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0. Introduction

Given a variety X ⊆ Pa1 ×· · ·×Pan an interesting problem is the description of the

homological invariants of the coordinate ring of X . This problem has been primarily

studied for points, although there is not a general answer in this direction. A great

difficulty comes from the fact that a set of distinct points X ⊆ Pa1 ×· · ·×Pan is not

necessarily arithmetically Cohen–Macaulay (ACM). See, for instance, [10, 11, 16–20]

for some results on this topic, and [12, 13] for a recent characterization of the ACM

property in P1 × · · · × P1 and, under certain conditions, in P1 × Pm. Recently,

multiprojective spaces have received more attention since they arise in many ap-

plications. For example, a specific value of the Hilbert function of a collection of

(fat) points in a multiprojective space is related to a classical problem of algebraic

geometry concerning the dimension of certain secant varieties of Segre varieties

(see [2, 4, 5] just to cite some of them). Or in [3, 6], the authors deduce new results

about tensors, and in [8], the author focus on the implicitization problem for tensor

product surfaces.
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In particular, it appears of interest in combinatorial algebraic geometry to study

finite arrangements of lines (see [7, 22] for recent developments in P2). A line ar-

rangement over an algebraically closed field K is a finite collection L1, . . . , Ld ⊆ P2,

d > 1, of distinct lines in the projective plane and their crossing points (i.e. the

points of intersections of the lines). In this paper, we investigate special arrange-

ments of lines in multiprojective spaces by focusing on ACM codimension 2 varieties

in P1×P1×P1, called varieties of lines, since we want to generalize the codimension

2 ACM property of points in P1 × P1. Specifically, we study special cases arising

from their intersection points (see Theorem 5.6). These varieties can be viewed as

special configurations of codimension 2 linear varieties in P5.

Our paper is structured as follows. In Sec. 1, we set up our notation and re-

call known results. In Sec. 2, we describe a connection between ideals of varieties of

lines and some squarefree monomial ideals (Lemma 2.2). We introduce the Hypn(�)-

property (Definition 2.12) to give a combinatorial characterization of ACM varieties

of lines in P1 × P1 × P1 using a well-known property of chordal graphs (Theo-

rem 2.17). In Sec. 3, we introduce a numerical way to check the ACM property for

any varieties of lines. In Sec. 4, we describe the Hilbert function of Ferrers varieties

of lines, a special case of ACM variety of lines. Finally, in Sec. 5, we initiate an

investigation on varieties of lines whose set of crossing points is a complete inter-

section of points in P1×P1×P1. We also characterize varieties of lines defined by a

complete intersection ideal in P1×P1×P1 (Theorem 5.10). We end the paper with

two possible research topics to explore: (1) the connection between our varieties of

lines in P1 × P1 × P1 and special configurations of lines of P3 and (2) the Hilbert

function of any ACM variety of lines (Question 5.13).

1. Notation and Basic Facts

Throughout the paper N := {0, 1, 2, . . .} denotes the set of non-negative integers

and � denotes the natural partial order on the elements of N3 := N × N × N

defined by (a1, a2, a3) � (b1, b2, b3) in N3 if and only if ai ≤ bi, ∀ i = 1, 2, 3. Let

{e1, e2, e3} be the standard basis of N3. Let R := K[x1,0, x1,1, x2,0, x2,1, x3,0, x3,1]

be the polynomial ring over an algebraically closed field K of characteristic zero.

We induce a multi-grading by setting deg xi,j = ei for i ∈ {1, 2, 3}. A monomial

m = xa0
1,0x

a1
1,1x

b0
2,0x

b1
2,1x

c0
3,0x

c1
3,1 ∈ R has tridegree (or simply, degree) degm = (a0 +

a1, b0 + b1, c0 + c1). We make the convention that 0 has degree deg 0 = (i, j, k) for

all (i, j, k) ∈ N3. Note that the elements of the field K all have degree (0, 0, 0). For

each (i, j, k) ∈ N3, let Ri,j,k denote the vector space over K spanned by all the

monomials of R of degree (i, j, k). The polynomial ring R is then a trigraded ring

because there exists a direct sum decomposition

R =
⊕

(i,j,k)∈N3

Ri,j,k

such that Ri,j,kRl,m,n ⊆ Ri+l,j+m,k+n for all (i, j, k), (l,m, n) ∈ N3. An ele-

ment F ∈ R is trihomogeneous (or simply, homogeneous) if F ∈ Ri,j,k for some
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(i, j, k) ∈ N3. An ideal I = (F1, F2, . . . , Fr) ⊆ R is a (tri)homogeneous ideal if Fi is

(tri)homogeneous for all i = 1, 2, . . . , r.

Let I ⊆ R be a homogeneous ideal, and we let Ii,j,k := I∩Ri,j,k for all (i, j, k) ∈
N3. Because I is homogeneous, the quotient ring R/I also inherits a graded ring

structure. In particular, we have

R/I =
⊕

(i,j,k)∈N3

(R/I)i,j,k =
⊕

(i,j,k)∈N3

Ri,j,k/Ii,j,k.

Definition 1.1. Let IX ⊆ R be the homogeneous ideal defining a variety X ⊆
P1 × P1 × P1. We say that X is ACM if R/IX is Cohen–Macaulay (CM), i.e.

depth(R/IX) = Krull-dim(R/IX).

Definition 1.2. We say that a homogeneous ideal J in a polynomial ring S is CM

if S/J is CM.

A point in P1 × P1 × P1 is an ordered set of three points in P1. Say P :=

([a0, a1], [b0, b1], [c0, c1]) ∈ P1 × P1 × P1, the defining ideal of P is IP := (a1x1,0 −
a0x1,1, b1x2,0 − b0x2,1, c1x3,0 − c0x3,1). Note that IP is a height 3 prime ideal gen-

erated by homogeneous linear forms of different degree.

Throughout the paper, linear forms are denoted by capital letters. In particular,

we use Ai to denote a linear form of degree (1, 0, 0), Bj a linear form of degree

(0, 1, 0), and Ck a linear form of degree (0, 0, 1). We denote by L(Ai), L(Bj) and

L(Ck) the respective hyperplanes of P1 × P1 ×P1, and we say that a hyperplane in

P1 × P1 × P1 is of type ei if it is defined by a form of degree ei.

We recall the following definition (see [20, Definition 2.2]).

Definition 1.3. Let F,G ∈ R be two homogeneous linear forms of different degree.

In P1 × P1 × P1 the variety L defined by the ideal (F,G) ⊆ R is called a line of

P1 × P1 × P1 and we denote it by L(F,G).

