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Abstract
A well-known result of J. Lindenstrauss and A. Pełczyński (1968) gives the existence

of a universal non-weakly compact operator between Banach spaces. We show the

existence of universal non-Rosenthal, non-limited, and non-Grothendieck operators.

We also prove that there does not exist a universal non-Dunford–Pettis operator, but

there is a universal class of non-Dunford–Pettis operators. Moreover, we show that,

for several classes of polynomials between Banach spaces, including the non-weakly

compact polynomials, there does not exist a universal polynomial.
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1 INTRODUCTION

J. Lindenstrauss and A. Pełczyński [30, Theorem 8.1] proved in 1968 that the sum operator 𝜎 ∶ 𝓁1 → 𝓁∞ defined by

𝜎(𝑥) ∶=

(
𝑛∑
𝑖=1
𝑥𝑖

)∞

𝑛=1

for 𝑥 = (𝑥𝑛)∞𝑛=1 ∈ 𝓁1

is universal for the class of non-weakly compact operators, that is, an operator 𝑇 ∈ (𝑋, 𝑌 ) is non-weakly compact if and only
if there exist operators 𝐴 ∈ (𝓁1, 𝑋) and 𝐵 ∈ (𝑌 ,𝓁∞) such that the following diagram commutes:

X
T−−−−→ Y

A
⏐
⏐

⏐
⏐

B

1 −−−−→
σ

∞

W. B. Johnson [27] showed in 1971 that the formal identity operator 𝓁1 → 𝓁∞ is universal for the class of non-compact
operators. These results are useful in order to prove that a given operator is non-weakly compact (respectively, non-compact).
In 1997, M. Girardi and W. B. Johnson [21] proved that there does not exist a universal non-completely continuous operator,
but there is a class  of universal non-completely continuous operators, that is, for every non-completely continuous operator
𝑇 , there is some member of  that factors through 𝑇 .

Here we prove the existence of universal operators for the classes of non-Rosenthal, non-Grothendieck, and non-limited
operators and the existence of a universal class of non-Dunford–Pettis operators (see below the definitions of all such classes
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of operators). It seems quite natural and interesting to wonder about the existence of universal polynomials between Banach
spaces. The notion of ideal of 𝑘-homogeneous polynomials is well known and has been widely studied in the literature (see, for
instance, [12, §3] or the more recent paper [33]). We adapt to the polynomial setting a definition from [21]: given an integer
𝑘 ≥ 1, suppose that  is a class of 𝑘-homogeneous (continuous) polynomials between Banach spaces so that a polynomial 𝑃 is
in  whenever there exist (linear bounded) operators 𝐴, 𝐵 so that 𝐵 ◦𝑃 ◦𝐴 is in . The natural examples of such classes are
the polynomials that do not belong to a given ideal of 𝑘-homogeneous polynomials. A polynomial 𝑃0 of such a class  is said to
be universal for  provided for each 𝑃 in , 𝑃0 factors through 𝑃 , that is, there exist operators 𝐴 and 𝐵 so that 𝐵 ◦𝑃 ◦𝐴 = 𝑃0.

The problem of the existence of universal polynomials seems to be very different with respect to the linear case and the lack
of linearity introduces a degree of difficulty. In [13] we have proved that there are neither a universal non-compact polynomial
nor a universal non-unconditionally converging polynomial. In the present paper we investigate the existence of a universal
non-weakly compact polynomial between Banach spaces. We prove that the answer is again negative. Moreover, we show the
nonexistence of universal non-Rosenthal, non-Asplund, non-limited, non-Grothendieck, and non-Dunford–Pettis polynomials.
The techniques used here are in most cases different from those of [13].

Throughout, 𝑋, 𝑌 , 𝐸, and 𝐹 denote Banach spaces, 𝑋∗ is the dual space of 𝑋, 𝐵𝑋 stands for its closed unit ball and 𝑆𝑋
for its unit sphere. The closed unit ball 𝐵𝑋∗ of the dual space will always be endowed with the weak-star topology. By ℕ we
represent the set of all natural numbers, and by 𝕂 the scalar field (real or complex). We use the notation (𝑋, 𝑌 ) for the space
of all (linear bounded) operators from 𝑋 into 𝑌 endowed with the operator norm. By 𝐼𝑋 we denote the identity map on 𝑋.
An operator ℎ ∈ (𝑋, 𝑌 ) is an embedding if ℎ(𝑋) is isomorphic to 𝑋. For an embedding we use the arrow →. The operator
𝑘𝑋 ∶ 𝑋 → 𝑋∗∗ is the canonical embedding of 𝑋 into its bidual 𝑋∗∗.

In what follows, the notation (𝑒∗𝑛) will be used for the canonical unit vector basis of 𝓁1 while (𝑒𝑛) will be the canonical unit

vector basis in 𝑐0 or in 𝓁𝑝 with 𝑝 > 1. By ⊗̂
𝑘

𝜋𝑠,𝑠
𝑋 we denote the completion of the symmetric 𝑘-fold tensor product of𝑋 endowed

with the symmetric projective tensor norm [20, 2.2]. Given 𝑘 ∈ ℕ, we represent by  (
𝑘𝑋, 𝑌

)
the space of all 𝑘-homogeneous

(continuous) polynomials from 𝑋 into 𝑌 endowed with the supremum norm. For the general theory of polynomials on Banach
spaces, we refer the reader to [16] and [32].

For a polynomial 𝑃 ∈  (
𝑘𝑋, 𝑌

)
, its linearization

𝑃 ∶ ⊗̂𝑘𝜋𝑠,𝑠𝑋 ←→ 𝑌

is the operator given by

𝑃

(
𝑛∑
𝑗=1
𝜆𝑗𝑥𝑗⊗

(𝑘)… ⊗𝑥𝑗

)
=

𝑛∑
𝑗=1
𝜆𝑗𝑃 (𝑥𝑗)

for all 𝑥𝑗 ∈ 𝑋 and 𝜆𝑗 ∈ 𝕂 (1 ≤ 𝑗 ≤ 𝑛).
Every polynomial 𝑃 ∈  (

𝑘𝑋, 𝑌
)

has an extension to a polynomial

𝑃 ∈ (
𝑘𝑋∗∗, 𝑌 ∗∗)

called the Aron–Berner extension of 𝑃 . The origin of the Aron–Berner extension goes back to [2]. A survey of its properties
may be seen in [40].

