
Chapter 10
Banishing Ultrafilters
from Our Consciousness

Domenico Cantone, Eugenio G. Omodeo and Alberto Policriti

The reader who remembers these key points will do well in what
follows. In particular, it is now quite all right to entirely forget
how the nonstandard universe was defined and to banish
ultrafilters from our consciousness.

(Martin Davis, Applied Nonstandard Analysis, 1977)

Abstract The way in which Martin Davis conceived the first chapter of his book
“Applied nonstandard analysis” is a brilliant example of information hiding as a
guiding principle for the design of widely applicable constructions and methods of
proof. We discuss here a common trait that we see between that book and another
writing of the year 1977, “Metamathematical extensibility for theorem provers and
proof-checkers”, which Martin coauthored with Jacob T. Schwartz. To tie the said
part of Martin’s study on nonstandard analysis to proof technology, we undertake a
verification, by means of a proof-checker based on set theory, of key results of the
non-standard approach to analysis.
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10.1 Introduction

Year 1977: Martin Davis appears in print with “Applied nonstandard analysis” [14],
whose subject is less close to computability and computational logic than the various
areas to which Martin has contributed before. Nevertheless we will tie that book—
appropriately, we believe—to another publication of the same year, “Metamathemat-
ical extensibility for theorem provers and proof-checkers” [23, pp. 120–146], jointly
authored byMartin and his friend and colleague “Jack” (namely Jacob T. Schwartz).1

We aim at unveiling an affinity between some of the matter which that book treats in
preparation for analysis proper and the field of automated reasoning of whichMartin
has been a trailblazer since its early days,2 and at taking advantage of that link for a
proof-checking undertaking which we see as promising.

Martin’s book is dedicated to the memory of Abraham Robinson, the creator of
nonstandard analysis. At the Summer Institute for Symbolic Logic held at Cornell
University, a scientific gathering that both had attended in 1957, Robinson gave a
talk in which he “made the provocative remark that the auxiliary points, lines, or
circles ‘constructed’ as part of the solution to a geometry problem can be thought
of as being elements of what is now called the Herbrand universe for the problem”
[15, pp. 7–8].3 At the same meeting Martin reported on his own implementation,
three years earlier on a JOHNNIAC machine, of Presburger’s decision procedure
for elementary additive number theory [12]. This proximity of interests between the
two distinguished scholars about automating proofs was, presumably, coincidental.

In 1977, on the other hand, disappointment is beginning to take place in the auto-
mated deduction community (see [5]), as researchers experience the combinatorial
explosion plaguing the automatic search for mathematical proofs even if pruned by
the best available techniques. More emphasis is now placed on comfortable inter-
action between man and computerized proof assistants, and on proof checkers (see,
e.g., [38]) as opposed to fully automatic theorem provers. Specific knowledge per-
taining to diverse branches of mathematics begins to be perceived as essential for
an advancement of the proof techniques; Ballantyne and Bledsoe [3] (see also [2])
succeed in automating the proofs of hard theorems in analysis using methods which
rely on the nonstandard viewpoint.

The new context brings to the fore issues related to correct-program technol-
ogy and proof engineering. An emblem of the times is the Clear specification

1See [22] and, therein, the enjoyable [16]; see also [21] and [1, pp. 478–480]. The above-cited [23]
led to the sole joint publication by Martin and Jack, namely [24].
2Landmark contributions of Martin to automatic theorem-proving in 1st-order predicate logic have
been [10, 13, 19, 20, 25], historically occurring between Paul C. Gilmore’s and Dag Prawitz’
methods, on the one hand, and J. Alan Robinson’s resolution principle on the other. Concerning the
linked conjunct method then proposed by Martin and his team at Bell Labs, see [29, 39].
3The term ‘Herbrand universe’, today widely used, appeared for the first time in the influential
paper [13] (reviewed in [34]); but [17, p. 432] contends that it would be more historically correct
to credit the construction of that universe to Thoralf Skolem.
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language [7], paving the way to the OBJ family of languages, which will integrate
specification, prototyping, and verification into a system with a single underlying
logic: theorem-proving is now aimed at providing mechanical assistance for proofs
that are needed in the development of software and hardware. This is the scene en-
countered by the joint work [24] of Martin and Jack, at the dawn of large-scale proof
technology.

Here is the issue they raised. “For use of mechanized proof verifier systems to
remain comfortable over a wide range of applications, · · · it should be possible to
augment the system by adding new symbols, schemes of notation, and extended
rules of inference of various kinds” [24, p. 217]. A stringent requirement is that
the envisioned changes to a system do not disrupt its soundness: a proof verifier
should, therefore, be furnished with the metamathematical capability of justifying
its progressive augmentations.

Use of a metamathematical extension mechanism, [24] points out, leads to the
common acceptance of algebraic calculations in lieu of detailed predicate calculus
proofs. Although recourse to the methods of nonstandard analysis in lieu of the ε-δ
methods is not mentioned in that paper, we see that less familiar but expedient detour
as being in accord with the matter under discussion.

