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Abstract

A well-known result of J. Lindenstrauss and A. Petczyniski (1968) gives the existence
of a universal non-weakly compact operator between Banach spaces. We show the
existence of universal non-Rosenthal, non-limited, and non-Grothendieck operators.
We also prove that there does not exist a universal non-Dunford—Pettis operator, but
there is a universal class of non-Dunford—Pettis operators. Moreover, we show that,

for several classes of polynomials between Banach spaces, including the non-weakly
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compact polynomials, there does not exist a universal polynomial.
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1 | INTRODUCTION

J. Lindenstrauss and A. Petczynski [30, Theorem 8.1] proved in 1968 that the sum operator ¢ : £ — ¢, defined by

n [e5]

o(x) := Z X;

i=1 n=1

for x =(x,)2, €7,

is universal for the class of non-weakly compact operators, that is, an operator T € L(X,Y) is non-weakly compact if and only
if there exist operators A € L(Z|, X) and B € L(Y, ¢ ,) such that the following diagram commutes:

XLY

T s

b — U

W. B. Johnson [27] showed in 1971 that the formal identity operator £; — £, is universal for the class of non-compact
operators. These results are useful in order to prove that a given operator is non-weakly compact (respectively, non-compact).
In 1997, M. Girardi and W. B. Johnson [21] proved that there does not exist a universal non-completely continuous operator,
but there is a class C of universal non-completely continuous operators, that is, for every non-completely continuous operator
T, there is some member of C that factors through T'.

Here we prove the existence of universal operators for the classes of non-Rosenthal, non-Grothendieck, and non-limited
operators and the existence of a universal class of non-Dunford—Pettis operators (see below the definitions of all such classes
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of operators). It seems quite natural and interesting to wonder about the existence of universal polynomials between Banach
spaces. The notion of ideal of k-homogeneous polynomials is well known and has been widely studied in the literature (see, for
instance, [12, §3] or the more recent paper [33]). We adapt to the polynomial setting a definition from [21]: given an integer
k > 1, suppose that Q is a class of k-homogeneous (continuous) polynomials between Banach spaces so that a polynomial P is
in Q whenever there exist (linear bounded) operators A, B so that Bo P o A is in Q. The natural examples of such classes are
the polynomials that do not belong to a given ideal of k-homogeneous polynomials. A polynomial P, of such a class Q is said to
be universal for Q provided for each P in Q, P, factors through P, that is, there exist operators A and B sothat Bo Po A = P,.

The problem of the existence of universal polynomials seems to be very different with respect to the linear case and the lack
of linearity introduces a degree of difficulty. In [13] we have proved that there are neither a universal non-compact polynomial
nor a universal non-unconditionally converging polynomial. In the present paper we investigate the existence of a universal
non-weakly compact polynomial between Banach spaces. We prove that the answer is again negative. Moreover, we show the
nonexistence of universal non-Rosenthal, non-Asplund, non-limited, non-Grothendieck, and non-Dunford—Pettis polynomials.
The techniques used here are in most cases different from those of [13].

Throughout, X, Y, E, and F denote Banach spaces, X* is the dual space of X, By stands for its closed unit ball and Sy
for its unit sphere. The closed unit ball By of the dual space will always be endowed with the weak-star topology. By N we
represent the set of all natural numbers, and by K the scalar field (real or complex). We use the notation £(X, Y') for the space
of all (linear bounded) operators from X into ¥ endowed with the operator norm. By Iy we denote the identity map on X.
An operator h € L(X,Y) is an embedding if h(X) is isomorphic to X. For an embedding we use the arrow <. The operator
ky : X < X**is the canonical embedding of X into its bidual X**.

In what follows, the notation (eZ) will be used for the canonical unit vector basis of #; while (e,) will be the canonical unit

vector basis in ¢y orin £, with p > 1. By @Z”SX we denote the completion of the symmetric k-fold tensor product of X endowed
with the symmetric projective tensor norm [20, 2.2]. Given k € N, we represent by P (kX , Y) the space of all k-homogeneous
(continuous) polynomials from X into Y endowed with the supremum norm. For the general theory of polynomials on Banach
spaces, we refer the reader to [16] and [32].