We say that a line L(F,G) is of type ei + ej, with i �= j, if {degF, degG} =

{ei, ej}.
In particular, if A ∈ R1,0,0, B ∈ R0,1,0 and C ∈ R0,0,1, then we denote by

L(A,B) the variety in P1 × P1 × P1 defined by the ideal (A,B) ⊆ R and we call it

line of type (1, 1, 0). Analogously, we call the variety L(A,C) line of type (1, 0, 1)

and the variety L(B,C) line of type (0, 1, 1). We also refer to lines of type e1 + e2,

e1 + e3 and e2 + e3 by writing lines having direction e3, e2 and e1, respectively.

Definition 1.4. We say that X ⊆ P1 × P1 × P1 is a variety of lines if it is given

by a finite union of distinct lines in P1 × P1 × P1.

Definition 1.5. Given X ⊆ P1 × P1 × P1 a variety of lines, we denote by

H1(X) := {L(A1), . . . ,L(Ad1)}, H2(X) := {L(B1), . . . ,L(Bd2)} and H3(X) :=

{L(C1), . . . ,L(Cd3)} the hyperplanes of P1 × P1 × P1 containing some lines of X .
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In particular,

X :=
⋃

(i,j)∈U3(X)

L(Ai, Bj) ∪
⋃

(i,k)∈U2(X)

L(Ai, Ck) ∪
⋃

(j,k)∈U1(X)

L(Bj , Ck),

where U3(X) ⊆ [d1]× [d2], U2(X) ⊆ [d1]× [d3] and U1(X) ⊆ [d2] × [d3] are sets of

ordered pairs of integers, with [n] := {1, 2, . . . , n} ⊂ N.

For i = 1, 2, 3, we denote by Xi the set of lines of X having direction ei and we

call Ui(X) the index set of Xi.

Thus, the ideal defining X is

IX =
⋂

(i,j)∈U3(X)

(Ai, Bj)
⋂

(i,k)∈U2(X)

(Ai, Ck)
⋂

(j,k)∈U1(X)

(Bj , Ck).

In this paper, we are interested in a combinatorial characterization of ACM

varieties of lines in P1 × P1 × P1 and their Hilbert function. In P1 × P1, to describe

combinatorially ACM sets of points, it was crucial the definition of the so-called

Ferrers diagram (see for instance [19]).

Definition 1.6. A tuple λ = (λ1, . . . , λr) of positive integers is a partition of an

integer s if
∑r

i=1 λi = s and λi ≥ λi+1 for every i. We write λ = (λ1, . . . , λr) � s.

Definition 1.7. To any partition λ = (λ1, λ2, . . . , λr) � s we can associate the

following diagram: on an r×λ1 grid, place λ1 points on the first horizontal line, λ2

points on the second, and so on, where the points are left justified. The resulting

diagram is called the Ferrers diagram of the partition λ.

Definition 1.8. Let Y be a finite set of points in P1×P1. We say that Y resembles a

Ferrers diagram if the set of points looks like a Ferrers diagram, i.e. after relabeling

the horizontal and vertical rulings, we can assume that the first horizontal ruling

contains the most number of points of Y , the second contains the same number or

less of points of Y , and so on.

Applying [19, Lemma 3.17, Theorems 3.21 and 4.11], we have the following.

Lemma 1.9. Let Y be a finite set of points in P1 × P1. Y is ACM if and only if

Y resembles a Ferrers diagram.

We adapt Definition 1.7 to our context.

Construction 1.10. Let X be a variety of lines in P1 × P1 × P1 and consider the

set X3 of lines of X of type (1, 1, 0) indexed by U3(X) ⊆ [d1] × [d2]. We represent

X3 as a d1 × d2 grid, where the horizontal lines are labeled by the L(Ai)’s for

i = 1, . . . , d1 and the vertical lines by the L(Bj)’s for j = 1, . . . , d2. By abuse of

notation, we denote the horizontal lines by L(Ai) and the vertical lines by L(Bj).

Then, a line L(Ai, Bj) ∈ X3 is drawn as the intersection point of L(Ai) and L(Bj)

in the grid. Similarly, we can construct a d1×d3 grid representing X2 and a d2×d3
grid representing X1.
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Definition 1.11. Let X be a variety of lines in P1 ×P1 ×P1 and h ∈ {1, 2, 3}. We

say that X resembles a Ferrers diagram with respect to the direction h if the grid

representing the lines of Xh, constructed as above, resembles a Ferrers diagram.

Definition 1.12. A finite subset U = {(ui, uj)} ⊆ N2 resembles a Ferrers diagram

if it satisfies the following property:

(ui, uj) ∈ U ⇒ (uh, uk) ∈ U, ∀ 1 ≤ h ≤ i, 1 ≤ k ≤ j.

Remark 1.13. Note that Definition 1.11 is equivalent to say that the index set

Uh(X) ⊂ N2 resembles a Ferrers diagram as Definition 1.12.

Remark 1.14. Construction 1.10 makes clear the connection between Xh (h ∈
{1, 2, 3}) and a set of points in P1×P1. Xh is a cone of a set of distinct points on a

hyperplane of P1 × P1 × P1. So, we can look at it as a set of points in P1 × P1 with

associated grid as described in the construction.

Example 1.15. Let X be the following variety of 15 lines in P1 × P1 × P1:

X = L(A1, B2) ∪ L(A1, B4) ∪ L(A1, B5) ∪ L(A2, B2) ∪ L(A2, B3)

∪L(A2, B4) ∪ L(A2, B5) ∪ L(A3, B1) ∪ L(A3, B2) ∪ L(A3, B3)

∪L(A3, B4) ∪ L(A3, B5) ∪ L(A4, B4) ∪ L(B1, C1) ∪ L(B2, C2).

Then,

X3 = {L(A1, B2),L(A1, B4),L(A1, B5),L(A2, B2),L(A2, B3),L(A2, B4),L(A2, B5),

L(A3, B1),L(A3, B2),L(A3, B3),L(A3, B4),L(A3, B5),L(A4, B4)}.
Using Construction 1.10, X3 is represented by a 4× 5 grid as Fig. 1. After renam-

ing, we see that X3 resembles a Ferrers diagram of type (5, 4, 3, 1). Then, using

Lemma 1.9, X3 is ACM (Fig. 2).

L(B1)L(B2)L(B3)L(B4)L(B5)

L(A4)

L(A3)

L(A2)

L(A1)

Fig. 1. The set of lines X3.

L(B1)L(B2)L(B3)L(B4)L(B5)

L(A4)

L(A3)

L(A2)

L(A1)

Fig. 2. X3 after relabelling.

Example 1.16. Let X be the variety of lines as in Example 1.15. We have X1 =

{L(B1, C1),L(B2, C2)} and the 2 × 2 grid representing X1 does not resemble any
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Ferrers diagram (Fig. 3). Thus X does not resemble a Ferrers diagram with respect

to the direction 1. Hence, from Lemma 1.9, X1 is not ACM.

