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Abstract 

Atmospheric dispersion pollution modelling is of great and actual concern in the scientific international community. Many 
dispersion models have been developed and used to estimate the downwind ambient concentration of air pollutants from sources 
such as industrial plants, vehicular traffic or accidental chemical release. Among them, Gaussian model is perhaps the most 
commonly used model type. It is often used to predict the dispersion of air pollution plumes originated from ground-level or 
elevated sources. In this research an experimental campaign was carried out in the wind tunnel of the Industrial Engineering 
Department of University of Catania. It was tested an emission plume of particulate matters and the concentrations of PM10 were 
evaluated in several points downwind beyond the emitter. Both the wind velocity and PM10 mass flow were varied in order to test 
the differences in terms of PM10 concentrations in the sampling points. A Gaussian plume mathematical model was developed 
according the boundaries conditions of the experimental campaign. The results of the model were compared with experimental 
ones in order to identify the limits and the advantages of  this model in such a small scale system. 
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1. Introduction 

The dispersion of air pollution both in urban areas and open spaces is becoming of  great concern in the scientific 
community. In last decades the normal levels of air pollution have increased [1] and many countries have started to 
focus to develop monitoring systems for air pollution. With the European directive 2008/50/CE all European 
countries have declared to adopt a standardized way to control, monitor and study air pollutants in urban areas. In 
such scenario, many air quality models to predict, study and evaluate the pollution dispersion have been studied and 
implemented [2]. Air quality models are able to predict the pollutant gases or aerosol trajectories in atmosphere. 
Generally, these pollutants cab be emitted by industrial sources [3], hazard chemical released due to accidents or 
natural events [4], and vehicular urban traffic [5, 6]. The evaluation and calibration of dispersion models is of a 
crucial importance, because their results often influence decisions that have large public-health and economic 
consequences. Obviously there are different types of models and their performances depend on many variables. The 
classification of these models may refer about the source type (point source, line source, area source), the adopted 
scale (large or small scale), the input type (deterministic models and stochastic models), the dynamic conditions 
(steady or unsteady state), the pollutant sources (gases or particles). Many reviews [7, 8] have already classified and 
studied these models, trying to focus about performance in respect with the variables stated before. Among all these 
possible models the most used are probably Lagrangian and Gaussian models. Both of them are able to estimate the 
downwind ambient concentration of air pollutants from different sources types. Lagrangian models work well both 
for homogeneous and stationary conditions over the flat terrain [9] and unstable media condition for the complex 
terrain [10] but they usually suffer for computational calculation and they cannot be used for real time applications. 
Gaussian models are widely used in atmospheric dispersion modelling, usually in regulatory purposes because of 
their easy implementation and their near real-time responds. They generally are used in large scale applications [11] 
and although they have been shown to over-predict concentrations in low wind conditions [12], since the plume 
models are calculated with steady state approximations they do not take into account the time required for the 
pollutant to move from the source to the receptor. In this research a Gaussian plume model was implemented and 
tested in small scale scenario thanks to experimental campaigns carried out in a wind tunnel. The performances of 
this model in such a small scale set up were then studied by comparing model results with experimental ones.  

 
Nomenclature 

L Height of the emitter [mm] 
D Diameter of the emitter outlet [mm] 
ṁPM10 Mass flow rate of PM10 [µg/s] 
CPM10       PM10 concentration [µg/m3] 
Ve               Emitter outlet velocity [m/s] 
U           Wind tunnel velocity [m/s] 

 

2. Gaussian Plume Model 

The greatest advantage of Gaussian Plume models is that they have an extremely fast, almost immediate response 
time. Their calculation is based only on solving a single formula for every receptor point, and the model’s 
computational cost mainly consists of meteorological data pre-processing and turbulence parameterization. 
Depending on the complexity of these sub-modules, the model’s runtime can be extremely reduced enabling its 
application in real-time and near real-time decision support software. Gaussian dispersion models have become a 
uniquely efficient tool of air quality management for the past decades, especially in the early years when high 
performance computers had an unreachable price for environmental protection organizations and authorities. Their 
fast responds depend basically on several assumptions that make them useful for just some applications. The main 
important assumptions are: 
 The emission rate of the source is constant; 
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 Dispersion (diffusion) is negligible in the downwind direction; 
 Horizontal meteorological conditions are homogeneous over the space modeled. For each step modeled: 

a) Wind speed is constant 
b) Wind direction is constant 
c) Temperature is constant 
d) Mixing height is constant 

