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Abstract: A comprehensive kinetics degradation study is carried out on novel multiple cages
polyhedral oligomeric silsesquioxane (POSS)/polystyrene (PS) composites at 5% (w/w) of POSS to
assess their thermal behavior with respect to the control PS and other similar POSS/PS systems studied
in the past. The composites are synthesized by in situ polymerization of styrene in the presence of
POSSs and characterized by 1H-NMR. The characteristics of thermal parameters are determined
using kinetics literature methods, such as those developed by Kissinger and Flynn, Wall, and Ozawa
(FWO), and discussed and compared with each other and with those obtained in the past for similar
POSS/PS composites. A good improvement in the thermal stability with respect to neat polymer is
found, but not with respect to those obtained in the past for polystyrene reinforced with single- or
double-POSS cages. This behavior is attributed to the greater steric hindrance of the three-cages POSS
compared with those of single- or double-cage POSS molecules.

Keywords: polyhedral oligomeric silsesquioxanes; POSS; composites; thermal stability; kinetics;
multiple cages; activation energy

1. Introduction

Despite the pressing media campaign regarding the persistence of plastic in the environment,
researchers are well aware that typical polymers are not indefinitely stable. Daily life is characterized
by the constantly growing use of objects and devices made of plastic. Simple carbon-chain polymers,
such as polyolefins [1,2], represent the widest sector of commercial polymer production due to the
ease and affordability of manufacture by the processing of the molten polymer. With regards to
the durability of these materials, we have to consider two different aspects: one related to their
nature and the second related to their manufacturing. The chemical changes and/or degradation
induced by processing may have a determining effect on the lifetime of the polymer in subsequent
use. Polymers are typical organic molecules whose physical and mechanical properties depend on
their long chains, rather than on special properties of the atoms and bonds composing these chains [3].
In particular, for thermoplastic polymers, this means that molecular rearrangements can start before
the expected lifetime because they are typically more sensitive to both temperature and time than other
materials. Their properties may change with time or with little temperature variations, even without
any chemical reaction; thus, during both usage and storage, the polymers are subjected to a wide range
of degradative influences, both physical and chemical [4–6]. Polyolefins are especially vulnerable to
oxidation, becoming weakened and useless in a very short time; thus, most are unusable without
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additives that inhibit degradation chemistry [3]. It is therefore clear that polymer instability caused by
weathering may be reduced by the different reactions contributing to this instability, rearrangements of
the chemical structure, formation of oxidation products, crosslinking, and chain scission [7]. In the
last three decades, thermal analysis has become an essential tool for the design and manufacturing
of a polymeric material capable of satisfying the needs for which it was conceived. Purely thermal
degradation is difficult to study, but if correctly carried out, it obtains useful information [8–11] not only
for polymers but also for materials in general [12–14]. In particular, academic research has been devoted
to enhancing the physical properties of polymers by adding low-molecular-weight substances such
as plasticizers, stabilizers, and anti-blocking agents [15,16] or to modifying their structures and then
verifying the effects of these modifications over the lifetime of the material under artificial accelerated
conditions [17–19]. In this context, our research group at the University of Catania, in collaboration
with eminent researchers in the field, tested the stabilization of different polymers, synthetics or
naturals, such as polyethersulfone (PES), ethylene propylene diene monomer (EPDM), polyethylene
oxide (PEO), and chitosan by the incorporation of polyhedral oligomeric silsesquioxanes (POSS)
molecules [20–24]. The use of POSS in the making of polymer composites has grown exponentially
in the last 30 years [25–27]. Represented in their most common form by the symbol T8 and having
a diameter usually falling in the range of 1.5–3 nm, these molecules comprise a silicon and oxygen
cage completed by organic groups that are covalently bonded with silicon atoms [28]. The ability
to be dispersed at the molecular level and to play an active role in the reinforcement of polymeric
materials, unlike other fillers such as organoclays [29], carbon nanotubes [30], and nanofibers [31,32],
makes POSS unique among nano-reinforcements [33]. Particular focus was devoted to polystyrene
(PS)/POSS composites by synthesizing PS first reinforced with single-cage POSS molecules [34,35] and
then with double-cage POSS [36].