For a polynomial P € P (XX, Y), its linearization

~k

P:®, X—Y

is the operator given by

F( Ax;@ K ®xj) = ) 4,P(x)
= j=1

J

forallx; € X and 4, e K(1 <j <n).
Every polynomial P € P (kX , Y) has an extension to a polynomial

P e P(kx*,y™)

called the Aron—Berner extension of P. The origin of the Aron—Berner extension goes back to [2]. A survey of its properties
may be seen in [40].

Recall that an operator ideal U” is said to be surjective [34,4.7.9]if, given T € L(X,Y) and a surjective operatorq : G — X,
we have that T € U whenever Tq € U°. We say that U’ is closed [34, 4.2.4] if, for all X and Y, the space

VX,Y):={TelX,Y): TeU)

is closed in L(X,Y).
A list of surjective operator ideals may be seen in [24]; here we consider some of them.
We recall some definitions and results from [13].

Definition 1.1. Let U be a closed surjective operator ideal. As in [38] (see also [24, page 472]), we denote by Cy-(X) the
collection of all sets A C X so that A C T(By) for some Banach space Z and some operator T € U'(Z, X).
Given a closed surjective operator ideal U, let

P ("X,Y) :={PeP(*X.Y) : P(Bx)€C,y(\)} .
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The space PU("X , Y) will be endowed with the supremum norm. This construction is used in [4] for general operator
ideals U".

The following result can be found in [13, Proposition 2.4]. See also the proof of [39, Proposition 1] which works for ;- with
an immediate argument.

Proposition 1.2. If U is a closed surjective operator ideal, the space Py, (kX , Y) is closed in P(kX , Y).
Proposition 1.3. Given Banach spaces X and Y, and k € N, the space P(kX , Y) is isomorphic to a complemented subspace
of P(k+1X , Y), that is, there are operators j and ©

P(X,Y) - P(*X,Y) S P(*X,Y)

such that o j = Ip(kX’Y). Moreover, if U is a closed surjective operator ideal, restricting j and x to the spaces Py, we have

P ("X, Y) = P (XY ) = Py (XL Y ),
that is, j and = take polynomials in Py into polynomials in Py,.

The proof of the above result is contained in [5, Proposition 5.3] (see also [8, Proposition 5] and [13, Propositions 2.5]) and
implies that, given y € Sy, a polynomial Q belongs to P;-(“X,Y) if and only if the polynomial j(Q) := wQ belongs to
Py (11X, Y'), where wQ is pointwise multiplication of y and Q.

For some of the results in this paper, Figure 1 may be helpful. The diagram in the figure is adapted from code of [19] which

is based on [9].
Hfis] e [T D
Pettis set
WeaklyS:tompaCt Asplund -
Grothendieck set

FIGURE 1 Some classes of sets in a Banach space

2 | THE WEAKLY COMPACT AND RELATED CASES

If W denotes the (surjective) ideal of weakly compact operators, )y (kX , Y) is the space of all k-homogeneous weakly compact
polynomials from X into Y, that is, the space of all polynomials P € P(kX , Y) such that P(By) is relatively weakly compact
in Y. We show that there does not exist a universal non-weakly compact polynomial, and extend this result to related classes.

Proposition 2.1. Let

P:=¢ ¢, TeP(X,Y)\Py("X,Y),
where @1, ..., ¢,_; € X*, not necessarily pairwise different, and T € L(X,Y). Then, the Aron—Berner extension p of P is not
Y -valued.

Proof. Since P ¢ PW(kX Y ), there is a net (x,) C By such that (P(x,)), does not have any weakly convergent subnet [29,
Chapter 5, Theorem 2]. In particular, for every subnet (xp) of (x,), we must have ¢;(x;) + 0 (1 < j < k — 1); otherwise, since
T is bounded, we would have

P(Xﬂ) = ¢1(Xﬁ) oo ¢k—l(xﬂ)T(xﬂ) e 0,

a contradiction.
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Using the weak™*-compactness of By« and passing to a subnet if necessary, we may assume that (x,) is weak*-convergent to
some x** € By [29, Chapter 5, Theorem 2]. In particular,

(¢, x") =lim¢;(x,) #0 for 1<j<k—1.