 No wind sheer in the horizontal or vertical plane; 
 The pollutants are non-reactive gases or aerosol; 
 The plume is reflected at the surface with no deposition or reaction with the surface; 
 The dispersion in the crosswind and vertical direction take the form of Gaussian distributions. 

 
The sources types may be different: point source, volume source, area source, open pit and flare. Usually it is 

possible to implement Gaussian models for more than one source and as assumption it is considered the 
Superposition principle. The Gaussian plume adopted in this work was implemented in MATLAB® and is described 
as follow. First of all, an orthogonal Cartesian reference system is assumed with its origin corresponding to base 
position of the source and the x axis parallel to the wind direction. The y axis horizontal and perpendicular to the x 
axis while the z axis in vertical direction corresponding to the height from the ground direction. The concentration 
C(x,y,z) in any point is described by the following equation: 

 

                                  (1) 

 
The two Gaussian exponential functions are normalized respect to the maximum value and describe the dispersion 
degree of the plume in horizontal and vertical direction. L is the height of the emitter. U is the wind velocity at 
height of the barycentre of the hypothetical plume. Q is the mass flow rate. The width of the plume is determined by 
σy and σz  which are defined by atmospheric stability classes [13, 14]. In the implemented model these two 
coefficients were calculated with a novel way. A Genetic Algorithm was used to determine constants stability 
coefficients for small scale particulate dispersion system. 

3. Experimental set up and model implementation 

Wind tunnel experiments were conduced in the laboratories of the Industrial Engineering Department of 
University of Catania. It was used almost the same experimental set up of [15]. It was used a wood case fitting the 
chamber test of the wind tunnel. An aerosol continuous emitter and three sensors (S1, S2, S3) for PM10 were placed  
in the positions showed in Fig. 1 and 2.These sensors were placed at positions whose distance from the emitter was 
multiple of its height L. Aerocet-531S Mass Particle Counters were used as sensors to survey CPM10. A continuous 
aerosol emitter of cylinder shape as point source was used. The velocity of the approach flow U, always orthogonal 
to the emitter, was varied from 1 m/s to 5 m/s with a step of 1 m/s.  The mass flow rate ṁPM10 of the emitter was 
varied from 10 [µg/s] to 20 [µg/s]. The main characteristics of the Experimental set up are show in Tab. 1.  

Table 1. Set up main characteristics.  

 
Emitter details Value 

L 90 mm 

D 20 mm 

Ve 0,6 m/s 

ṁPM10 

U 

10 and 20 µg/s 

1, 2, 3, 4 and 5 m/s 
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Fig. 1. (a) Lateral view of wood case with distances and U direction; (b) Plan view of sensors configuration. 

There were 10 possible configurations in terms of U and ṁPM10. For each configuration the test was reproduced 5 
times for a total of 50 test. In each test there was first calculated the background CPM10 in order to consider only the 
aerosol emitter contribution. The results were treated by one-way and two-way analysis of Variance (ANOVA). 
Anova demonstrated that each test did not present a great variance in terms of CPM10 in all sensors so it was consider 
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only the average. Moreover The two-way analysis, considering U and ṁPM10 as factors, demonstrated that these 
factors are significant for all CPM10 in all sensors. In the Gaussian model there were set the following variables: 

 Wind field without any turbulent fluctuation 
 Wind velocities according experimental values 
 Mass flow rates Q according experimental values 
 Number of sources set at 1 (stacks = ONE_STACK) 
 Heights of emitter and sensors 
 CPM10 calculated in 2D (considering the plane x-y) 
 Source coordinates 
 The grid calculation dimensions were set as the wood case of Fig. 1 
 Reference system origin was set in in the lower left corner of the grid 

Fig. 2. Picture of the experimental set up. 