————

As an arena for experimenting with this circle of ideas, we have undertaken a
merciless formal remake of [14, Chap. 1] with Jack’s proof checker Ref, see [35,
Chap. 4], which embodies a variant of the Zermelo-Fraenkel set theory. This task,
which has hardly anything to do with analysis per se, is an essential prerequisite if we
are to bring the methods of nonstandard analysis within the scope of Ref. As a result
of the “mathematical simplicity, elegance, and beauty of these methods”—and of
“enthusiasm · · · not unrelated to thewell-known pleasures of the illicit”—,we expect
to eventually get the reward of “their far-reaching applications” (see [14, p. viii]).

Our effort will also suggest changes to Ref’s current implementation which can
improve its metamathematical extensibility.

We have set up substantial ground for specifying and proving, by means of the
Ref verifier (very succinctly described in Sect. 10.6), the two consequences of Łoś’s
theoremwhichwe need (namely, Theorems 10.1 and 10.2 in Sect. 10.3): oncewewill
have fully achieved those goals, we will move on to work on Robinson’s concurrence
theorem and on a few other crucial propositions (Theorems 10.3, 10.4, 10.5, and 10.6
of Sect. 10.4). To complete our job we must then introduce “schemes of notation and
extended rules of inference of various kinds” that properly assist Ref’s users in
exploiting nonstandard methods.

In order to reach the goals of our experiment, we must express in set-theoretic
termsmetalevel notions such as the evaluation of a sentence in a universe; another not
entirely trivial task concerns the representation of individuals (thought of as ‘non-
sets’) within a formal system which deals with sets whose construction ultimately
relies on nothing but the null set ∅. For these twomatters, to be discussed in Sect. 10.9
and in Sects. 10.7 and 10.8 respectively, our experiment is innovative, at least as
regards theRef proof checker. In other respects, we can benefit fromwork previously
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done: among other things we found, already adequately formalized, a theory of
ordinal numbers conceived à la Raphael M. Robinson, and the ultrafilter theorem
obtained using Zorn’s lemma.

Concerning proof checkers, issues of reuse have an even greater relevance than
for theorem provers. Such issues pertain more to proof engineering than to compu-
tational logic:4 rather than going through the same proof pattern several times, one
should abstract a common method to be recalled over and over again, with all the
conveniences offered by technology.

Reuse is supported in Ref by a construct named ‘Theory’ (see [31] and [35, pp.
19–25]), similar to—although of a less algebraic nature—a mechanism for parame-
terized specifications of the aforementionedClear specification language. This paper
will discuss how to organize Theorys that enable one to tackle without reiteration
of techniques the foundations of nonstandard analysis; hopefully, it will stimulate
reflections on good “proof hiding” practices, of the kind whichMartin’s passage [14,
p. 42], quoted in the epigraph to this paper, seems eager to suggest.

10.2 Basic Construction for Nonstandard Analysis

Why nonstandard analysis? Nonstandard analysis is a technique rather than a subject · · ·
The subject can be claimed to be of importance insofar as it leads to simpler, more accessible
expositions, or (more important) to mathematical discoveries. [14, p. 1]

The initial part of [14] dwells on how to enlarge a standard universe into a nonstandard
one. While taking stock at the end of the first chapter, Martin stresses that much of
the machinery developed up to there is not used in the remainder of the book; then, in
recapitulating which key points the reader should remember, he underlines the three
main tools of nonstandard analysis: transfer principle, concurrence, and internality.

We will now give a quick account of the elaborate ultrapower construction whose
details Martin deems “quite all right”, after that turning point, “to banish from our
consciousness”. We thereby undertake a formal recasting of that construction with
Ref, in order to encapsulate it within Ref’s Theorys.

The standard universe is the superstructure

ŝ =

s3︷ ︸︸ ︷
s1︷ ︸︸ ︷

s ∪ P(s) ∪P(s ∪ P(s))︸ ︷︷ ︸
s2

∪P(s ∪ P(s) ∪ P(s ∪ P(s))) ∪ · · ·

4See [8, pp. 5–6]. In a recent personal web-page, David Aspinall (Univ. of Edinburgh) defines Proof
Engineering to mean the activity on construction, maintenance, documentation and presentation
of large formal proof developments. Within Proof Engineering, according to Aspinall, “Software
Engineering provides the techniques to develop large, structured and well-specified repositories
of computer code; proof checking provides the mechanisms to provide a complete semantics and
formal correctness as an absolute quality criterion.”.
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built on a set s = s0, whose (n + 1)-st stage is sn+1 = sn ∪ P(sn) for each n ∈ N =
{0, 1, 2, . . . } (as customary,P designates the powerset operator). It is essential that
s consists of individuals; namely that ∅ /∈ s and that no element of any element of
s pops up at any stage, viz., ŝ ∩ ⋃

s = ∅. Every set w of individuals generates a
superstructure ŵ, much as we have just indicated for s; e.g., ∅̂ consists of the entities
known as hereditarily finite sets.

