperature range estimates after [95,96,98,138–141]. BLG = bulging recrystallization;
SGR = subgrain rotation recrystallization; GBM = grain boundary migration recrystallization.
Thermal conditions for Variscan syntectonic granitoids and Alpine shear zones in the Calabria-Peloritani
Orogen are also shown (after [51] and references therein).

The similar distribution of deformation microstructures observed in both trondhjemites and
low-Ca granitoids supports the proposal that temperature is the main factor controlling the activation
of specific deformation mechanisms (e.g., [98,129]), compared to the confining pressure and rock
grain size. The only exception might be the different occurrence of core-and-mantle structures in quartz
that appears to be higher in the finer-grained low-Ca granitoids.

We observed also that the most frequent microstructure, in both granitoids, is the ribbon quartz,
whereas the rarest is the quartz GBM recrystallization. This suggests that the dominant mechanism
activated in the deformed cooling granitoids, and/or better preserved during subsequent deformation
at lower temperatures, was HT subgrain rotation associated to a shear strain gradient (e.g., [142]).
This explanation might account, in turn, for the coupled low incidence of the quartz GBM in both
studied granitoids, by considering that both ribbon quartz and grain boundary migration can develop
at similar temperatures, but at sensibly different strain conditions. A quite similar conclusion is that
ribbon quartz may have reworked previously formed GBM related microstructures.

Finally, submagmatic fractures are also quite rare, but this is an expected result, due to the very
transient near-solidus conditions at which these microstructures can develop.
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6.3. Implications for Shear-Assisted Exhumation

Microstructural evidences obtained for the granitoids of Forte Cavalli area in the north-eastern
Peloritani Mountains, integrated by existing geochronological data, indicate long-lived late-Variscan
shear zone activity coeval with granitoid magma emplacement and cooling for a period of ~20 Ma.
The earliest granitoid magmas were produced by water-fluxed melting of metagreywackes at pressure
likely close to 1.0 GPa ([47]; and references therein), near the collision-related baric peak, giving
rise to the trondhjemitic plutons that emplaced at ~310 Ma [49,50]. According to the evidence
obtained in this study, shearing started just after the emplacement of the magmatic trondhjemites,
as documented by development of submagmatic fractures and chessboard patterns in quartz, and
continued during cooling of the magmatic body, as shown by repeated superposition of subsolidus
deformation microstructures of progressively lower temperature (Figures 7–9).

In the contiguous Pizzo Bottino pluton, the trondhjemites intrude metagreywacke metatexites
with trondhjemite leucosomes that are considered to have been also produced by water-fluxed melting
at PT conditions of ~1.0 GPa and 700 ◦C, starting at around 340–330 Ma [65]. The migmatites were then
slightly heated during decompression up to Ms-dehydration melting conditions, producing granitic
leucosome melt and, finally, totally solidified before the emplacement of the trondhjemite pluton at
~310 Ma and ~0.5 GPa ([65] and references therein). The migmatite path, from early migmatization
at ~1.0 GPa to final solidification at ~0.5 GPa, implies a significant decompression with associated
post-collisional crustal exhumation of ~14 km.

No evidence for shear zone involvement in this early exhumation stage has been found in the above
mentioned migmatites, that appear to have recorded shear-related deformation at high temperature,
but only after their complete solidification [65]. On the other hand, submagmatic fractures appear to
be absent also in the migmatites from the Forte Cavalli area, but chessboard extinction in quartz is
locally present, suggesting possible deformation in the presence of melt. In this respect, it is however
to be considered that the rapid transition of the host rocks in the study area from unmigmatized
paragneisses to metatexites approaching the granitoid complex, with rare diatexites in the inner part
(Figure 2), suggests that migmatization might have been induced by magma emplacement in the upper
amphibolite facies paragneisses.

After magma intrusion and extensive crystallization, the trondhjemite plutons were uplifted,
together with their metamorphic host rocks, and were then intruded by the granite magmas at
~300 Ma [47–50] and at lower pressure of ~0.3 GPa. In this case, the presence of shear-related
microstructures developed in the trondhjemites from submagmatic to low temperature subsolidus
conditions indicate that this second-stage exhumation, from a depth of about 14 km to a depth of about
8 km was assisted by shear zone activity.

Then, also the younger granites were in turn affected by shearing during cooling, starting to
record deformation at sub-magmatic conditions, with diffuse formation of submagmatic fractures and
chessboard patterns in quartz, followed by subsolidus deformation at progressively lower temperature.

The occurrence of domino-torn boudins in tiny andalusite crystals, in conjunction with stretched
and pinch-and-swell garnet porphyroclasts in phyllites from the central Peloritani Mountains [46],
suggests that late-Variscan exhumation involving the Peloritanian granites occurred under an
extensional regime.

On the whole, considering that migmatites formed at ~1.0 GPa were intruded by granites at
~0.3 GPa, implies that late-Variscan post-collisional evolution involved ~20 km of exhumation of deep
continental crust.

Shear-related deformation continued during cooling of the granites down to low-temperature
conditions in a ductile and, finally, brittle regime.
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7. Conclusions

Investigation of the microstructures exhibited by late-Variscan trondhjemites (~310 Ma) and
granites (~300 Ma) intruded in high-grade paragneisses from the Peloritani Mountains (southern Italy)
revealed, for the first time, that both granitoids were affected by shear-related deformation from
submagmatic (T > 650 ◦C) to low temperature solid state conditions (T < 300 ◦C). Non-coaxial
deformation is documented by sigmoidal porphyroclasts, mica fish and domino-torn boudins
developed in tiny andalusite crystals. The occurrence of chessboard patterns in quartz and, especially,
of submagmatic fractures noticeably indicates deformation in the presence of melt and, therefore,
reliably constrains the activity of the shear zone during the solidification of the granitoid magmas, at
the final stages of the Variscan orogenic cycle. This result could support the proposed location of the
Peloritani Variscan basement within a peripheral branch of the East Variscan Shear Zone [54,55].

Submagmatic deformation was extensively superseded by continuous subsolidus deformation
at progressively lower temperatures. Examples of solid state-high temperature deformation
microstructures (T > 450 ◦C) include feldspar bulging and quartz grain boundary migration
recrystallization, quartz ribbons and core-and-mantle structures. Finally, low temperature subsolidus
microstructures consist of quartz subgrain rotation recrystallization, bulging, mica kinks, and feldspar
twinning and bending. Each type of deformation microstructure is often placed side by side with
others of lower or higher temperature, documenting the progressive change of the deformation
mechanisms in the single minerals and mineral aggregates upon decreasing temperature. Comparison
of the shear-related microstructures developed in the older trondhjemites, emplaced at higher depth
(~0.5 GPa) and younger granites, emplaced at shallower crustal levels (~0.3 GPa) reveals no systematic
relationship between deformation mechanisms and emplacement depth, or rock grain size, during
different evolutionary stages of the shear zone. The only exception might be the higher incidence of
core and mantle structures of quartz grains in the low-Ca granitoids, possibly reflecting the higher
amount of grain boundaries per volume unit in finer-grained rocks.

The two continuous sequences of submagmatic to low-temperature shear-related deformation,
recorded in both the older and younger granitoids, suggest a duration of ~20 Ma for shear activity
during syn-magmatic post-collisional exhumation of the Variscan middle crust in southernmost Italy.
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