4. Results 

First of all experimental results were treated separately. As shown in Fig. 3 it is possible to see S1, S2 and S3 
CPM10 at varying U and ṁPM10. These results show how the CPM10 varies proportionally with the ṁPM10 in all three 
sensors. The slope of this variation is almost the same for S1 and S3 while in S2, where there are the highest CPM10 

values, the slope is greater.  Moreover the distance in terms of CPM10 tends to decrease with the increase of U in all 
sensors.  
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Fig. 3. Experimental results for S1, S2 and S3. 

 
The model implemented gave good results as shown in Tab 2. The error varied from 0,10 % to 6,79 %. The best 

results were found where U= 2 m/s while the worst results where generally found where U = 4 m/s. Fig. 4, 5, and 6 
shows how the model fits with experimental results in all sensors.   

 

 
Fig. 4. (a) S1 results comparison with ṁPM10=10 [µg/s] (b) S1 results comparison with ṁPM10=20 [µg/s]. 

 

 
Fig. 5. (a) S2 results comparison with ṁPM10=10 [µg/s] (b) S2 results comparison with ṁPM10=20 [µg/s]. 
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Fig. 6. (a) S3 results comparison with ṁPM10=10 [µg/s] (b) S3 results comparison with ṁPM10=20 [µg/s]. 

 

Table 2. Numerical and experimental results in all possible configurations.  

 
WIND TUNNEL SPEED (U) 

2 m/s 3 m/s 4 m/s 5 m/s 

S1 

ṁPM10 10µg/s 

Experimental CPM10 [µg/m3] 274,90 224,79 150,90 114,55 

Numerical CPM10 [µg/m3] 274,62 218,90 149,25 119,40 

Error [%] 0,10 2,62 1,09 4,23 

ṁPM10 20 µg/s 

Experimental CPM10 [µg/m3] 608,84 418,21 320,57 256,65 

Numerical CPM10 [µg/m3] 611,93 417,90 320,89 256,71 

Error [%] 0,51 0,07 0,10 0,02 

S2 

ṁPM10 10 µg/s 

Experimental CPM10 [µg/m3] 279,81 209,56 154,82 118,70 

Numerical  CPM10 [µg/m3] 278,87 197,35 148,01 118,41 

Error [%] 0,34 5,82 4,40 0,24 

ṁPM10 20 µg/s 

Experimental CPM10 [µg/m3] 1031,92 668,33 524,84 546,39 

Numerical  CPM10 [µg/m3] 1036,10 690,70 518,10 544,70 

Error [%] 0,40 3,35 1,29 0,31 

S3 

ṁPM10 10 µg/s 

Experimental CPM10 [µg/m3] 24,62 16,25 12,81 7,08 

Numerical  CPM10 [µg/m3] 24,72 16,48 12,36 7,19 

Error [%] 0,41 1,41 3,50 1,55 

ṁPM10 20 µg/s 

Experimental CPM10 [µg/m3] 48,64 35,36 26,29 17,27 

Numerical  CPM10 [µg/m3] 49,44 32,96 24,72 17,98 

Error [%] 1,66 6,79 5,98 4,08 
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5. Conclusions 

This paper focuses on the implementation of a Gaussian plume model to analyze and study PM10 dispersion in a 
small scale system. An experimental set up in a wind tunnel was used to validate this model. Results revealed that 
performances of the model were quite robust at varying of wind velocity and mass flow outlet. The error was always 
less than 7% in all configurations. The near real-time nature of this model makes it a good tool for regulatory 
purpose. 

The results of this controlled environment could be extended to real scale phenomena by facing a deeper analysis 
of meteorological variables in order to find solution when turbulence conditions occur. This model could be also 
easily used as objective function in optimization algorithms (e.g. genetic algorithms) used in reversing methods to 
separate and identify pollutants sources.  
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