Since the second adjoint T** of T is weak*-to-weak™ continuous, we have

k*
T(x,) ——s T*(x™).

If T**(x**) € Y, the net (T (x,)), would be weakly convergent, and the net

(P(x))y = (1(x0) -+ dro 1 (x)T(x,)),

would also be weakly convergent, a contradiction.
Therefore,

'P‘(x**) — <¢1»X** <¢k—1’X** T**(x**) c Y**\Y

and the proof is finished. O

Remark 2.2. Note that there are non-weakly compact polynomials in P ("X , Y) with Y -valued Aron—Berner extension. A typical
example is the polynomial Q € P("fz, 4 1) used in the proof of the following Theorem 2.3.

Theorem 2.3. For k > 1, there does not exist a universal non-weakly compact k-homogeneous polynomial.
Proof. Suppose P € P(kE, F ) is universal non-weakly compact. Let Q € P(kf 2 1) be the polynomial given by
o) = (”I,]f):o:lfm’ n=,>, € ¢,. Since Q & Py (kfz, fl), we may factor P in the form

Q
by — {4
E—L2sF
Since é = Q, the Aron—Berner extension of Bo Q o A is F-valued. Therefore, ﬁ(E**) CF.

Choose an operator S € L(X,Y)\W(X,Y) and vy, ..., y;_, € Sx«. By iterating the proof of Proposition 1.3 (see [13,
proofs of Proposition 2.2 and 2.5]), we have

wi w1 S € P(X,Y)\Pyy ("X, Y) .
Hence, there are U € L(E, X) and V € L(Y, F) such that P factors in the form

X
UT
E

Y1 1S
1 k—1 Y

b

— F

Easily, we have
P=Vo(y i 1S)oU =@ ol) W oUT & Py("E, F),

whereT =V oSoU € L(E, F).
By Proposition 2.1, P(E**) ¢ F, a contradiction. O

Recall that a subset A of a Banach space is said to be Rosenthal if every sequence in A has a weak Cauchy subsequence. An
operator T € L(X,Y) is said to be Rosenthal if T(By) is a Rosenthal set. We denote by R the ideal of Rosenthal operators.
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Proposition 2.4. Every embedding of ¢ into ¢, is a universal non-Rosenthal operator.

Proof. Let h : ¢ < ¢, be an embedding. Let T : X — Y be a non-Rosenthal operator. Let (x,) C X be a sequence such
that (T'(x,)) does not admit a weak Cauchy subsequence. By Rosenthal’s ¢ |-theorem, there is a subsequence that we still
denote by (T(x,)) equivalent to the ¢ \-basis. Define A € L(¢1,X) by A(e}) 1= x. Let B : span{T(x,) : n € N} = £, be
the isomorphism such that By(T(x,)) = e},. Let By := ho By,. By the injectivity of ¢ ,, B, admits an extension to an operator
B e L(Y,?). Then, the following diagram commutes:

X

b —— U

and the proof is finished. O

Corollary 2.5. Let U be a closed surjective operator ideal such that W C U" C R. Then, for k > 1, there does not exist a
universal non-Py, k-homogeneous polynomial.

Proof. It is enough to note that the polynomial Q used in the proof of Theorem 2.3 is non-Rosenthal and, therefore, it is not in
Py, and that Proposition 2.1 also holds for polynomials of the form

w e S € P(RX,Y)\Pr (X, Y). 0

An operator T € L(X,Y) is said to be Asplund if it factors through a Banach space each of whose separable subspaces has a
separable dual [37].

It is proved in [37, Theorem 2.13] that the Haar operator H : £ — £ (A, p), where y is the Haar measure on the Cantor set
A, is a universal non-Asplund operator. The ideal of Asplund operators (see also [35]) satisfies the hypothesis of Corollary 2.5.
Hence, we have:

Corollary 2.6. For k > 1, there does not exist a universal non-Asplund k-homogeneous polynomial.