Recall that an operator ideal  is said to be surjective [34, 4.7.9] if, given 𝑇 ∈ (𝑋, 𝑌 ) and a surjective operator 𝑞 ∶ 𝐺 → 𝑋,
we have that 𝑇 ∈  whenever 𝑇 𝑞 ∈  . We say that  is closed [34, 4.2.4] if, for all 𝑋 and 𝑌 , the space

 (𝑋, 𝑌 ) ∶= {𝑇 ∈ (𝑋, 𝑌 ) ∶ 𝑇 ∈  }

is closed in (𝑋, 𝑌 ).
A list of surjective operator ideals may be seen in [24]; here we consider some of them.
We recall some definitions and results from [13].

Definition 1.1. Let  be a closed surjective operator ideal. As in [38] (see also [24, page 472]), we denote by  (𝑋) the
collection of all sets 𝐴 ⊂ 𝑋 so that 𝐴 ⊆ 𝑇 (𝐵𝑍 ) for some Banach space 𝑍 and some operator 𝑇 ∈  (𝑍,𝑋).

Given a closed surjective operator ideal  , let


(
𝑘𝑋, 𝑌

)
∶=

{
𝑃 ∈ (

𝑘𝑋, 𝑌
)
∶ 𝑃 (𝐵𝑋) ∈  (𝑌 )

}
.
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The space 
(
𝑘𝑋, 𝑌

)
will be endowed with the supremum norm. This construction is used in [4] for general operator

ideals  .
The following result can be found in [13, Proposition 2.4]. See also the proof of [39, Proposition 1] which works for  with

an immediate argument.

Proposition 1.2. If  is a closed surjective operator ideal, the space 
(
𝑘𝑋, 𝑌

)
is closed in (

𝑘𝑋, 𝑌
)
.

Proposition 1.3. Given Banach spaces 𝑋 and 𝑌 , and 𝑘 ∈ ℕ, the space (
𝑘𝑋, 𝑌

)
is isomorphic to a complemented subspace

of (
𝑘+1𝑋, 𝑌

)
, that is, there are operators 𝑗 and 𝜋

(
𝑘𝑋, 𝑌

) 𝑗
−−−→(

𝑘+1𝑋, 𝑌
) 𝜋
−−−→(

𝑘𝑋, 𝑌
)

such that 𝜋 ◦ 𝑗 = 𝐼(𝑘𝑋,𝑌 ). Moreover, if  is a closed surjective operator ideal, restricting 𝑗 and 𝜋 to the spaces  , we have


(
𝑘𝑋, 𝑌

) 𝑗
−−−→

(
𝑘+1𝑋, 𝑌

) 𝜋
−−−→

(
𝑘𝑋, 𝑌

)
,

that is, 𝑗 and 𝜋 take polynomials in  into polynomials in  .

The proof of the above result is contained in [5, Proposition 5.3] (see also [8, Proposition 5] and [13, Propositions 2.5]) and
implies that, given 𝜓 ∈ 𝑆𝑋∗ , a polynomial 𝑄 belongs to 

(
𝑘𝑋, 𝑌

)
if and only if the polynomial 𝑗(𝑄) ∶= 𝜓𝑄 belongs to


(
𝑘+1𝑋, 𝑌

)
, where 𝜓𝑄 is pointwise multiplication of 𝜓 and 𝑄.

For some of the results in this paper, Figure 1 may be helpful. The diagram in the figure is adapted from code of [19] which
is based on [9].

limited set Dunford-
Pettis set

weakly compact
set Asplund set Rosenthal

set

compact set Grothendieck set

F I G U R E 1 Some classes of sets in a Banach space

2 THE WEAKLY COMPACT AND RELATED CASES

If  denotes the (surjective) ideal of weakly compact operators, 
(
𝑘𝑋, 𝑌

)
is the space of all 𝑘-homogeneous weakly compact

polynomials from 𝑋 into 𝑌 , that is, the space of all polynomials 𝑃 ∈ (
𝑘𝑋, 𝑌

)
such that 𝑃 (𝐵𝑋) is relatively weakly compact

in 𝑌 . We show that there does not exist a universal non-weakly compact polynomial, and extend this result to related classes.

Proposition 2.1. Let

𝑃 ∶= 𝜙1⋯𝜙𝑘−1𝑇 ∈ (
𝑘𝑋, 𝑌

)
∖

(
𝑘𝑋, 𝑌

)
,

where 𝜙1,… , 𝜙𝑘−1 ∈ 𝑋∗, not necessarily pairwise different, and 𝑇 ∈ (𝑋, 𝑌 ). Then, the Aron–Berner extension 𝑃 of 𝑃 is not
𝑌 -valued.

Proof. Since 𝑃 ∉ 
(
𝑘𝑋, 𝑌

)
, there is a net (𝑥𝛼) ⊂ 𝐵𝑋 such that (𝑃 (𝑥𝛼))𝛼 does not have any weakly convergent subnet [29,

Chapter 5, Theorem 2]. In particular, for every subnet (𝑥𝛽) of (𝑥𝛼), we must have 𝜙𝑗(𝑥𝛽) ↛ 0 (1 ≤ 𝑗 ≤ 𝑘 − 1); otherwise, since
𝑇 is bounded, we would have

𝑃 (𝑥𝛽) = 𝜙1(𝑥𝛽)⋯𝜙𝑘−1(𝑥𝛽)𝑇 (𝑥𝛽) ←→ 0 ,

a contradiction.
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Using the weak∗-compactness of 𝐵𝑋∗∗ and passing to a subnet if necessary, we may assume that (𝑥𝛼) is weak∗-convergent to
some 𝑥∗∗ ∈ 𝐵𝑋∗∗ [29, Chapter 5, Theorem 2]. In particular,

⟨𝜙𝑗, 𝑥∗∗⟩ = lim
𝛼
𝜙𝑗(𝑥𝛼) ≠ 0 for 1 ≤ 𝑗 ≤ 𝑘 − 1 .