L(B1)L(B2)

L(A2)

L(A1)

Fig. 3. The set X1.

Since Ferrers diagrams play a crucial role in the characterization of the ACM

property for a finite set of points in P1 × P1 (see for instance [20]), it is natural for

us to investigate the same property for a variety of lines X ⊆ P1×P1×P1 (since X

has also codimension 2). In the next section, we will show that the ACM property

of X depends on the Xi (see Corollary 2.8), but the ACM-ness of the Xi is not

sufficient to ensure that X is also ACM (see Remark 2.9).

2. A Combinatorial Characterization of ACM Varieties of Lines

In this section, we study the ACM property for varieties of lines from a combina-

torial point of view. We refer to [23] for all the introductory material on monomial

ideals.

The next lemma can be recovered from [25, Proposition 3.2].

Lemma 2.1. Let X ⊆ P1 × P1 × P1 be a variety of lines. Then, there exist three

forms A,B and C of degree (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively, such that

(Ā, B̄, C̄) is a regular sequence in R/IX .

Proof. Let A ∈ R1,0,0 be such that L(A) /∈ H1(X). We claim that Ā is a nonzero

divisor of R/IX . Indeed, take F ∈ R a homogeneous form such that AF ∈ IX .

Then AF ∈ IL, for any line L ∈ X . Since IL is a prime ideal and A /∈ IL, then we

get F ∈ IL, for any L ∈ X .

Now we prove the existence of the linear form B. Since X is ACM, then J :=

IX +(A) is CM. Moreover, J is homogeneous and its height is 3. Take the primary

decomposition of J , say J = q1 ∩ · · · ∩ qt, and let pi :=
√
qi for i = 1, . . . , t.

The set of the nonzero divisors of R/J is then
⋃

i p̄i. In order to prove that there

exists an element B ∈ R0,1,0 nonzero divisor of R/J , it is enough to show that

(
⋃

i pi)0,1,0 � R0,1,0. Since R0,1,0 is a K-vector space over an infinite field, it is not

a union of a finite number of its proper subspaces, and so it is enough to show that

(pi)0,1,0 � R0,1,0 for each i = 1, . . . , t.

Let i ∈ {1, . . . , t}, then we have IX ⊆ J ⊆ pi. Therefore, there exists L ∈ X

such that IX ⊆ IL ⊆ pi. This implies pi = IL +(A). Since IL �= R0,1,0 we are done.
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Analogously we prove the existence of a form C ∈ R0,0,1.

We set the notation for this section. Let X be a variety of lines and IX its

defining ideal

IX =
⋂

(i,j)∈U3(X)

(Ai, Bj)
⋂

(i,k)∈U2(X)

(Ai, Ck)
⋂

(j,k)∈U1(X)

(Bj , Ck) ⊆ R.

We construct a new polynomial ring in d1 + d2 + d3 variables each of them

corresponding to a hyperplane containing some lines of X. We denote by S :=

K[a1, . . . , ad1 , b1, . . . , bd2, c1, . . . , cd3 ] the polynomial ring in d1 + d2 + d3 variables

and deg ai = (1, 0, 0), deg bj = (0, 1, 0), deg ck = (0, 0, 1). We set

JX =
⋂

(i,j)∈U3(X)

(ai, bj)
⋂

(i,k)∈U2(X)

(ai, ck)
⋂

(j,k)∈U1(X)

(bj , ck) ⊆ S.

JX is a height 2 monomial ideal of S and its associated primes correspond to the

components of X .

The next lemma is crucial since, as its consequence, we can connect homologi-

cal invariants between ACM varieties of lines and some height 2 monomial ideals.

Similar arguments were also used in [12] (see proof of Theorem 3.2).

Lemma 2.2. Let X be a variety of lines in P1 × P1 × P1. Then X is ACM if and

only if JX ⊆ S is CM.

Proof. Set T := S[x1,0, x1,1, x2,0, x2,1, x3,0, x3,1]. Consider JX as an ideal, say JX ,

in the ring T . Since JX is a height 2 monomial ideal in S, then JX , being a cone,

continues to be a height 2 monomial ideal. Moreover, JX has the same primary

decomposition as JX . Consider the linear forms ai −Ai, bj −Bj , ck −Ck and let L

be the ideal generated by all these linear forms.

Assume JX is CM. Thus, in the quotient T/(JX , L) we can view the addition

of each linear form in L as a proper hyperplane section. We have that R/IX and

T/(JX , L) both have height 2 and R/IX ∼= T/(JX , L). Then, since JX is CM, we

get X is ACM.

On the other hand, if X is ACM, then, applying Lemma 2.1, there exists a

sequence of linear forms (A,B,C) ⊆ R that is regular in the quotient R/IX . Let

q := (A,B,C) ⊆ R be the ideal generated by these three linear forms. Consider the

ideal (IX + q)/q ⊆ R/q, that can be viewed as a codimension 2 monomial ideal in

a polynomial ring in three variables. Since a Hilbert–Burch matrix of IX has the

same “structure” as the Hilbert–Burch matrix of a monomial ideal, i.e. it is a matrix

with only two nonzero entries in each column (see for instance [14, Lemma 3.21]

or [24, Theorem 1.5]), then IX is generated by some products among the linear

forms defining the lines of X . Since the addition of each linear form in L can be

seen as a proper hyperplane section, we also have R/IX ∼= T/(JX , L). Then JX is

CM.
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Corollary 2.3. Let X be an ACM variety of lines in P1 × P1 × P1. Then IX is

generated by products of linear forms.

As a consequence of Lemma 2.2, it is interesting to further investigate the struc-

ture of the monomial ideal JX associated to X . Now we recall only a few definitions

we will use in the sequel. We refer to [23, 26] for all preliminaries and for further

results on graphs.

A (simple) graph G is a pair G = (V,E), where V := {v1, . . . , vN} is a set

of vertices of G and E is a collection of 2-subsets of V, called the edges of G.

The complementary graph of G, denoted by Gc, is the graph Gc = (V,Ec), where

Ec = {{vi, vj} | {vi, vj} /∈ E}. A sequence of vertices of G, (v1, v2, · · · , vt), is a cycle

of length t if {v1, v2}, {v2, v3}, . . . , {vt, v1} ∈ E. A chord is an edge joining two not

adjacent vertices in a cycle. A minimal cycle is a cycle without chords. A graph

G is called chordal when all its minimal cycles have length three. We associate to

a graph G = (V,E) two squarefree monomial ideals in the ring K[v1, . . . , vN ], the

face ideal of G

I(G) = (vivj | {vi, vj} ∈ E)

and the cover ideal of G

J(G) =
⋂

{vi,vj}∈E

(vi, vj).