Composites of PS and multiple-cage POSS were synthesized by in situ polymerization of styrene
in the presence of 5% molecular filler, and the following compounds were obtained:

[(C4H9)7Si8O12-O]3-Si-ArCH3/PS

[(C5H9)7Si8O12-O]3-Si-ArCH3/PS

After a spectroscopic investigation aiming to verify the presence of POSS in the synthesized
composites, the composites’ thermal behavior in terms of resistance to thermal degradation along with
the rate of degradation were evaluated by means of thermogravimetric analysis (TGA) and kinetics
literature methods [37–39]. The calculated parameters, namely temperature at 5% mass loss (T5%) and
apparent activation energy (Ea) of degradation, were compared with each other and with those of the
control PS to evaluate the differences in thermal behavior, if present.

2. Experimental

2.1. Materials

Tetrahydrofuran (THF), toluene, styrene, 2,2-azobis (isobutyronitrile) (AIBN), trichloroisobutyllsilane,
trichlorocyclopentylsilane, p-tolyltrichlorosilane, and methanol were acquired from Aldrich Co.
(St. Gallen, Switzerland). The latter four chemicals were used as received, whereas the other ones
were treated as follows prior to use: THF was distilled over a Na-benzophenone mixture); toluene
was stirred over calcium hydride for a day and then distilled in a nitrogen flow; styrene was purified
in an inhibitor removal column; AIBN was crystallised from dry ethanol in a dark setting at room
temperature. Cyclopentyl trisilanol POSS was prepared in agreement with literature reports [40,41],
whereas trisilanol isobutyl POSS was acquired from Hybrid Plastics co. (Hattiesburg, MS, USA) and
used as received.

The synthesis procedure of 4-methyl phenyl (trioxyisobutyl POSS) silane and 4-methyl phenyl
(trioxycyclopentyl POSS) silane together with their 1H NMR characterization are reported in our
previous study [42] and the molecular structure of the obtained multiple-cage POSS is reported in
Figure 1.
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filtration. The compounds were dried under vacuum at 313 K obtaining a yield of 76.6% and 83.2%, 
respectively, for samples 1 and 2. 

2.2. 1H-NMR Spectroscopy 

1H-NMR characterization was performed in a Unity Inova instrument 1H 500 MHz (Varian, Palo 
Alto, CA, USA) by using deuterochloroform (CDCl3) as a solvent and tetramethylsilane (TMS) as an 
internal standard. 

2.3. Thermogravimetric Analysis (TGA) 

TGA was carried out with DTG-60 equipment (Shimadzu, Kyoto, Japan). Before performing 
measurements, the TGA apparatus was calibrated in agreement with a consolidate procedure 
reported in the literature [43,44] using, as standard materials, indium, tin, and zinc coded NIST SRM 
2232, SRM 2220, and SRM 2221a, respectively. Samples of about 6 × 10−3 g were placed in an alumina 
open pan and degraded at eight different heating rates (Φ = 2, 5, 7.5, 10, 12.5, 15, 17.5, and 20 K∙min−1), 
in the temperature range of 298–973 K. Thermal degradations were performed in flowing nitrogen 
(0.02 L∙min−1), whereas thermos-oxidative degradations were performed in a static air atmosphere. 
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Figure 1. Molecular structure of the multiple polyhedral oligomeric silsesquioxanes (POSS) cages.

Samples 1 and 2 were obtained by in situ polymerization mixing in toluene 5% (w/w) of 4-methyl
phenyl (trioxyisobutyl POSS) silane and 4-methyl phenyl (trioxycyclopentyl POSS) silane, respectively,
with styrene. After the dissolution of each POSS and styrene monomer in toluene, the AIBN radical
initiator was added to the mixture before being frozen in a liquid nitrogen bath, degassed with a
vacuum pump, and then thawed. This operation was repeated three times before sealing under vacuum
and heating, under stirring, at 343 K for a day. After this time, the obtained solution was precipitated
by adding methanol and collected by filtration. The compounds were dried under vacuum at 313 K
obtaining a yield of 76.6% and 83.2%, respectively, for samples 1 and 2.