Since the second adjoint 𝑇 ∗∗ of 𝑇 is weak∗-to-weak∗ continuous, we have

𝑇 (𝑥𝛼)
weak∗
−−−−→ 𝑇 ∗∗(𝑥∗∗) .

If 𝑇 ∗∗(𝑥∗∗) ∈ 𝑌 , the net (𝑇 (𝑥𝛼))𝛼 would be weakly convergent, and the net

(𝑃 (𝑥𝛼))𝛼 =
(
𝜙1(𝑥𝛼)⋯𝜙𝑘−1(𝑥𝛼)𝑇 (𝑥𝛼)

)
𝛼

would also be weakly convergent, a contradiction.
Therefore,

𝑃 (𝑥∗∗) = ⟨𝜙1, 𝑥∗∗⟩⋯ ⟨𝜙𝑘−1, 𝑥∗∗⟩𝑇 ∗∗(𝑥∗∗) ∈ 𝑌 ∗∗∖𝑌

and the proof is finished. □

Remark 2.2. Note that there are non-weakly compact polynomials in(
𝑘𝑋, 𝑌

)
with 𝑌 -valued Aron–Berner extension. A typical

example is the polynomial 𝑄 ∈ (
𝑘𝓁2,𝓁1

)
used in the proof of the following Theorem 2.3.

Theorem 2.3. For 𝑘 > 1, there does not exist a universal non-weakly compact 𝑘-homogeneous polynomial.

Proof. Suppose 𝑃 ∈ (
𝑘𝐸, 𝐹

)
is universal non-weakly compact. Let 𝑄 ∈ (

𝑘𝓁2,𝓁1
)

be the polynomial given by
𝑄(𝜂) ∶=

(
𝜂𝑘𝑛
)∞
𝑛=1 for 𝜂 = (𝜂𝑛)∞𝑛=1 ∈ 𝓁2. Since 𝑄 ∉ 

(
𝑘𝓁2,𝓁1

)
, we may factor 𝑃 in the form

2 1

E F

Q

BA

P

Since 𝑄̃ = 𝑄, the Aron–Berner extension of 𝐵 ◦𝑄 ◦𝐴 is 𝐹 -valued. Therefore, 𝑃 (𝐸∗∗) ⊆ 𝐹 .
Choose an operator 𝑆 ∈ (𝑋, 𝑌 )∖(𝑋, 𝑌 ) and 𝜓1,… , 𝜓𝑘−1 ∈ 𝑆𝑋∗ . By iterating the proof of Proposition 1.3 (see [13,

proofs of Proposition 2.2 and 2.5]), we have

𝜓1⋯𝜓𝑘−1𝑆 ∈ (
𝑘𝑋, 𝑌

)
∖

(
𝑘𝑋, 𝑌

)
.

Hence, there are 𝑈 ∈ (𝐸,𝑋) and 𝑉 ∈ (𝑌 , 𝐹 ) such that 𝑃 factors in the form

X Y

E F

ψ1 · · ·ψk−1S

VU

P

Easily, we have

𝑃 = 𝑉 ◦ (𝜓1⋯𝜓𝑘−1𝑆) ◦𝑈 = (𝜓1 ◦𝑈 )⋯ (𝜓𝑘−1 ◦𝑈 )𝑇 ∉ 
(
𝑘𝐸, 𝐹

)
,

where 𝑇 ∶= 𝑉 ◦𝑆 ◦𝑈 ∈ (𝐸, 𝐹 ).
By Proposition 2.1, 𝑃 (𝐸∗∗) ⊄ 𝐹 , a contradiction. □

Recall that a subset 𝐴 of a Banach space is said to be Rosenthal if every sequence in 𝐴 has a weak Cauchy subsequence. An
operator 𝑇 ∈ (𝑋, 𝑌 ) is said to be Rosenthal if 𝑇 (𝐵𝑋) is a Rosenthal set. We denote by  the ideal of Rosenthal operators.
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Proposition 2.4. Every embedding of 𝓁1 into 𝓁∞ is a universal non-Rosenthal operator.

Proof. Let ℎ ∶ 𝓁1 → 𝓁∞ be an embedding. Let 𝑇 ∶ 𝑋 → 𝑌 be a non-Rosenthal operator. Let (𝑥𝑛) ⊂ 𝑋 be a sequence such
that (𝑇 (𝑥𝑛)) does not admit a weak Cauchy subsequence. By Rosenthal’s 𝓁1-theorem, there is a subsequence that we still
denote by (𝑇 (𝑥𝑛)) equivalent to the 𝓁1-basis. Define 𝐴 ∈ (𝓁1, 𝑋) by 𝐴(𝑒∗

𝑘
) ∶= 𝑥𝑘. Let 𝐵0 ∶ span{𝑇 (𝑥𝑛) ∶ 𝑛 ∈ ℕ} → 𝓁1 be

the isomorphism such that 𝐵0(𝑇 (𝑥𝑛)) = 𝑒∗𝑛. Let 𝐵1 ∶= ℎ ◦𝐵0. By the injectivity of 𝓁∞, 𝐵1 admits an extension to an operator
𝐵 ∈ (𝑌 ,𝓁∞). Then, the following diagram commutes:

X Y

1 ∞

T

A B

h

and the proof is finished. □

Corollary 2.5. Let  be a closed surjective operator ideal such that  ⊆  ⊆ . Then, for 𝑘 > 1, there does not exist a
universal non- 𝑘-homogeneous polynomial.

Proof. It is enough to note that the polynomial 𝑄 used in the proof of Theorem 2.3 is non-Rosenthal and, therefore, it is not in
𝑃 and that Proposition 2.1 also holds for polynomials of the form

𝜓1⋯𝜓𝑘−1𝑆 ∈ (
𝑘𝑋, 𝑌

)
∖

(
𝑘𝑋, 𝑌

)
. □

An operator 𝑇 ∈ (𝑋, 𝑌 ) is said to be Asplund if it factors through a Banach space each of whose separable subspaces has a
separable dual [37].