It is a well-known fact that I(G) and J(G) are the Alexander dual each of other.

In the sequel we will use the following results.

Theorem 2.4 ([15, Theorem 1]). Let G be a graph. Then I(G) has a linear

resolution if and only if Gc is a chordal graph.

Theorem 2.5 ([9, Theorem 3]). Let G be a graph. Then I(G) has a linear

resolution if and only if J(G) is CM.

Remark 2.6. Let X be a variety of lines. Let GX = (VX , EX) be the graph with

vertex set

VX := {a1, . . . , ad1 , b1, . . . , bd2 , c1, . . . , cd3}
and edge set

EX := {{ai, bj} ⊆ VX | L(Ai, Bj) ∈ X3}
∪ {{ai, ck} ⊆ VX | L(Ai, Ck) ∈ X2}
∪ {{bj, ck} ⊆ VX | L(Bj , Ck) ∈ X1}.

Then, we note that the monomial ideal JX is the cover ideal of the graph GX :

JX = J(GX) ⊆ S,

that is the Stanley–Reisner ideal of the simplicial complex (see [23, Lemma 1.5.4])

∆X := 〈VX\e | e ∈ EX〉.
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An useful application of Remark 2.6 is the following lemma.

Lemma 2.7. Let X be an ACM variety of lines in P1 × P1 × P1 and let H ⊆
P1 × P1 × P1 be a hyperplane containing some lines of X. Then the variety of lines

Y = {L ∈ X | L �⊂ H} is ACM.

Proof. Let H be the linear form defining H. Denoted by z the variable of S cor-

responding to H (the linear form H is one of the forms Ai, Bj , Ck and z is the

corresponding variable among ai, bj , ck). We have

(i) JX : z =
⋂

p ∈ ass(JX )
z /∈ p

p. Both are monomial ideals, so the equality easily follows

by checking the inclusions for monomials.

(ii) JX : z is the Stanley-Reisner ideal of the simplicial complex link∆X z (see [23,

Secs. 1.5.2 and 8.1.1]). Indeed, the Stanley–Reisner ideal of the link of z in ∆X

is generated by monomials corresponding to the elements F ⊆ VX such that

{z} ∪ F /∈ ∆X . All these monomials are in JX : z = I∆X : z and vice versa.

Then, in order to prove the statement, it is enough to show that JX : z is CM. From

Lemma 2.2, we have that JX is CM, so the statement follows by [23, Corollary

8.1.8].

Corollary 2.8. If X is an ACM variety of lines, then X resembles a Ferrers

diagram with respect to the direction h, for each h = 1, 2, 3.

Proof. We show that U1(X) resembles a Ferrers diagram. Analogously, one can

show the same for U2(X) and U3(X). Let us consider the variety of lines X1 consist-

ing of the lines of X of type (0, 1, 1). Since IX1 = IX\{L(A1),...,L(Ad1
)}, X1 preserves

the ACM property by Lemma 2.7. Moreover, X1 =
⋃

(j,k)∈U1(X) L(Bj , Ck), i.e.

it is a cone of an ACM set of distinct points on a hyperplane of P1 × P1 × P1,

see Remark 1.14. A well-known characterization, see for instance [19, Theo-

rem 4.11], shows that this set of points resembles a Ferrers diagram. Using Re-

mark 1.13, U1(X) resembles a Ferrers diagram. Then, the statement follows from

Lemma 1.9.

Remark 2.9. From previous corollary, if there exists i ∈ {1, 2, 3} such that Xi is

not ACM, then X is not ACM. The following example shows that even if all Xi are

ACM X could be not ACM.

Example 2.10. Let us consider the following variety of lines in P1 × P1 × P1:

X = {L(A1, B1),L(A2, B2),L(B3, C3)}.
It is clear that the sets X1, X2 and X3 resemble a Ferrers diagram, so each of them

is ACM. But, in this case, X is not ACM. This follows for instance from Lemma 2.2

and from [23, Lemma 9.1.12].
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The next definition introduces a property for varieties of lines in P1×P1×P1 in

analogy to the known (�)-property defined for sets of points in P1 × P1 (see [18]).

Definition 2.11. Let X ⊆ P1 × P1 × P1 be a variety of lines. We say that X has

the (�)-property (or explicitly, star property) if given any two lines L1, L2 ∈ X ,

there exists L3 ∈ X such that L1, L3 and L2, L3 are coplanar.

We slightly generalize this property for varieties of lines.

Definition 2.12. Let X ⊆ P1×P1×P1 be a variety of lines. Let n ≥ 4, n ∈ N, we

say thatX has the n-hyperplanes (�) property (for short, Hypn(�)-property) if given

n hyperplanes H1, H2, . . . , Hn such that L(Hi, Hj) ∈ X for any j �= i − 1, i, i + 1

then L(Hu, Hu+1) ∈ X for some u ∈ {1, 2, . . . , n}, where H0 = Hn and Hn+1 = H1.

Remark 2.13. Note that if n > 6, then X has the Hypn(�)-property. Indeed,

among n > 6 hyperplanes there are at least three of the same type and so the

condition L(Hi, Hj) ∈ X for any j �= i−1, i, i+1 (where H0 = Hn and Hn+1 = H1)

fails to be true.

Remark 2.14. Note that the Hyp4(�)-property is equivalent to (�)-property as

Definition 2.11.

Example 2.15. Let us consider the following variety of lines in P1 × P1 × P1:

X = L(A1, B1) ∪ L(A1, B2) ∪ L(A1, B3) ∪ L(A2, B1)

∪L(A2, B2) ∪ L(A1, C1) ∪ L(A1, C2) ∪ L(A2, C1)

∪L(B1, C1) ∪ L(B1, C2) ∪ L(B2, C1) ∪ L(B3, C1).

X has the Hyp4(�)-property. Indeed, if we take the four hyperplanes L(A1), L(A2),

L(B1),L(B2), we have that L(A1, B1),L(A2, B2) ∈ X and also L(A1, B2) ∈ X ; if

we take the four hyperplanes L(A1),L(A2), L(B1),L(C1), we have that L(A1, B1),

L(A2, C1) ∈ X and also L(B1, C1) ∈ X ; and so on, if we take any two lines in X ,

there exists a third line in X that is coplanar with the other two.

Example 2.16. Let us consider the following variety of lines in P1 × P1 × P1:

X = L(A1, B1) ∪ L(A1, B2) ∪ L(A1, B3) ∪ L(A2, B2) ∪ L(A1, C1)

∪L(A1, C2) ∪ L(A2, C1) ∪ L(B1, C1) ∪ L(B3, C1).