2.2. 1H-NMR Spectroscopy

1H-NMR characterization was performed in a Unity Inova instrument 1H 500 MHz (Varian,
Palo Alto, CA, USA) by using deuterochloroform (CDCl3) as a solvent and tetramethylsilane (TMS) as
an internal standard.

2.3. Thermogravimetric Analysis (TGA)

TGA was carried out with DTG-60 equipment (Shimadzu, Kyoto, Japan). Before performing
measurements, the TGA apparatus was calibrated in agreement with a consolidate procedure reported
in the literature [43,44] using, as standard materials, indium, tin, and zinc coded NIST SRM 2232,
SRM 2220, and SRM 2221a, respectively. Samples of about 6 × 10−3 g were placed in an alumina open
pan and degraded at eight different heating rates (Φ = 2, 5, 7.5, 10, 12.5, 15, 17.5, and 20 K·min−1),
in the temperature range of 298–973 K. Thermal degradations were performed in flowing nitrogen
(0.02 L·min−1), whereas thermos-oxidative degradations were performed in a static air atmosphere.
TGA-obtained data were used to plot the percentage of an undegraded sample, (1 − D)%, as a function
of temperature, where D is equal to:

D =
(W0 −W)

W0

where W0 and W are the masses at the starting point and during the TGA experiment, respectively.
The derivative of the TG (DTG) curves were used to evaluate the temperature at the maximum
degradation rate (Tm), which was then used for kinetics calculation. All the considered T values were
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averaged over three runs, the maximum difference between the average and the experimental values
being within ±1 K.

2.4. Fourier Transform Infrared Spectroscopy (FTIR)

The residues derived from TGA were analyzed by FTIR with a Spectrum 100 spectrometer
(Perkin Elmer, Waltham, MA, USA) directly, without any pre-treatment, using a universal attenuated
total reflection (ATR) sampling accessory. The spectra were collected at room temperature from 4000 to
650 cm−1 with a resolution of 4.0 cm−1.

3. Results and Discussion

During the in situ polymerization, we observed a slight increase in the POSS content in the
obtained composites with respect to the initial mixture ratio (5% w/w) due to the formation of methanol
soluble oligomers of PS. For this reason, before subjecting our samples to thermal characterization,
we performed 1H-NMR measurements to verify the exact POSS content in the prepared PS composites.
POSS content was calculated at 6.2% and 7.5% for compounds 1 and 2, respectively, considering the
ratio between the POSS hydrogen atoms and the PS hydrogen atoms.

Resistance to thermal degradation was first evaluated by comparing the TGA degradation curves
at 10 K·min−1 from samples 1 and 2 with those of the control PS in inert and oxidative atmospheres,
as shown in Figures 2 and 3, respectively. In both investigated environments, an important shift in
the beginning of composite degradation toward higher temperatures with respect to those of neat
polymer appeared evident, at least qualitatively. The shift, highlighted by the TGA thermograms,
was quantified thanks to the temperature at 5% mass loss, that is, 607.8 and 614.4 K in the air and
645.5 and 648.8 K in the nitrogen, for samples 1 and 2, respectively. Given the T5% values of 582.3 and
614.2 K found in the virgin PS in air and nitrogen, respectively, we recorded an increase ranging from
25 to 32 K in an oxidative environment and from 30 to 35 K in an inert one.
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Figure 3. Thermogravimetric (TG) degradation curves, at 10 K·min−1, in the static air atmosphere of
samples 1 and 2 and control PS.

As T5% revealed no significant differences among the investigated environments, TGA thermograms
showed a different degradation that evolved in a single stage (653–723 K) in oxidative conditions
(Figure 3), showing a contrasting additional stage of degradation (793–873 K) in an inert atmosphere
(Figure 3). A solid residue was obtained at the end of the TGAs that was higher in oxidative (Figure 3)
than in inert atmosphere (Figure 2), which was analyzed by FTIR analysis and associated with the
presence of SiO2, whereas no band for un-decomposed PS or its decomposition products were detected
(Figure SM in the Supplementary Materials).