Consider the (surjective) ideal GR of Grothendieck operators. Recall that T € L(X,Y) is a Grothendieck operator [17] if
every w*-null sequence (7)) C Y™ is mapped by the adjoint T* into a weakly null sequence (T*(y})) in X*. A subset K C X is
called a Grothendieck set if, for all T € L(X, c), the set T'(K) is relatively weakly compact in ¢(. Hence, T € GR(X,Y) if and
only if, for every bounded subset A C X, T'(A) is a Grothendieck set in Y [17, Section 1].

We shall prove that there is a universal non-Grothendieck operator but there does not exist a universal non-Grothendieck
polynomial.

Theorem 2.7. The operator T, € L(Z, ¢y) given by Ty(e)) :=e| + e, + - + e, for every n € N is universal for the class of
non-Grothendieck operators.

Proof. Let T € L(X,Y)\ GR(X,Y). Then, there is S € L(Y, cy) such that S oT is non-weakly compact [17, Lemma 1.3].
Therefore, we can find a sequence (x,) C By such that (S(T(x,))) contains no weakly convergent subsequence. By [26,
Theorem 1.1.10], we can assume that (S(T'(x,))) is a basic weak Cauchy sequence. Let (yZ) C ¢ be the coefficient functionals
of (S(T'(x,))). Every e € span{S(T'(x,))} has a unique representation of the form e = E:; yZ(e)S(T(xn)). As in the proof of
[30, Theorem 8.1], the sequence (Z:’zl y;‘(e)):o= | Is convergent. Define

U :span{S(T(x,)} — ¢, by Ule):= (2 Yi(e), Y yite), ) €c.
n=1 n=2

Clearly, U is bounded. By the separable injectivity of ¢y [6, Theorem 2.3], U has an extension Ue L(cg, ) Let A € L(Z1, X)
be given by A(e)) := x,. Then, for every m € N, we have
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ﬁOSOTOA(e;) Uo 0SoT(x,,)
<Z H(S(T(x,))), 2 Vi(S(T(x,,), )
=1
= (1,(’??, 1,0,0, ) =e eyt He, =Ty,
so the diagram
T s
X Y Co
A U
/1 Co
To
commutes and this finishes the proof. O

Theorem 2.8. For k > 1, there does not exist a universal non-Grothendieck k-homogeneous polynomial.

Proof. Since the unit vector basis of ¢ is not a Grothendieck set in |, the polynomial Q given in the proof of Theorem 2.3
is non-Grothendieck. Therefore, by the proof of Theorem 2.3, if there were a universal non-Grothendieck k-homogeneous
polynomial P, € P(kE,F ), its Aron—Berner extension would be F-valued. On the other hand, if P := ¢ ¢, T €
P(kX ,Y ) \P¢r (kX ,Y ), P is also non-weakly compact. By Proposition 2.1, F(X Y ¢ Y, and an easy adaptation of the proof
of Theorem 2.3 yields a contradiction. O

One of the referees has kindly pointed out the interest to study the existence of a universal non-Radon—Nikodym operator.
Recall that an operator T € L(E, F) is called Radon—Nikodym if for every probability measure space (€2, y) and every operator
S € L(L{(, u), E), the operator T o S is representable, that is, there is g € L (4, E) such that

T°S(f)=/gfgd/4 (f € L&, )

(see [34, 24.2], [15, Definition III.1.3]).

We feel that the search for a universal non-Radon—Nikodym operator would require some effort that we leave for a (hopefully)
forthcoming paper. This solution would possibly come from a careful adaptation of ideas of [21].

Let (I,)) be a sequence of subintervals of [0, 1] such that each point of [0, 1] belongs to infinitely many I, and u(I,,) — 0
where pu is Lebesgue measure on [0, 1] [11]. Define U € L(L[0, 1], ¢y) by

ui) = (/ fdﬂ>
1

n n=1

Then U is non-Radon—Nikodym but is near Radon—Nikodym (also called strongly regular) [28]. The operator U might be a
candidate for universality for the class of non-Radon-Nikodym operators.