X has the Hyp5(�)-property. Indeed, if we take the five hyperplanes L(A1),

L(A2), L(B1),L(B2), L(C1) we have that the lines L(A1, B1),L(A1, B2),L(A2, B2),

L(A2, C1), L(B1, C1) ∈ X and also L(A1, C1) ∈ X ; if we take the five hyperplanes

L(A1),L(A2), L(B3),L(B2),L(C1), we have that L(A1, B3), L(A1, B2), L(A2, B2),

L(A2, C1), L(B3, C1) ∈ X and also L(A1, C1) ∈ X ; and so on, if we take any five hy-

perplanesH1, . . . , H5 among L(A1),L(A2),L(B1),L(B2),L(B3),L(C1),L(C2) such

that L(Hi, Hj) ∈ X for any j �= i − 1, i, i + 1, then there exists u ∈ {1, . . . , 5}
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such that L(Hu, Hu+1) ∈ X , where H0 = H5 and H6 = H1. Note that if we

take L(B1),L(B2),L(B3) among the five hyperplanes we choose, the condition

L(Hi, Hj) ∈ X for any j �= i − 1, i, i+ 1 fails to be true and then there is nothing

to verify.

The following theorem is the main result of this section.

Theorem 2.17. Let X be a variety of lines. Then X is ACM if and only if X has

the Hypn(�)-property for n = 4, 5, 6.

Proof. Let IX be the ideal defining the variety of lines X ⊆ P1 × P1 × P1. From

Lemma 2.2, X is ACM if and only if JX ⊆ S is CM. From Remark 2.6, the ideal JX
is the cover ideal of the graph GX , i.e. JX = J(GX). From Theorem 2.5, the face

ideal I(GX) has a linear resolution and then, using Theorem 2.4, Gc
X is a chordal

graph, that is, X has the Hypn(�)-property for any n. Remark 2.13 completes the

proof.

3. A Numerical Characterization of the ACM Property

Since we are interested in the study of the ACM property for varieties of lines X ,

from now on we assume that Uh(X) resembles a Ferrers diagram for each h = 1, 2, 3.

In order to give a characterization of the ACM property we introduce the following

notation.

Definition 3.1. Let P = Pijk = L(Ai) ∩ L(Bj) ∩ L(Ck) be a point of a variety

of lines X , we call multiplicity of P the number of lines of X passing through the

point P and we denote it by µijk.

Remark 3.2. Since at most three lines of X (one of each type) pass through the

point P , µijk ≤ 3.

Definition 3.3. Given a variety of lines X , we define a 3-dimensional matrix

MX := (µijk) ∈ Nd1×d2×d3 whose (i, j, k)-entry is the multiplicity of Pi,j,k. We

call it the matrix of the multiplicities of X .

We also define

Definition 3.4. M
(3)
X := (µij0) ∈ Nd1×d2 , where

µij0 :=

{
1 if (i, j) ∈ U3(X), i.e. L(Ai, Bj) ∈ X

0 otherwise.

Analogously,M
(2)
X := (µi0k) ∈ Nd1×d3 , where µi0k :=

{1 if L(Ai, Ck) ∈ X
0 otherwise and M

(1)
X :=

(µ0jk) ∈ Nd2×d3 , where µ0jk :=
{1 if L(Bj , Ck) ∈ X
0 otherwise .

1950073-11

J.
 A

lg
eb

ra
 A

pp
l. 

20
19

.1
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

09
/1

2/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 19, 2019 14:55 WSPC/S0219-4988 171-JAA 1950073

G. Favacchio, E. Guardo & B. Picone

Example 3.5. Let us consider X ⊆ P1 × P1 × P1 as Fig. 4

X = L(A1, B1) ∪ L(A1, B2) ∪ L(A2, B2) ∪ L(A1, C1) ∪ L(A2, C1)

∪L(A2, C2) ∪ L(B1, C1) ∪ L(B1, C2) ∪ L(B2, C2).

We have

µ111 = µ222 = 3, µ121 = µ221 = µ211 = µ112 = µ122 = µ212 = 2

and

M
(3)
X =

(
1 1

0 1

)
, M

(2)
X =

(
1 0

1 1

)
, M

(1)
X =

(
1 1

0 1

)
.

P111 P121

P211 P221

P112 P122

P212 P222

Fig. 4. The variety of lines X (in bold).

Now we provide a criterion to establish if X is ACM or not just looking at the

matrices of the multiplicities MX , M
(1)
X , M

(2)
X and M

(3)
X .

Proposition 3.6. Let X be a variety of lines. X has the Hyp6(�)-property iff for

all a1, a2 ∈ [d1], b1, b2 ∈ [d2], c1, c2 ∈ [d3]

either

(
µa1b1c1 µa1b2c1

µa2b1c1 µa2b2c1

)
�=
(
3 2

2 2

)
or


µa1b1c2 µa1b2c2

µa2b1c2 µa2b2c2


 �=

(
2 2

2 3

)
.

Proof. If X does not have the Hyp6(�)-property then there exist six planes,

say L(A1),L(A2),L(B1),L(B2),L(C1),L(C2), such that the lines L(A1, B1),

L(A1, B2), L(A1, C1), L(A2, B2), L(A2, C1), L(A2, C2), L(B1, C1), L(B1, C2),

L(B2, C2) belong to X and L(A2, B1), L(B2, C1), L(A1, C2) /∈ X. Then we have

that (
µ111 µ121

µ211 µ221

)
=

(
3 2

2 2

)
and

(
µ112 µ122

µ212 µ222

)
=

(
2 2

2 3

)
.
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On the other hand if
(µ111 µ121

µ211 µ221

)
=
(3 2
2 2

)
and
(µ112 µ122

µ212 µ222

)
=
(2 2
2 3

)
then it is easy

to check that X does not have the Hyp6(�)-property since the lines L(A1, B1),

L(A1, B2), L(A1, C1), L(A2, B2), L(A2, C1), L(A2, C2), L(B1, C1), L(B1, C2),

L(B2, C2) ∈ X and L(A2, B1), L(B2, C1), L(A1, C2) /∈ X.

Proposition 3.7. Let X be a variety of lines. X has the Hyp5(�)-property iff for

all a1, a2 ∈ [d1], b1, b2 ∈ [d2], c1, c2 ∈ [d3] the following three conditions hold :

(1)

either

(
µa1b1c1 µa1b2c1

µa2b1c1 µa2b2c1

)
�=
(
2 1

2 2

)
or

(
µa1b10 µa1b20

µa2b10 µa2b20

)
�=
(
1 1

0 1

)
,

(2)

either

(
µa1b1c1 µa1b1c2

µa2b1c1 µa2b1c2

)
�=
(
2 1

2 2

)
or

(
µa10c1 µa10c2

µa20c1 µa20c2

)
�=
(
1 1

0 1

)
,

(3)

either

(
µa1b1c1 µa1b1c2

µa1b2c1 µa1b2c2

)
�=
(
2 1

2 2

)
or

(
µ0b1c1 µ0b1c2

µ0b2c1 µ0b2c2

)
�=
(
1 1

0 1

)
.