The least square treatment of the data reported in Tables 1 and 2 was performed by using
Kissinger [37] and Flynn, Wall, and Ozawa (FWO) [38,39] equations to calculate the apparent activation
energy of degradation (Ea).

The Kissinger Equation,

ln
(
Φ

T2
m

)
= ln

(
nRAWn−1

m
Ea

)
−

Ea

RTm
, (1)

allows the calculation of Ea values through the straight lines obtained reporting ln(Φ/Tm
2) as a function

of 1/Tm at various heating rates. In Equation (1), Φ is the heating rate, Tm is the temperature at
maximum rate of weight loss, n is the apparent reaction order, R is the universal gas constant, A is
the pre-exponential factor, and Wm is the weight of the sample at the maximum rate of mass loss.
The Kissinger equation yields reliable Ea values only when conversion does not practically vary the
heating rate, and it should not be considered an isoconversional method [45–47]. Thus, to obtain
a reliable estimation of the kinetics of degradation of the prepared compounds, we checked that
the degree of conversion did not vary with heating rate. In addition, the obtained TGA data at the
various heating rates were treated through the FWO integral isoconversional method based on the
following Equation:

lnΦ = ln
(

AEα
g(α)R

)
− 5.3305− 1.052

Eα
RTα

(2)

where Tα is the temperature when, at a fixed heating rate Φ, a certain conversion α is achieved.
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Table 1. Temperatures at maximum rate of weight loss (Tm) for the degradation of PS and synthesized
POSS/PS nanocomposites in static air atmosphere.

PS Sample 1 Sample 2

Φ (K·min−1) Tm (K) Tm (K) Tm (K)

2 640 643 651
5 654 658 667

7.5 668 666 673
10 679 678 680

12.5 684 681 687
15 689 684 693

17.5 694 695 700
20 699 696 704

Table 2. Temperatures at maximum rate of weight loss (Tm) for the degradation of PS and synthesized
POSS/PS nanocomposites in flowing nitrogen.

PS Sample 1 Sample 2

Φ /(K·min−1) Tm/K Tm/K Tm/K

2 664 664 664
5 678 677 679

7.5 686 684 685
10 696 691 693

12.5 698 696 697
15 702 699 701

17.5 705 703 705
20 710 706 707

Degradation Ea values obtained by the Kissinger equation, together with their corresponding
regression coefficients, are reported in Tables 3 and 4 for oxidative and inert environments, respectively.

Table 3. Regression coefficients and apparent activation energies (Ea) of degradation by the Kissinger
equation for PS and synthesized POSS/PS nanocomposites in static air.

Sample a (a) b·10−3 (K) (b) r (c) Ea (kJ·mol−1)

PS 11.7 (±1.4) 15.2 (±0.9) 0.9890 126 (±7)
1 14.6 (±1.8) 17.1 (±1.2) 0.9844 142 (±10)
2 15.7 (±2.0) 18.1 (±1.4) 0.9831 150 (±12)

(a) a = ln(nRAWm
n−1/Ea); (b) b = Ea/R; (c) product moment correlation coefficient.

Table 4. Regression coefficients and apparent activation energies (Ea) of degradation by the Kissinger
equation for PS and synthesized POSS/PS nanocomposites in flowing nitrogen.

Sample a (a) b·10−3 (K) (b) r (c) Ea (kJ·mol−1)

PS 20.8 (±1.4) 21.9 (±1.0) 0.9937 182 (±8)
1 22.6 (±1.1) 23.2 (±0.7) 0.9968 193 (±6)
2 23.5 (±1.4) 23.7 (±1.0) 0.9951 197 (±8)

(a) a = ln(nRAWm
n−1/Ea); (b) b = Ea/R; (c) product moment correlation coefficient.