3 1 OTHER CLASSES OF OPERATORS AND POLYNOMIALS

In this section we consider other surjective operator ideals, namely the ideal of limited operators and the ideal of Dunford—Pettis
operators. A bounded subset K C X is limited (respectively, Dunford—Pettis) if

lim sup |x*(x)| = 0
n xeK

for every weak*-null (respectively, weakly null) sequence (x) C X™.
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A bounded subset K C X* is called an L-set if

lim sup |x*(x,)| =0
n xreK

for every weakly null sequence (x,)) C X. It is easily seen that every relatively compact subset of X is limited, every limited set
is Dunford—Pettis, and every Dunford—Pettis set in a dual space is an L-set (this last assertion is obvious from the definitions
and is stated in the proof of [18, Corollary 1]), but the converse assertions are false in general.

An operator T € L(X,Y) is limited (respectively, Dunford—Pettis) if T(By) is limited (respectively, Dunford—Pettis). We
prove the existence of universal non-limited operators and the nonexistence of a universal non-Dunford—Pettis operator. However,
we show that there is a class of universal non-Dunford—Pettis operators. We also study the related polynomial cases.

Proposition 3.1. The natural inclusion i : €| — ¢ is a universal non-limited operator.
Proof. Let T € L(X,Y) be a non-limited operator. Then, there are a bounded sequence (x,) C X, a weak®-null sequence

() € Y*, and 6 > 0 such that

|(T(xn),y;) >5 (neN).

The sequence (T* ( v ) ) is weak™-null but it is not norm null. Hence, by [25, Lemma 3.1.19], there are a subsequence <T* ( yE > )

ny

and a bounded sequence (z,) C X such that

<zn, T*(y:k ) > =6,-

Define A € L(¢1,X) by A(e?) 1=z, and B € L(Y ,cy) by

B = (5, )

o0
k=1

We show that the following diagram commutes:

o —— ¢

Indeed,

B (T (A(e1)) = BT = (TG, )) L = ({7 (0,))), ., = Gniz = en =166,
so BoToA=i. O

We say that a polynomial P € P(kX , Y) is limited if P(By) is a limited set in Y. We shall prove that there does not exist a
universal non-limited polynomial.

Lemma 3.2. [fthere is a universal non-limited k-homogeneous polynomial, then there is a universal non-limited k-homogeneous
polynomial defined on ¢;.

Proof. If Py € P(kE, F ) is a universal non-limited polynomial, there is a sequence (x,) C By such that (P(x,)) is not limited.
Define A € L(?,, E) by A(e:) = x, for alln € N. Then P, o A is a universal non-limited polynomial on ?,. |

Proposition 3.3. If P, € P(kf . F ) is a universal non-limited polynomial then we can take F = ¢, and Py = E*~1i where
i 1€ = ¢ is the natural inclusion and & € € .

Proof. The proof is as in [13, Proposition 2.7]. We sketch it for the reader’s convenience. Since Py € P(kfl, F) is non-
limited, Proposition 1.3 implies that there is a non-limited operator T € L(Z |, F). Choose 0 # n € ¢ ,. Define P € P(kfl , F)
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by P(x*) := {x*,n)* 1T (x*) for all x* € ¢,. By Proposition 1.3, P is non-limited. Therefore, P, factors through n*~'T €
P(kfl,F) in the form Py = Bo (nk_lT) o A. Letting S := BoT oA and y :=no A € £, we obtain Py = y*~'S. Again
by Proposition 1.3, i factors through S. Letting & =y o U € £, we obtain that £~ i factors through w*='S = P, and &~ 'i
is universal for the class of non-limited polynomials. O

Theorem 3.4. For k > 1, there does not exist a universal non-limited k-homogeneous polynomial.

Proof. Suppose that there is a universal non-limited k-homogeneous polynomial P,. By Proposition 3.3 it may be chosen of the
form Py = ék‘li e P(kfl,co). As in [13, Theorem 2.8], define P € P(kfl,co) by

P(p) 1= (¢1722) ", (=), €L)).
Note that P is non-limited. Indeed, for r > 1,
* * % w\ k=2 * %\ 2 o * %\ 2 e
P(e1+er)=<<e1,el+er> <en,el+er> ) 1=(<e,,,el+er> > 1=el+e,
h= n=

and

SL:P|<P(€T+9>:)7€:> =1 forall reN (r>1).