It is proved in [37, Theorem 2.13] that the Haar operator𝐻 ∶ 𝓁1 → 𝓁∞(Δ, 𝜇), where 𝜇 is the Haar measure on the Cantor set
Δ, is a universal non-Asplund operator. The ideal of Asplund operators (see also [35]) satisfies the hypothesis of Corollary 2.5.
Hence, we have:

Corollary 2.6. For 𝑘 > 1, there does not exist a universal non-Asplund 𝑘-homogeneous polynomial.

Consider the (surjective) ideal  of Grothendieck operators. Recall that 𝑇 ∈ (𝑋, 𝑌 ) is a Grothendieck operator [17] if
every 𝑤∗-null sequence (𝑦∗𝑛) ⊂ 𝑌

∗ is mapped by the adjoint 𝑇 ∗ into a weakly null sequence (𝑇 ∗(𝑦∗𝑛)) in 𝑋∗. A subset 𝐾 ⊂ 𝑋 is
called a Grothendieck set if, for all 𝑇 ∈ (𝑋, 𝑐0), the set 𝑇 (𝐾) is relatively weakly compact in 𝑐0. Hence, 𝑇 ∈ (𝑋, 𝑌 ) if and
only if, for every bounded subset 𝐴 ⊂ 𝑋, 𝑇 (𝐴) is a Grothendieck set in 𝑌 [17, Section 1].

We shall prove that there is a universal non-Grothendieck operator but there does not exist a universal non-Grothendieck
polynomial.

Theorem 2.7. The operator 𝑇0 ∈ (𝓁1, 𝑐0) given by 𝑇0(𝑒∗𝑛) ∶= 𝑒1 + 𝑒2 +⋯ + 𝑒𝑛 for every 𝑛 ∈ ℕ is universal for the class of
non-Grothendieck operators.

Proof. Let 𝑇 ∈ (𝑋, 𝑌 ) ⧵ (𝑋, 𝑌 ). Then, there is 𝑆 ∈ (𝑌 , 𝑐0) such that 𝑆 ◦ 𝑇 is non-weakly compact [17, Lemma 1.3].
Therefore, we can find a sequence (𝑥𝑛) ⊂ 𝐵𝑋 such that (𝑆(𝑇 (𝑥𝑛))) contains no weakly convergent subsequence. By [26,
Theorem I.1.10], we can assume that (𝑆(𝑇 (𝑥𝑛))) is a basic weak Cauchy sequence. Let (𝑦∗𝑛) ⊂ 𝓁1 be the coefficient functionals
of (𝑆(𝑇 (𝑥𝑛))). Every 𝑒 ∈ span{𝑆(𝑇 (𝑥𝑛))} has a unique representation of the form 𝑒 =

∑∞
𝑛=1 𝑦

∗
𝑛(𝑒)𝑆(𝑇 (𝑥𝑛)). As in the proof of

[30, Theorem 8.1], the sequence
(∑𝑛

𝑖=1 𝑦
∗
𝑖
(𝑒)

)∞
𝑛=1 is convergent. Define

𝑈 ∶ span{𝑆(𝑇 (𝑥𝑛))} ←→ 𝑐0 by 𝑈 (𝑒) ∶=

( ∞∑
𝑛=1
𝑦∗𝑛(𝑒),

∞∑
𝑛=2
𝑦∗𝑛(𝑒),…

)
∈ 𝑐0 .

Clearly, 𝑈 is bounded. By the separable injectivity of 𝑐0 [6, Theorem 2.3], 𝑈 has an extension 𝑈 ∈ (𝑐0, 𝑐0). Let 𝐴 ∈ (𝓁1, 𝑋)
be given by 𝐴(𝑒∗𝑛) ∶= 𝑥𝑛. Then, for every 𝑚 ∈ ℕ, we have



CILIA AND GUTIÉRREZ 2793

𝑈 ◦𝑆 ◦ 𝑇 ◦𝐴
(
𝑒∗𝑚

)
= 𝑈 ◦𝑆 ◦ 𝑇 (𝑥𝑚)

=

( ∞∑
𝑛=1
𝑦∗𝑛(𝑆(𝑇 (𝑥𝑚))),

∞∑
𝑛=2
𝑦∗𝑛(𝑆(𝑇 (𝑥𝑚))),⋯

)

=
(
1, (𝑚)…, 1, 0, 0,…

)
= 𝑒1 + 𝑒2 +⋯ + 𝑒𝑚 = 𝑇0(𝑒∗𝑚) ,

so the diagram

X Y c0

1 c0

T S

A U

T0

commutes and this finishes the proof. □

Theorem 2.8. For 𝑘 > 1, there does not exist a universal non-Grothendieck 𝑘-homogeneous polynomial.

Proof. Since the unit vector basis of 𝓁1 is not a Grothendieck set in 𝓁1, the polynomial 𝑄 given in the proof of Theorem 2.3
is non-Grothendieck. Therefore, by the proof of Theorem 2.3, if there were a universal non-Grothendieck 𝑘-homogeneous
polynomial 𝑃0 ∈ (

𝑘𝐸, 𝐹
)
, its Aron–Berner extension would be 𝐹 -valued. On the other hand, if 𝑃 ∶= 𝜙1⋯𝜙𝑘−1𝑇 ∈

(
𝑘𝑋, 𝑌

)
∖

(
𝑘𝑋, 𝑌

)
, 𝑃 is also non-weakly compact. By Proposition 2.1, 𝑃 (𝑋∗∗) ⊄ 𝑌 , and an easy adaptation of the proof

of Theorem 2.3 yields a contradiction. □

One of the referees has kindly pointed out the interest to study the existence of a universal non-Radon–Nikodým operator.
Recall that an operator 𝑇 ∈ (𝐸, 𝐹 ) is called Radon–Nikodým if for every probability measure space (Ω, 𝜇) and every operator
𝑆 ∈ (𝐿1(Ω, 𝜇), 𝐸), the operator 𝑇 ◦𝑆 is representable, that is, there is 𝑔 ∈ 𝐿∞(𝜇,𝐸) such that

𝑇 ◦𝑆(𝑓 ) = ∫Ω 𝑓𝑔 d𝜇 (𝑓 ∈ 𝐿1(Ω, 𝜇))

(see [34, 24.2], [15, Definition III.1.3]).
We feel that the search for a universal non-Radon–Nikodým operator would require some effort that we leave for a (hopefully)

forthcoming paper. This solution would possibly come from a careful adaptation of ideas of [21].
Let (𝐼𝑛) be a sequence of subintervals of [0, 1] such that each point of [0, 1] belongs to infinitely many 𝐼𝑛 and 𝜇(𝐼𝑛) → 0

where 𝜇 is Lebesgue measure on [0, 1] [11]. Define 𝑈 ∈ (𝐿1[0, 1], 𝑐0) by

𝑈 (𝑓 ) ∶=

(
∫𝐼𝑛 𝑓 d𝜇

)∞

𝑛=1

.