Proof. If X does not have the Hyp5(�)-property, we say, without loss of generality,

that there exist five planes L(A1),L(A2),L(B1),L(B2),L(C1) such that, among all,

only the lines L(A2, B1), L(A1, C1), L(B2, C1) /∈ X. Then we have(
µ111 µ121

µ211 µ221

)
=

(
2 1

2 2

)
and

(
µ110 µ120

µ210 µ220

)
=

(
1 1

0 1

)
.

On the other hand, assume, for instance, we have the following equalities:(
µ111 µ121

µ211 µ221

)
=

(
2 1

2 2

)
and

(
µ110 µ120

µ210 µ220

)
=

(
1 1

0 1

)
.

From the previous equalities, we get L(A1, C1) /∈ X thus, since µ111 = 2, we have

L(A1, B1),L(B1, C1) ∈ X. Analogously L(A1, B2) ∈ X and so, since µ121 = 1, we

have L(B2, C1) /∈ X. Moreover, L(A2, B2) ∈ X and so, since µ221 = 2, we have

L(A2, C1) ∈ X . Finally L(A2, B1) /∈ X since µ210 = 0. So X does not have the

Hyp5(�)-property.

Proposition 3.8. Let X be a variety of lines. X has the Hyp4(�)-property iff for

all a1, a2 ∈ [d1], b1, b2 ∈ [d2], c1, c2 ∈ [d3] the following three conditions hold :

(1)

either

(
µa1b1c1

µa2b1c1

)
�=
(
1

1

)
or

(
µa1b10

µa2b10

)
�=
(
1

0

)
.
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(2)

either

(
µa1b1c1

µa1b1c2

)
�=
(
1

1

)
or

(
µa10c1

µa10c2

)
�=
(
1

0

)
.

(3)

either

(
µa1b1c1

µa1b2c1

)
�=
(
1

1

)
or

(
µ0b1c1

µ0b2c1

)
�=
(
1

0

)
.

Proof. Suppose that X does not have the Hyp4(�)-property. Since we are

assuming there do not exist four planes L(A1),L(A2),L(B1),L(B2) such

that L(A1, B1),L(A2, B2) ∈ X and L(A1, B2) or L(A2, B1) /∈ X , then,

X fails the Hyp4(�)-property if, without loss of generality, there exist

four planes L(A1),L(A2),L(B1),L(C1) such that, among all, only the lines

L(A2, B1),L(B1, C1),L(A1, C1) /∈ X. Then we have

(
µ111

µ211

)
=

(
1

1

)
and

(
µ110

µ210

)
=

(
1

0

)
.

On the other hand, assume, for instance, we have the following equalities:

(
µ111

µ211

)
=

(
1

1

)
and

(
µ110

µ210

)
=

(
1

0

)
.

From the previous equalities, we get L(A1, B1) ∈ X thus, since µ111 = 1, we have

L(A1, C1),L(B1, C1) /∈ X. Analogously L(A2, B1) /∈ X and so, since µ211 = 1, we

have L(A2, C1) ∈ X . So X does not have the Hyp4(�)-property.

Example 3.9. Let X be as in Example 3.5 (see Fig. 4). We observe that

(
µ111 µ121

µ211 µ221

)
=

(
3 2

2 2

)
and

(
µ112 µ122

µ212 µ222

)
=

(
2 2

2 3

)

and then, by Proposition 3.6, we have that X does not have the Hyp6(�)-property

and so, by Theorem 2.17, X is not ACM.

Example 3.10. Let us consider the variety W = X ∪ L(A2, B1), where X is as

Example 3.5 (see Fig. 5).

We have µ111 = µ222 = µ211 = µ212 = 3, µ121 = µ221 = µ112 = µ122 = 2. And
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P111 P121

P211 P221

P112 P122

P212 P222

Fig. 5. The variety of lines W (in bold).

for all a1, a2 ∈ [2], b1, b2 ∈ [2], c1, c2 ∈ [2], we have:(
µa1b1c1 µa1b2c1

µa2b1c1 µa2b2c1

)
�=
(
3 2

2 2

)
,

(
µa1b1c1 µa1b2c1

µa2b1c1 µa2b2c1

)
�=
(
2 1

2 2

)
,

(
µa1b1c1 µa1b1c2

µa2b1c1 µa2b1c2

)
�=
(
2 1

2 2

)
,

(
µa1b1c1 µa1b1c2

µa1b2c1 µa1b2c2

)
�=
(
2 1

2 2

)
,

(
µa1b1c1

µa2b1c1

)
�=
(
1

1

)
,

(
µa1b1c1

µa1b1c2

)
�=
(
1

1

)
,

(
µa1b1c1

µa1b2c1

)
�=
(
1

1

)

and then, by Propositions 3.6–3.8, the variety of lines W has the Hypn(�)-property

for n = 4, 5, 6 and then, by Theorem 2.17, W is ACM.

4. The Hilbert Function of ACM Codimension Two Varieties in

P1 × P1 × P1

In this section, we approach the study of the Hilbert function of these varieties. We

start from the following specific case.

Definition 4.1. If X is a variety of lines such that the index sets U1(X), U2(X)

and U3(X) are Ferrers diagram, then we call X a Ferrers variety of lines. That is,

after renaming, we assume that if L(Ai, Bj) ∈ Uh(X) then L(Ai′ , Bj′) ∈ Uh(X) for

every 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j and for each direction h = 1, 2, 3.

Remark 4.2. As a consequence of Theorem 2.17, note that a Ferrers variety of

lines is ACM.

Recall that given a homogeneous ideal I ⊆ R, the Hilbert function of R/I is the

numerical function

HR/I :N
3 → N
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defined by

HR/I(i, j, k) := dimK(R/I)i,j,k = dimKRi,j,k − dimKIi,j,k.

The first difference function of H , denoted ∆H , is the function ∆H : N3 → N

defined by

∆H(i, j, k) :=
∑

(0,0,0)≤(l,m,n)≤(1,1,1)

(−1)l+m+nH(i− l, j −m, k − n).