Activation energy values at a fixed value of conversion (Eα) were obtained by the FWO equation
through the ln(Φ) vs. 1/Tα plots reported in Figure 4a–f at the different heating rates considered,
assuming that the Doyle’s approximation is valid for all degrees of conversion [48].

As shown in Table 5, a very good agreement among the Ea values obtained through Equations (1)
and (2) was found, showing a large enhancement for the composites reinforced with the multiple-cage
POSS in static air atmosphere, amounting approximately to 20–25 kJ·mol−1. Conversely, in an inert
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environment, the average (among the Kissinger and FWO methods) degradation Ea values showed a
lesser increase with respect to the value of the control PS, about 10–15 kJ·mol−1. Kinetics data confirmed
the key role of multiple-cage POSS in the thermo-oxidative degradation process of the obtained PS
composites that let down the degradation rate, and, as demonstrated by the T5% values, enhanced the
overall thermal stability of the composites. In an inert environment, the role of POSS seems to be to
mitigate, even if, in any case, there is a slight slowdown of the degradation kinetics (Table 5).
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When we looked at our previous research regarding the kinetics of the degradation of similar
PS/POSS composites but with single- [49–51] or double-cage structures [52,53], we observed that
the slowdown in degradation kinetics for the triple-cage POSS-reinforced polystyrene was much
less pronounced, about 20–30 kJ·mol−1 lower than in the systems studied in the past. This behavior
could be attributed to the difficulty of obtaining multiple-cage POSS, which are sterically bulkier than
single-cage POSS, to disperse themselves in the polymer matrix. In addition, the same steric hindrance
can likely lead to a reduced level of interaction with the matrix, which can be translated into a reduced
reinforcement action.
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Table 5. Apparent activation energies (Ea) of degradation for PS and synthesized POSS/PS nanocomposites
obtained by the Kissinger and Flynn–Wall–Ozawa (FWO) equation in static air atmosphere and in
flowing nitrogen.

Compounds
Static Air Nitrogen Flow

Kissinger FWO Kissinger FWO

Ea (kJ·mol−1) Ea (kJ·mol−1) Ea (kJ·mol−1) Ea (kJ·mol−1)

PS 126 (±7) 123 (±4) 182 (±8) 183 (±4)
1 142 (±7) 146 (±7) 193 (±6) 197 (±4)
2 150 (±12) 154 (±5) 197 (±8) 196 (±6)

4. Conclusions

The design and preparation of new PS composites reinforced with triple-cage POSS, uniquely
functionalized with isobutyl and cyclopentyl groups, were carried out to verify if the presence of a
higher number of POSS cages in the same molecule, dispersed in the matrix, leads to a further increase
of material stabilization.

The kinetics study of the thermal and thermo-oxidative degradations of the prepared composites
and the control polymer showed an increase in the thermal stabilization of the obtained materials.
However, this was not comparable with the results obtained in the past for similar systems obtained
by adding molecules with one or at least two POSS cages to the matrix.

We attribute this result to the increase in the steric hindrance of the multiple-cage POSS that leads
to dispersion difficulty at the molecular level in the polymer matrix, reducing the level of interaction
and thus the reinforcement action.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/11/2742/s1,
Figure SM1: FTIR spectra of the solid residues at 700 ◦C for the samples 1 and 2, Table SM1: Regression coefficients
and apparent activation energies (Ea) of degradation by the FWO integral isoconversional method for PS in static
air, Table SM2: Regression coefficients and apparent activation energies (Ea) of degradation by the FWO integral
isoconversional method for PS in flowing nitrogen, Table SM3: Regression coefficients and apparent activation
energies (Ea) of degradation by the FWO integral isoconversional method for sample 1 in static air, Table SM4:
Regression coefficients and apparent activation energies (Ea) of degradation by the FWO integral isoconversional
method for sample 1 in flowing nitrogen, Table SM5: Regression coefficients and apparent activation energies (Ea)
of degradation by the FWO integral isoconversional method for sample 2 in static air, Table SM6: Regression
coefficients and apparent activation energies (Ea) of degradation by the FWO integral isoconversional method for
sample 2 in flowing nitrogen.
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