Then 𝑈 is non-Radon–Nikodým but is near Radon–Nikodým (also called strongly regular) [28]. The operator 𝑈 might be a
candidate for universality for the class of non-Radon–Nikodým operators.

3 OTHER CLASSES OF OPERATORS AND POLYNOMIALS

In this section we consider other surjective operator ideals, namely the ideal of limited operators and the ideal of Dunford–Pettis
operators. A bounded subset 𝐾 ⊂ 𝑋 is limited (respectively, Dunford–Pettis) if

lim
𝑛

sup
𝑥∈𝐾

||𝑥∗𝑛(𝑥)|| = 0

for every weak∗-null (respectively, weakly null) sequence (𝑥∗𝑛) ⊂ 𝑋
∗.
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A bounded subset 𝐾 ⊂ 𝑋∗ is called an 𝐿-set if

lim
𝑛

sup
𝑥∗∈𝐾

||𝑥∗(𝑥𝑛)|| = 0

for every weakly null sequence (𝑥𝑛) ⊂ 𝑋. It is easily seen that every relatively compact subset of 𝑋 is limited, every limited set
is Dunford–Pettis, and every Dunford–Pettis set in a dual space is an 𝐿-set (this last assertion is obvious from the definitions
and is stated in the proof of [18, Corollary 1]), but the converse assertions are false in general.

An operator 𝑇 ∈ (𝑋, 𝑌 ) is limited (respectively, Dunford–Pettis) if 𝑇 (𝐵𝑋) is limited (respectively, Dunford–Pettis). We
prove the existence of universal non-limited operators and the nonexistence of a universal non-Dunford–Pettis operator. However,
we show that there is a class of universal non-Dunford–Pettis operators. We also study the related polynomial cases.

Proposition 3.1. The natural inclusion 𝑖 ∶ 𝓁1 → 𝑐0 is a universal non-limited operator.

Proof. Let 𝑇 ∈ (𝑋, 𝑌 ) be a non-limited operator. Then, there are a bounded sequence (𝑥𝑛) ⊂ 𝑋, a weak∗-null sequence
(𝑦∗𝑛) ⊂ 𝑌

∗, and 𝛿 > 0 such that

|||⟨𝑇 (𝑥𝑛), 𝑦∗𝑛⟩||| > 𝛿 (𝑛 ∈ ℕ) .

The sequence
(
𝑇 ∗(𝑦∗𝑛)) is weak∗-null but it is not norm null. Hence, by [25, Lemma 3.1.19], there are a subsequence

(
𝑇 ∗

(
𝑦∗𝑛𝑘

))
and a bounded sequence (𝑧𝑛) ⊂ 𝑋 such that ⟨

𝑧𝑛, 𝑇
∗(𝑦∗𝑛𝑘)⟩ = 𝛿𝑛,𝑘 .

Define 𝐴 ∈ (𝓁1, 𝑋) by 𝐴
(
𝑒∗𝑛
)
∶= 𝑧𝑛 and 𝐵 ∈ (𝑌 , 𝑐0) by

𝐵(𝑦) ∶=
(
𝑦∗𝑛𝑘

(𝑦)
)∞

𝑘=1
.

We show that the following diagram commutes:

X Y

1 c0

T

A B

i

Indeed,

𝐵
(
𝑇
(
𝐴
(
𝑒∗𝑚

)))
= 𝐵(𝑇 (𝑧𝑚)) =

(⟨
𝑇 (𝑧𝑚), 𝑦∗𝑛𝑘

⟩)∞

𝑘=1
=
(⟨
𝑧𝑚, 𝑇

∗
(
𝑦∗𝑛𝑘

)⟩)∞

𝑘=1
= (𝛿𝑚,𝑘)∞𝑘=1 = 𝑒𝑚 = 𝑖(𝑒∗𝑚) ,

so 𝐵 ◦ 𝑇 ◦𝐴 = 𝑖. □

We say that a polynomial 𝑃 ∈ (
𝑘𝑋, 𝑌

)
is limited if 𝑃 (𝐵𝑋) is a limited set in 𝑌 . We shall prove that there does not exist a

universal non-limited polynomial.

Lemma 3.2. If there is a universal non-limited 𝑘-homogeneous polynomial, then there is a universal non-limited 𝑘-homogeneous
polynomial defined on 𝓁1.

Proof. If 𝑃0 ∈ (
𝑘𝐸, 𝐹

)
is a universal non-limited polynomial, there is a sequence (𝑥𝑛) ⊂ 𝐵𝐸 such that (𝑃 (𝑥𝑛)) is not limited.

Define 𝐴 ∈ (𝓁1, 𝐸) by 𝐴
(
𝑒∗𝑛
)
= 𝑥𝑛 for all 𝑛 ∈ ℕ. Then 𝑃0 ◦𝐴 is a universal non-limited polynomial on 𝓁1. □

Proposition 3.3. If 𝑃0 ∈ (
𝑘𝓁1, 𝐹

)
is a universal non-limited polynomial then we can take 𝐹 = 𝑐0 and 𝑃0 = 𝜉𝑘−1𝑖 where

𝑖 ∶ 𝓁1 → 𝑐0 is the natural inclusion and 𝜉 ∈ 𝓁∞.