Now, let X be a Ferrers variety of lines and let X3 =
⋃

(r,s)∈U3(X) L(Ar, Bs) be

the variety of lines consisting of the lines of X of type (1, 1, 0). Since U3(X) is a

Ferrers diagram, the variety X3 is ACM (in P1×P1) and we can explicitly write out

a set of minimal generators of IX3 , see Remark 1.14 and [19]. If {(a3,i, b3,i)} is the

set of the degrees of these minimal generators, we denote D3(X) := {(a3,i, b3,i, 0)}.
Analogously, if we consider the varieties of lines X1 and X2 consisting of the

lines of X of types (0, 1, 1) and (1, 0, 1), respectively, we obtain the sets of degrees

D1(X) = {(0, b1,j, c1,j)} and D2(X) = {(a2,k, 0, c2,k)}. Then we denote

D(X) := {(max{a3,i, a2,k},max{b3,i, b1,j},max{c1,j, c2,k}) | ∀ (a3,i, b3,i, 0) ∈ D3(X),

(a2,k, 0, c2,k) ∈ D2(X), (0, b1,j, c1,j) ∈ D1(X)}.
Finally, we denote by D̂(X) the set of the minimal elements of D(X) with respect

to the natural partial order � on the elements of N3.

Theorem 4.3. Let X be a Ferrers variety of lines. Then IX is minimally generated

by the following set of forms :

∏
i≤a

Ai

∏
j≤b

Bj

∏
k≤c

Ck | for each (a, b, c) ∈ D̂(X)


.

Proof. First, we prove that if (a, b, c) ∈ D̂(X), then
∏

i≤a Ai

∏
j≤b Bj

∏
k≤c Ck ∈

IX . Indeed (a, b, c) ∈ D̂(X) implies
∏

i≤a Ai

∏
j≤b Bj ∈ IX3 ,

∏
j≤b Bj

∏
k≤c Ck ∈

IX1 ,
∏

i≤a Ai

∏
k≤c Ck ∈ IX2 and they are not necessarily minimal elements of the

respective ideal. Thus
∏

i≤a Ai

∏
j≤b Bj

∏
k≤c Ck ∈ IX1 ∩ IX2 ∩ IX3 = IX . Now, we

show that if (a, b, c) ∈ D̂(X) and a > 0, then
∏

i≤a−1 Ai

∏
j≤b Bj

∏
k≤c Ck /∈ IX .

This fact follows by contradiction. Indeed if
∏

i≤a−1 Ai

∏
j≤b Bj

∏
k≤c Ck ∈ IX ,

then (a − 1, b, 0), (a − 1, 0, c), (0, b, c) are degrees of some (not necessarily mini-

mal) elements in the ideal and therefore there is an element in D(X) less than

or equal to (a − 1, b, c), contradicting the minimality of (a, b, c) ∈ D̂(X). Analo-

gously, it can be easily showed that if (a, b, c) ∈ D̂(X) and b > 0 (or c > 0), then∏
i≤a Ai

∏
j≤b−1 Bj

∏
k≤c Ck /∈ IX (or

∏
i≤a Ai

∏
j≤b Bj

∏
k≤c−1 Ck /∈ IX). Finally,

we claim that IX is minimally generated by the forms
∏

i≤a Ai

∏
j≤b Bj

∏
k≤c Ck

with (a, b, c) ∈ D̂(X). Take a form F ∈ IX , without loss of generality we can assume

that F :=
∏

i∈A Ai

∏
j∈B Bj

∏
k∈C Ck is product of linear forms. By contradiction
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we assume Ai divides F and Ai−1 does not divide F . Then
∏

i∈A Ai

∏
j∈B Bj ∈ IX3 .

Then F ∈ (
∏

i≤a′ Ai

∏
j≤b′ Bj) for some a′, b′. Repeating the same argument with

respect to the other two directions we get the proof. The minimality come from the

minimality of the degrees in D̂(X).

The following corollary is an immediate consequence of Theorem 4.3 and the

ACM property. Set 〈D̂(X)〉 := {(i, j, k) | (i, j, k) ≥ (a, b, c), for some (a, b, c) ∈
D̂(X)}.

Corollary 4.4. Let X be a Ferrers variety of lines. Then

∆HX(i, j, k) =

{
0 if (i, j, k) ∈ 〈D̂(X)〉,
1 otherwise.

Example 4.5. Let us consider the following variety of lines:

X = {L(Ai, Bj) ∪ L(Ai, Ck) ∪ L(Bj , Ck) | 1 ≤ i ≤ 4, 1 ≤ j ≤ 3, 1 ≤ k ≤ 2}.
In this case we have D3(X) = {(4, 0, 0), (0, 3, 0)}, D2(X) = {(4, 0, 0), (0, 0, 2)} and

D1(X) = {(0, 3, 0), (0, 0, 2)}. Then D(X) = {(4, 3, 2), (4, 3, 0), (4, 0, 2), (0, 3, 2)} and
D̂(X) = {(4, 3, 0), (4, 0, 2), (0, 3, 2)}. Therefore, from Theorem 4.3, a minimal set of

generators of IX is given by

A1A2A3A4B1B2B3, A1A2A3A4C1C2, B1B2B3C1C2

and

∆HX(i, j, k) =

{
0 if (i, j, k) ≥ (4, 3, 0) or (4, 0, 2) or (0, 3, 2),

1 otherwise.

5. Case Study: Grids of Lines and Complete Intersections of Lines

In this section, we focus on the study of special arrangements of lines in P1×P1×P1

having the ACM property. Recall that for a point P ∈ P1 × P1 × P1 there are

exactly three lines passing through P , one for each direction. We have the following

definition.

Definition 5.1. Let Y be a finite set of points in P1×P1×P1. We call grid of lines

arising from Y, and denote it by XY , the set containing all the lines of P1×P1×P1

passing through some point of Y.
In other words, if Y is a finite set of points in P1 × P1 × P1, then

XY :=
⋃

Pijk∈Y
L(Ai, Bj) ∪ L(Ai, Ck) ∪ L(Bj , Ck),

where Pijk := L(Ai) ∩ L(Bj) ∩ L(Ck).
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The next example shows that even if Y is an ACM set of points, XY could not

be ACM.

Example 5.2. Suppose Y := {P112, P122, P121, P212} ⊆ P1 × P1 × P1. Accord-

ing to [12], Y is an ACM set of points. We have L(A2, B1),L(B2, C1) ∈ XY and

L(A2, B2),L(A2, C1), L(B1, C1) /∈ XY , that is, XY has not the Hyp4(�)-property

and then XY is not ACM.

It is interesting to ask which sets of points Y ⊆ P1×P1×P1 lead to an ACM grid

of lines XY . A special class of CM rings is represented by complete intersections.

We recall their definitions and properties.

Definition 5.3. An ideal I ⊂ R is a complete intersection if it is generated by a

regular sequence.

As pointed out in [19, Lemma 2.25], a complete intersection is also CM.