= sup |<e1 +e.e)
r

Since (e;lk) is weak™-null in £| and €| + e; € 2B, , we obtain that P(ZBL,JI) = 2"P(Bfl) is non-limited, so P is non-limited.
By the assumption, there are operators A € L(£,¢) and B € L(cy, cg) such that the following diagram commutes:

P
4

co

g — ¢
ekt

The same proof of [ 13, Theorem 2.8], which is omitted because it is rather technical, leads to a contradiction which finishes the
proof. O

We now consider the class of Dunford—Pettis operators. We shall prove that there is neither a universal non-Dunford—Pettis
operator nor a universal non-Dunford—Pettis polynomial. Recall that an operator T' € L(X,Y) is completely continuous if it
takes weakly null sequences of X into norm null sequences in Y.

Proposition 3.5. ([22, Proposition 3.2]) An operator T € L(X,Y) is completely continuous if and only if T* (BY*) is an L-set.
Theorem 3.6. There does not exist a universal non-Dunford—Pettis operator.

Proof. Suppose that Ty € L(E, F) is a universal non-Dunford—Pettis operator. Let T € L(X,Y) be a non-completely continuous
operator. We follow the first step of the proof of [21, Theorem 5] to construct a “better” non-completely continuous operator
J e L(Z,0) where Z will be reflexive. We can find a weakly null sequence (x,) C X with (T'(x,)) bounded away from zero.
By passing to a subsequence if necessary, we can assume that (T (x,)) is a basic sequence in Y. By [14, Corollary 7], there
exists a reflexive Banach space Z with an unconditional basis (z,,) such that the operator S . Z — X which takes z,, into x,, is
continuous. Let U € L(Y, £ ) be given by U(y) := ((, yZ))Z"zl where (yl’;) is a bounded sequence in Y* such that {T(x,,), yl’;}
is a biorthogonal system. The operator J :=U oT oS € L(Z,C ) takes z,, into the nth unit vector e, of € . The reflexivity of
Z implies that J is non-completely continuous.

By Proposition 3.5, J* € E(f;‘o, Z *) is non-Dunford—Pettis, since every Dunford—Pettis set in a dual space is an L-set (this
is clear from the definitions and is stated in the proof of [18, Corollary 1]). Since Ty, is universal non-Dunford—Pettis, there are
A€ L’(E, f;o) and B € L(Z*, F) such that the following diagram commutes:

J*
*
£

Z*

To
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Taking adjoints:
J =
A loo
B* A" ok
F* E*
Ty
so the following diagram commutes:
J

S Y X T Yy U S
ST Ny
T

F > B*

Since Ty, is non-Dunford—Pettis, T(;‘ is non-completely continuous [23, Proposition 2.1]. The above diagram shows that T(;‘ isa
universal non-completely continuous operator which is in contradiction with [21, Theorem 5]. This completes the proof. |

The following two results draw heavily on [21]. The first one yields the existence of a class of universal non-Dunford—Pettis
operators. The second one gives more information when the range space is super-reflexive.

Theorem 3.7. Let C be the class of all operators from ¢ into a reflexive sequence space with a normalized unconditional basis
(u,,) which take the unit vector basis of €| into (u,)). Then C is universal for the class of non-Dunford—Pettis operators.

Proof. Let T € L(X,Y) be a non-Dunford—Pettis operator. Then, T* is non-completely continuous [23, Proposition 2.1]. So
there are a weakly null sequence (y;) C Y™ and 6 > 0 such that

17 (53)

We can assume that (T* ( yZ )) is basic. By [25, Lemma 3.1.19], we can find a bounded sequence (x j) in X such that
<x T ( y:) ) = 0, ,- As in the beginning of the proof of Theorem 3.6, there are a reflexive Banach space G with an unconditional
basis (g,), and an operator A € L(G,Y™) suchthat A(g,) = y;. Define B € L(X*,7,) by B(x*) := ((xj, x* > );.;1 €. Then

|>5 (neN).