Proof. The proof is as in [13, Proposition 2.7]. We sketch it for the reader’s convenience. Since 𝑃0 ∈ (𝑘
𝓁1, 𝐹

)
is non-

limited, Proposition 1.3 implies that there is a non-limited operator 𝑇 ∈ (𝓁1, 𝐹 ). Choose 0 ≠ 𝜂 ∈ 𝓁∞. Define 𝑃 ∈ (
𝑘𝓁1, 𝐹

)
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by 𝑃 (𝑥∗) ∶= ⟨𝑥∗, 𝜂⟩𝑘−1𝑇 (𝑥∗) for all 𝑥∗ ∈ 𝓁1. By Proposition 1.3, 𝑃 is non-limited. Therefore, 𝑃0 factors through 𝜂𝑘−1𝑇 ∈
(

𝑘𝓁1, 𝐹
)

in the form 𝑃0 = 𝐵 ◦
(
𝜂𝑘−1𝑇

)
◦𝐴. Letting 𝑆 ∶= 𝐵 ◦ 𝑇 ◦𝐴 and 𝜓 ∶= 𝜂 ◦𝐴 ∈ 𝓁∞, we obtain 𝑃0 = 𝜓𝑘−1𝑆. Again

by Proposition 1.3, 𝑖 factors through 𝑆. Letting 𝜉 ∶= 𝜓 ◦𝑈 ∈ 𝓁∞, we obtain that 𝜉𝑘−1𝑖 factors through 𝜓𝑘−1𝑆 = 𝑃0, and 𝜉𝑘−1𝑖
is universal for the class of non-limited polynomials. □

Theorem 3.4. For 𝑘 > 1, there does not exist a universal non-limited 𝑘-homogeneous polynomial.

Proof. Suppose that there is a universal non-limited 𝑘-homogeneous polynomial 𝑃0. By Proposition 3.3 it may be chosen of the
form 𝑃0 = 𝜉𝑘−1𝑖 ∈ (

𝑘𝓁1, 𝑐0
)
. As in [13, Theorem 2.8], define 𝑃 ∈ (

𝑘𝓁1, 𝑐0
)

by

𝑃 (𝜙) ∶=
(
𝜙𝑘−21 𝜙2𝑛

)∞
𝑛=1 (𝜙 = (𝜙𝑛)∞𝑛=1 ∈ 𝓁1) .

Note that 𝑃 is non-limited. Indeed, for 𝑟 > 1,

𝑃
(
𝑒∗1 + 𝑒

∗
𝑟

)
=
(⟨
𝑒1, 𝑒

∗
1 + 𝑒

∗
𝑟

⟩𝑘−2 ⟨
𝑒𝑛, 𝑒

∗
1 + 𝑒

∗
𝑟

⟩2)∞

𝑛=1
=
(⟨
𝑒𝑛, 𝑒

∗
1 + 𝑒

∗
𝑟

⟩2)∞

𝑛=1
= 𝑒1 + 𝑒𝑟

and
sup
𝑟

|||⟨𝑃 (
𝑒∗1 + 𝑒

∗
𝑟

)
, 𝑒∗𝑛

⟩||| = sup
𝑟

|||⟨𝑒1 + 𝑒𝑟, 𝑒∗𝑛⟩||| = 1 for all 𝑟 ∈ ℕ (𝑟 > 1) .

Since
(
𝑒∗𝑛
)

is weak∗-null in 𝓁1 and 𝑒∗1 + 𝑒
∗
𝑟 ∈ 2𝐵𝓁1

, we obtain that 𝑃
(
2𝐵𝓁1

)
= 2𝑘𝑃

(
𝐵𝓁1

)
is non-limited, so 𝑃 is non-limited.

By the assumption, there are operators 𝐴 ∈ (𝓁1,𝓁1) and 𝐵 ∈ (𝑐0, 𝑐0) such that the following diagram commutes:

1 c0

1 c0

P

A B

ξk−1i

The same proof of [13, Theorem 2.8], which is omitted because it is rather technical, leads to a contradiction which finishes the
proof. □

We now consider the class of Dunford–Pettis operators. We shall prove that there is neither a universal non-Dunford–Pettis
operator nor a universal non-Dunford–Pettis polynomial. Recall that an operator 𝑇 ∈ (𝑋, 𝑌 ) is completely continuous if it
takes weakly null sequences of 𝑋 into norm null sequences in 𝑌 .

Proposition 3.5. ([22, Proposition 3.2]) An operator 𝑇 ∈ (𝑋, 𝑌 ) is completely continuous if and only if 𝑇 ∗(𝐵𝑌 ∗
)

is an 𝐿-set.

Theorem 3.6. There does not exist a universal non-Dunford–Pettis operator.

Proof. Suppose that 𝑇0 ∈ (𝐸, 𝐹 ) is a universal non-Dunford–Pettis operator. Let 𝑇 ∈ (𝑋, 𝑌 ) be a non-completely continuous
operator. We follow the first step of the proof of [21, Theorem 5] to construct a “better” non-completely continuous operator
𝐽 ∈ (𝑍,𝓁∞) where 𝑍 will be reflexive. We can find a weakly null sequence (𝑥𝑛) ⊂ 𝑋 with (𝑇 (𝑥𝑛)) bounded away from zero.
By passing to a subsequence if necessary, we can assume that (𝑇 (𝑥𝑛)) is a basic sequence in 𝑌 . By [14, Corollary 7], there
exists a reflexive Banach space 𝑍 with an unconditional basis (𝑧𝑛) such that the operator 𝑆 ∶ 𝑍 → 𝑋 which takes 𝑧𝑛 into 𝑥𝑛 is
continuous. Let 𝑈 ∈ (𝑌 ,𝓁∞) be given by 𝑈 (𝑦) ∶= (⟨𝑦, 𝑦∗𝑛⟩)∞𝑛=1 where

(
𝑦∗𝑛
)

is a bounded sequence in 𝑌 ∗ such that
{
𝑇 (𝑥𝑛), 𝑦∗𝑛

}
is a biorthogonal system. The operator 𝐽 ∶= 𝑈 ◦ 𝑇 ◦𝑆 ∈ (𝑍,𝓁∞) takes 𝑧𝑛 into the 𝑛th unit vector 𝑒𝑛 of 𝓁∞. The reflexivity of
𝑍 implies that 𝐽 is non-completely continuous.