Definition 5.4. In P1 × P1 × P1, we say that a set of points C is a complete inter-

section of points of type (a1, a2, a3) if IC = (F1, F2, F3) is a complete intersection

and degFi = aiei for i = 1, 2, 3.

Note that each Fi in Definition 5.4 is product of linear forms.

Definition 5.5. We say that a variety of lines X is a complete intersection of lines

in P1 × P1 × P1 if IX is a complete intersection.

Theorem 5.6. Let C ⊆ P1 × P1 × P1 be a complete intersection of points of type

(a, b, c). Then XC is ACM and a trigraded minimal free resolution of IXC is

0 → R2(−a,−b,−c) → R(−a,−b, 0)⊕R(−a, 0,−c)⊕R(0,−b,−c) → IXC → 0.

Proof. The grid of lines X := XC has the Hypn(�)-property for n = 4, 5, 6 and

then, by Theorem 2.17, X is ACM. Moreover, by Corollary 2.3 the generators of

IX are product of linear forms, so

IX =


∏

i∈[a]

Ai

∏
j∈[b]

Bj ,
∏
i∈[a]

Ai

∏
k∈[c]

Ck,
∏
j∈[b]

Bj

∏
k∈[c]

Ck


.

Then a Hilbert–Burch matrix of IX is


∏
i∈[a]

Ai

∏
i∈[a]

Ai

∏
j∈[b]

Bj 0

0
∏

k∈[c]

Ck



.

Example 5.7. If C ⊆ P1 × P1 × P1 is a complete intersection of points of type

(2, 3, 2), then the grid XC is formed by six lines of type (1, 1, 0), four lines of type

(1, 0, 1) and six lines of type (0, 1, 1) (see Fig. 6):
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Fig. 6. The grid of lines XC arising from a CI of type (2, 3, 2).

In particular, IXC has a trigraded minimal free resolution of the following type:

0 → R2(−2,−3,−2) → R(−2,−3, 0)⊕R(−2, 0,−2)⊕R(0,−3,−2) → IXC → 0.

The following example shows that there exists an ACM grid of lines XY arising

from a not ACM set of points Y.
Example 5.8. The following set of points Y := {P111, P121, P211, P122, P212, P222}
is not an ACM set of points in P1 × P1 × P1 (see [12]). However, XY = XC where

C := {Pijk | 1 ≤ i, j, k ≤ 2}, and then XY is an ACM grid of lines.

From Theorem 5.6, we note that the ideal IXC is generated by three forms that

do not form a regular sequence. That is, even if C is a complete intersection of points,

then its associated XC variety of lines is not a complete intersection of lines. Thus,

it is natural to study which varieties of lines are defined by a complete intersection,

i.e. their defining ideal has only two generators. Theorem 5.10 and Remark 5.11

will describe complete intersections of lines in P1 × P1 × P1.

Remark 5.9. If X is an ACM variety of lines, from Corollary 2.3, IX is generated

by products of linear forms. Then

IX ⊇

∏

i∈[a]

Ai

∏
j∈[b]

Bj ,
∏
i∈[a]

Ai

∏
k∈[c]

Ck,
∏
j∈[b]

Bj

∏
k∈[c]

Ck


.

So any set of minimal generators of IX contains one element of degree (a3, b3, 0),

one element of degree (a2, 0, c2) and one element of degree (0, b1, c1).

Theorem 5.10. Let X be a variety of lines of P1 × P1 × P1. Then the ideal IX
is a complete intersection if and only if IX = (F1, F2), with degF1 = aei and

degF2 = bej + cek with j, k �= i, for some a, b, c ∈ N.

Proof. One implication is trivial. Let IX be a complete intersection, i.e. IX is

generated by a regular sequence of length 2, then X is ACM. So, from Remark 5.9,

any set of minimal generators of IX contains one element G1 of degree (0, b1, c1),
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one element G2 of degree (a2, 0, c2) and one element G3 of degree (a3, b3, 0) for some

integers ai, bj , ck. Since IX is a complete intersection, one of these three generators

say, without loss of generality, the one of degree (0, b1, c1), is not minimal, i.e.

G1 ∈ (G2, G3). This easily implies a2a3 = 0.

Remark 5.11. From Theorem 5.10, a complete intersection of lines X is then

obtained from a grid arising from a complete intersection of points by removing

either all the lines having direction ei for some i, or all the lines having direction

ei and ej with i �= j. Indeed, from Remark 5.9, we have for instance

IX =


∏

i∈[a]

Ai,
∏
j∈[b]

Bj

∏
k∈[c]

Ck


 =

⋂
i∈[a]
j∈[b]

(Ai, Bj) ∩
⋂
i∈[a]
k∈[c]

(Ai, Ck).

Example 5.12. Let X be the set of lines of P1 × P1 × P1 obtained by a grid of

lines XC arising from a complete intersection C of type (4, 3, 2) removing all the

lines having direction e2:

X =
⋃
i∈[4]
j∈[3]

L(Ai, Bj)
⋃
j∈[3]
k∈[2]

L(Bj , Ck).

Then the ideal IX is a complete intersection and it is generated by the regular

sequences F1 = B1B2B3 and F2 = A1A2A3A4C1C2 of degrees (0, 3, 0) and (4, 0, 2),

respectively.

We end the paper with two research topics that are still under our investigation.

(1) Guida, Orecchia and Ramella, in [21], studied the complete grids of lines in

P3, whose defining ideal is the 1-lifting ideal of a specific monomial ideal J in

a polynomial ring S in three variables. In particular, from [21, Example 4.9]

and Corollary 4.4, we noted that the first difference of the Hilbert function of

the ideal IXC of a grid of lines arising from a complete intersection of points

L(A1,B1)

L(A1,C1)

L(B2,C1)

Fig. 7. The set X.

L(A1,B1)

L(A1,C1)

L(B1,C1)

Fig. 8. The set X′.
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of type (2, 2, 2) in P1 × P1 × P1 in degree (i, j, k) is equal to 1 if and only if

(i, j, k) belongs to the order ideal N(J) ⊆ N3 of the specific monomial ideal

J = (x2
1x

2
2, x

2
1x

2
3, x

2
2x

2
3) in S.

(2) Let us consider the ACM varieties of lines X and the Ferrers variety of lines

X ′ as in Figs. 7 and 8, respectively. We have that, for each h = 1, 2, 3, Xh and

X ′
h have the same Hilbert functions. We also get HX = HX′ .

According to many experimental computations using CoCoA [1], we ask the

following question.

Question 5.13. Let X be an ACM variety of lines and X ′ be a Ferrers variety of

lines such that, for h = 1, 2, 3, Xh and X ′
h have the same Hilbert functions. Is it

true that HX = HX′?
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