BoT*oA(g,) = BoT*(y) ((xj,T*(y:»);il = ()2 = ¢,

Letting J € L(G, ) be defined by J(g,) = e, the diagram

Y*

G

los
J

is commutative. The sequence (g:;) of the coefficient functionals of (g,) is an unconditional basis of G* [31, Proposition 1.b.1,
Theorem 1.b.5, and page 19]. Define the operators S € L(£{,G*), U € L(Z,X), and V € L(Y,G*) by

Ue) :=x, nenN),

Vi=A*oky.
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Then,
(gnVoTolU (e)) =(g,VoT(x,)) =g, A oky oT(x,))
= (A(g), ky o T(x,,)) = (T(x,,), A(g,))
= (TG, ¥5) = 85 = (& 8) = (280 S (€],)) -

Hence, the following diagram

4 G*

commutes and the proof is complete since S € C. O

Theorem 3.8. Let C be the collection of all natural inclusions i, : £ — ¢, (1 < q < 00). Then C is universal for the class of
non-Dunford—Pettis operators with range in a super-reflexive space.

Proof. Let T € L(X,Y) be a non-Dunford—Pettis operator, with Y a super-reflexive space. Then T* is non-completely con-
tinuous, so we can find a weakly null sequence ( y:) in Y* such that (T* ( y:)) is bounded away from zero. We can assume
that ( y:) is normalized and basic. Again by [25, Lemma 3.1.19], passing to a subsequence if necessary, we can find a bounded
sequence (xj) in X such that <xj, T* (yj)) = 5]»’". Since Y™ is super-reflexive [7, 4, I, §3, Corollary 8], there are 1 < p < oo and
A€ £(fp, Y*) such that A(e,) = y; for every n € N [7, 4, Il, Theorem 1]. Let q be the conjugate index of p. Let V := A* o ky
and letU € L(Z1,X) be given by U (e:) = x,,. Then we have

(e, VoT oU (e)) =(e,, A* o ky o T(x,,)) = (A(e,), ky 0 T(x,,))
= (U ky o T(x)) = (T(xp). 35 ) = 8 = (enigler,)) .

and the diagram

is commutative, which concludes the proof. [

We say that a polynomial P € P(“E, F) is Dunford—Pettis if P(By) is a Dunford—Pettis set in F. The proof of the following
lemma is as in Lemma 3.2.

Lemma 3.9. Ifthere is a universal non-Dunford—Pettis polynomial, then there is also a universal non-Dunford—Pettis polynomial
defined on ¢y.

We can now prove the following
Theorem 3.10. If k > 1, there does not exist a universal non-Dunford—Pettis k-homogeneous polynomial.

Proof. Suppose that Py € P(kf L F ) is a universal non-Dunford—Pettis polynomial. Let T € L(X,Y) be a non-Dunford—Pettis
operator. For every indexi € {1,...,m— 1}, let

PN ~it] ~it] ~i
Ji ®”S’SX L ®”S)SX and 7 ®%SX — ®,,S,SX
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A~i ~k
be the operators introduced in [8] such that ; o j; is the identity map on ®;‘ X.TheoperatorTomjo - om 1 : Q@ X =Y
~k
cannot be Dunford—Pettis since T =T oxjo -+ omy_j0j,_jo - ojisnotso. Let 5 : X - & X be the canonical poly-
nomial given by 5(x) := x® ¥) @x for x € X, and let
P:=Tomo - om_o5€P("X,Y).

Its linearization

— ~k

P=Tormgjo-om_1:Q, X—>Y

is non-Dunford—Pettis, so the polynomial P is non-Dunford—Pettis either [3, Theorem 4.5]. Therefore, there are operators
A€ L(¢,X)and B € L(Y, F) such that the following diagram commutes

P
X

Y

2 F

Py

Taking linearizations, we obtain the following commutative diagram

~k P
Q. sX Y
oFA B
~k
rostl —— F
Py

~k
Leti: ¢y - ®, 7 bean onto isomorphism (for the nonsymmetric tensor product, see [36, Exercise 2.6]; the symmetric
case may be viewed as an application of the Pelczyhski decomposition technique [ 1, Theorem 2.2.3]). Then the following diagram
is commutative:

F

Setting Ay :=m o - om_q0 ( ®F A) oi € L(Z1,X), we obtainFOOi =BoToA, soFOo i is a universal non-Dunford—
Pettis operator, in contradiction with Theorem 3.6. |
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