By Proposition 3.5, 𝐽 ∗ ∈ (𝓁∗
∞, 𝑍

∗) is non-Dunford–Pettis, since every Dunford–Pettis set in a dual space is an 𝐿-set (this
is clear from the definitions and is stated in the proof of [18, Corollary 1]). Since 𝑇0 is universal non-Dunford–Pettis, there are
𝐴 ∈ (𝐸,𝓁∗

∞
)

and 𝐵 ∈ (𝑍∗, 𝐹 ) such that the following diagram commutes:

∗
∞ Z∗

E F

J∗

A B

T0
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Taking adjoints:

∞

F ∗ E∗

J∗∗ = J

B∗ A∗ ◦ k ∞

T∗
0

so the following diagram commutes:

∞

F ∗ E∗

S

J

T U

A∗ ◦ k ∞ ◦ UB∗ S ◦ B∗

T∗
0

A∗ ◦ k ∞

Since 𝑇0 is non-Dunford–Pettis, 𝑇 ∗
0 is non-completely continuous [23, Proposition 2.1]. The above diagram shows that 𝑇 ∗

0 is a
universal non-completely continuous operator which is in contradiction with [21, Theorem 5]. This completes the proof. □

The following two results draw heavily on [21]. The first one yields the existence of a class of universal non-Dunford–Pettis
operators. The second one gives more information when the range space is super-reflexive.

Theorem 3.7. Let  be the class of all operators from 𝓁1 into a reflexive sequence space with a normalized unconditional basis
(𝑢𝑛) which take the unit vector basis of 𝓁1 into (𝑢𝑛). Then  is universal for the class of non-Dunford–Pettis operators.

Proof. Let 𝑇 ∈ (𝑋, 𝑌 ) be a non-Dunford–Pettis operator. Then, 𝑇 ∗ is non-completely continuous [23, Proposition 2.1]. So
there are a weakly null sequence (𝑦∗𝑛) ⊂ 𝑌

∗ and 𝛿 > 0 such that

‖‖‖𝑇 ∗(𝑦∗𝑛)‖‖‖ > 𝛿 (𝑛 ∈ ℕ) .

We can assume that
(
𝑇 ∗(𝑦∗𝑛)) is basic. By [25, Lemma 3.1.19], we can find a bounded sequence (𝑥𝑗) in 𝑋 such that⟨

𝑥𝑗, 𝑇
∗(𝑦∗𝑛)⟩ = 𝛿𝑗,𝑛. As in the beginning of the proof of Theorem 3.6, there are a reflexive Banach space𝐺 with an unconditional

basis (𝑔𝑛), and an operator𝐴 ∈ (𝐺, 𝑌 ∗) such that𝐴(𝑔𝑛) = 𝑦∗𝑛. Define𝐵 ∈ (𝑋∗,𝓁∞) by𝐵(𝑥∗) ∶=
(⟨
𝑥𝑗, 𝑥

∗⟩)∞
𝑗=1 ∈ 𝓁∞. Then

𝐵 ◦ 𝑇 ∗ ◦𝐴(𝑔𝑛) = 𝐵 ◦ 𝑇 ∗(𝑦∗𝑛) = (⟨
𝑥𝑗, 𝑇

∗(𝑦∗𝑛)⟩)∞𝑗=1 = (𝛿𝑗,𝑛)∞𝑗=1 = 𝑒𝑛 .

Letting 𝐽 ∈ (𝐺,𝓁∞) be defined by 𝐽 (𝑔𝑛) = 𝑒𝑛, the diagram

Y ∗ X∗

∞

T∗

J

A B

is commutative. The sequence
(
𝑔∗𝑛
)

of the coefficient functionals of (𝑔𝑛) is an unconditional basis of 𝐺∗ [31, Proposition 1.b.1,
Theorem 1.b.5, and page 19]. Define the operators 𝑆 ∈ (𝓁1, 𝐺∗), 𝑈 ∈ (𝓁1, 𝑋), and 𝑉 ∈ (𝑌 ,𝐺∗) by

𝑆(𝑒∗𝑛) ∶= 𝑔
∗
𝑛 (𝑛 ∈ ℕ) ,

𝑈 (𝑒∗𝑛) ∶= 𝑥𝑛 (𝑛 ∈ ℕ) ,

𝑉 ∶= 𝐴∗ ◦ 𝑘𝑌 .
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Then, ⟨
𝑔𝑛, 𝑉 ◦ 𝑇 ◦𝑈

(
𝑒∗𝑚

)⟩
= ⟨𝑔𝑛, 𝑉 ◦ 𝑇 (𝑥𝑚)⟩ = ⟨𝑔𝑛, 𝐴∗ ◦ 𝑘𝑌 ◦ 𝑇 (𝑥𝑚)⟩
= ⟨𝐴(𝑔𝑛), 𝑘𝑌 ◦ 𝑇 (𝑥𝑚)⟩ = ⟨𝑇 (𝑥𝑚), 𝐴(𝑔𝑛)⟩
=
⟨
𝑇 (𝑥𝑚), 𝑦∗𝑛

⟩
= 𝛿𝑛,𝑚 =

⟨
𝑔𝑛, 𝑔

∗
𝑚

⟩
=
⟨
𝑔𝑛, 𝑆

(
𝑒∗𝑚

)⟩
.

Hence, the following diagram

X Y

1 G∗

T

S

U V

commutes and the proof is complete since 𝑆 ∈ . □

Theorem 3.8. Let  be the collection of all natural inclusions 𝑖𝑞 ∶ 𝓁1 → 𝓁𝑞 (1 < 𝑞 <∞). Then  is universal for the class of
non-Dunford–Pettis operators with range in a super-reflexive space.

Proof. Let 𝑇 ∈ (𝑋, 𝑌 ) be a non-Dunford–Pettis operator, with 𝑌 a super-reflexive space. Then 𝑇 ∗ is non-completely con-
tinuous, so we can find a weakly null sequence

(
𝑦∗𝑛
)

in 𝑌 ∗ such that
(
𝑇 ∗(𝑦∗𝑛)) is bounded away from zero. We can assume

that
(
𝑦∗𝑛
)

is normalized and basic. Again by [25, Lemma 3.1.19], passing to a subsequence if necessary, we can find a bounded
sequence (𝑥𝑗) in𝑋 such that

⟨
𝑥𝑗, 𝑇

∗(𝑦∗𝑛)⟩ = 𝛿𝑗,𝑛. Since 𝑌 ∗ is super-reflexive [7, 4, I, §3, Corollary 8], there are 1 < 𝑝 <∞ and
𝐴 ∈ (𝓁𝑝, 𝑌 ∗) such that 𝐴(𝑒𝑛) = 𝑦∗𝑛 for every 𝑛 ∈ ℕ [7, 4, II, Theorem 1]. Let 𝑞 be the conjugate index of 𝑝. Let 𝑉 ∶= 𝐴∗ ◦ 𝑘𝑌
and let 𝑈 ∈ (𝓁1, 𝑋) be given by 𝑈

(
𝑒∗𝑛
)
= 𝑥𝑛. Then we have⟨

𝑒𝑛, 𝑉 ◦ 𝑇 ◦𝑈
(
𝑒∗𝑚

)⟩
= ⟨𝑒𝑛, 𝐴∗ ◦ 𝑘𝑌 ◦ 𝑇 (𝑥𝑚)⟩ = ⟨𝐴(𝑒𝑛), 𝑘𝑌 ◦ 𝑇 (𝑥𝑚)⟩
=
⟨
𝑦∗𝑛, 𝑘𝑌 ◦ 𝑇 (𝑥𝑚)

⟩
=
⟨
𝑇 (𝑥𝑚), 𝑦∗𝑛

⟩
= 𝛿𝑚,𝑛 =

⟨
𝑒𝑛, 𝑖𝑞

(
𝑒∗𝑚

)⟩
,

and the diagram

X Y

1 q

T

iq

U V

is commutative, which concludes the proof. □

We say that a polynomial 𝑃 ∈ (
𝑘𝐸, 𝐹

)
is Dunford–Pettis if 𝑃

(
𝐵𝐸

)
is a Dunford–Pettis set in 𝐹 . The proof of the following

lemma is as in Lemma 3.2.

Lemma 3.9. If there is a universal non-Dunford–Pettis polynomial, then there is also a universal non-Dunford–Pettis polynomial
defined on 𝓁1.

We can now prove the following

Theorem 3.10. If 𝑘 > 1, there does not exist a universal non-Dunford–Pettis 𝑘-homogeneous polynomial.

Proof. Suppose that 𝑃0 ∈ (
𝑘𝓁1, 𝐹

)
is a universal non-Dunford–Pettis polynomial. Let 𝑇 ∈ (𝑋, 𝑌 ) be a non-Dunford–Pettis

operator. For every index 𝑖 ∈ {1,… , 𝑚 − 1}, let

𝑗𝑖 ∶ ⊗̂
𝑖

𝜋𝑠,𝑠
𝑋 → ⊗̂

𝑖+1
𝜋𝑠,𝑠
𝑋 and 𝜋𝑖 ∶ ⊗̂

𝑖+1
𝜋𝑠,𝑠
𝑋 ←→ ⊗̂

𝑖

𝜋𝑠,𝑠
𝑋
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be the operators introduced in [8] such that 𝜋𝑖 ◦ 𝑗𝑖 is the identity map on ⊗̂𝑖𝜋𝑠,𝑠𝑋. The operator 𝑇 ◦𝜋1 ◦ ⋯ ◦𝜋𝑘−1 ∶ ⊗̂
𝑘

𝜋𝑠,𝑠
𝑋 → 𝑌

cannot be Dunford–Pettis since 𝑇 = 𝑇 ◦𝜋1 ◦ ⋯ ◦𝜋𝑘−1 ◦ 𝑗𝑘−1 ◦ ⋯ ◦ 𝑗1 is not so. Let 𝛿 ∶ 𝑋 → ⊗̂
𝑘

𝜋𝑠,𝑠
𝑋 be the canonical poly-

nomial given by 𝛿(𝑥) ∶= 𝑥⊗ (𝑘)… ⊗𝑥 for 𝑥 ∈ 𝑋, and let

𝑃 ∶= 𝑇 ◦𝜋1 ◦ ⋯ ◦𝜋𝑘−1 ◦ 𝛿 ∈ (
𝑘𝑋, 𝑌

)
.

Its linearization

𝑃 = 𝑇 ◦𝜋1 ◦ ⋯ ◦𝜋𝑘−1 ∶ ⊗̂
𝑘

𝜋𝑠,𝑠
𝑋 ←→ 𝑌

is non-Dunford–Pettis, so the polynomial 𝑃 is non-Dunford–Pettis either [3, Theorem 4.5]. Therefore, there are operators
𝐴 ∈ (𝓁1, 𝑋) and 𝐵 ∈ (𝑌 , 𝐹 ) such that the following diagram commutes

X Y

1 F

P

A B

P0

Taking linearizations, we obtain the following commutative diagram

⊗k
πs,sX Y

⊗k

πs,s 1 F

P

⊗kA B

P0

Let 𝑖 ∶ 𝓁1 → ⊗̂
𝑘

𝜋𝑠,𝑠
𝓁1 be an onto isomorphism (for the nonsymmetric tensor product, see [36, Exercise 2.6]; the symmetric

case may be viewed as an application of the Pelczyński decomposition technique [1, Theorem 2.2.3]). Then the following diagram
is commutative:

⊗k

πs,s YXX

1 ⊗k

πs,s 1 F

π1 ◦ · · · ◦ πk−1 T

⊗kA

i

(⊗kA) ◦ i

P0

B

Setting 𝐴1 ∶= 𝜋1 ◦ ⋯ ◦𝜋𝑘−1 ◦
(
⊗𝑘 𝐴

)
◦ 𝑖 ∈ (𝓁1, 𝑋), we obtain 𝑃0 ◦ 𝑖 = 𝐵 ◦ 𝑇 ◦𝐴1, so 𝑃0 ◦ 𝑖 is a universal non-Dunford–

Pettis operator, in contradiction with Theorem 3.6. □
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