The superstructure ŝ gets embedded into another one, ŵ, built on a specific set
w ⊃ s of individuals, by means of a function x �→ ∗x ; in particular ∗s = w. A set
w̃ ⊂ ŵ is cut out of the wider superstructure: this w̃, satisfying the revealing equality
w̃ = ⋃

i∈N

∗si , will be the nonstandard universe paired with ŝ.
Such companions ŝ, w̃ will—in a sense—have the same properties. An unre-

strained formulation of this principle would have paradoxical consequences, though,
and we must postpone to Sect. 10.3 the precise formulation of criteria enabling the
transferability of properties. In a major instance studied in [14, Chap. 2], s includes
an Archimedean ordered field D, e.g., the field Q of rational numbers or the field
R of real numbers; then ∗D, included in w, will still satisfy the laws of an ordered
field but will violate the Archimedean property which—roughly speaking—rejects
infinitely large or infinitely small elements.5

Before showing how to construct w̃, let us make it clear which are the sets which
qualify as universes:6

Definition 10.1 A setU is called a universe if ∅ ∈ U and the following properties
hold for all x, y:

Upward closure: If x, y ∈ U , then {x, y} ∈ U .
Downward closure: If x ∈ U and x ∩ U �= ∅, then x ⊆ U

(this says that each element x ofU is either an individual, hence
has no element in U , or is included in U ). 

The upward closure property readily yields that a universe U is always closed
with respect to the Kuratowski ordered pair formation 〈x, y〉 =Def {{x} , {x, y}};
by also exploiting downward closure we get, for each function g ∈ U such that
g ∪ dom(g) ⊆ U , that the result g�x of applying g to a set x belongs to U . (By
function we mean here a single-valued set of ordered pairs; moreover, when g fails
to be a function or x does not belong to its domain, g�x is meant to designate ∅.)
Every superstructure based on a set of individuals is a universe, so it is closed with
respect to pair formation and to function application.

5In particular, when D = R, we get a field, ∗
R, of entities called hyperreal numbers. In ∗

R there
are positive numbers lying infinitely close to zero; the reciprocals of such infinitesimals must, of
course, exceed any positive integer.
6Our definition of universe marginally differs from the one given in [14, p. 15] in that we are
not assuming individuals to be given beforehand. Certain proper classes can also be regarded as
universes, according to a plain generalization of this definition to be seen in Fig. 10.5.
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The construction of w̃ relies on a pair æ, ï such that

(1) æ ⊆ P(ï) \ {∅};
(2) x ∩ y ∈ æ for all x, y ∈ æ;
(3) y ∈ æ whenever x ∈ æ and x ⊆ y ⊆ ï;
(4) no strict superset of æ meets the filter conditions (1)–(3).

(Consequently, see [14, p. 10], {x ∩ ï , ï \ x} ∩ æ �= ∅ holds for every set x .) Bywell-
established terminology,æ is anultrafilter7 over the index set ï = ⋃

æ.Momentarily
we do not commit our choice of æ and ï in any way; this choice is most relevant,
though, for the applicability of the nonstandard techniques.

We say that a property C( j) of elements of ï holds a.e. (‘almost everywhere’) if
{ j ∈ ï | C( j)} ∈ æ, that is, if the indices satisfyingC form a setwhich belongs toæ.
Thus, for example, the condition g j = hj a.e. defines an equivalence relation over s ï,
the set of all functions from the index set into standard individuals; we can then pick
a representative element ρg out of each equivalence class

{
h ∈ s ï | g j = hj a.e.

}
,

and finally get the set

w =
{

ρ g : g ∈ s ï
}

of nonstandard individuals. This is an enlargement of s, whose elements can in fact
be put in natural correspondence with the representatives of a.e. constant functions
(the injection of s into w is x �→ ρ gx , where gx ∈ {x}ï, i.e. gx = ï × {x}). We will
manage to enforce the strict inclusion w � s in Sect. 10.4; our present assumptions
only suffice to ensure that w ⊇ s.

The construction at issue continues with the specification of a function, ,̄ whose
set of values will be the universe w̃ we are after and whose domain is layered in a
way mimicking the hierarchical organization

ŝ = ⋃
n∈N

sn = s0 � ⊎
n∈N

(
P(sn) \ sn

)

(where � and
⊎

designate disjoint unions) of the standard universe:

¯ :
⋃

n∈N

{
f ∈ ŝ ï | f j ∈ sn a.e.

}
−→ ŵ .

For each f ∈ ŝ ï such that f j ∈ s0 a.e., we put f̄ = ρg, where g ∈ s ï is such that
f j = g j a.e. Next, for successive numbers n ∈ N, we define à la Mostowski the
image f̄ of each function f such that f j ∈ P(sn) \ sn a.e., by putting

f̄ = {
ḡ : g ∈ ŝ ï | g j ∈ sn ∩ ( f j) a.e.

}
.

7A slicker characterization of ultrafilters will be shown in Fig. 10.7.
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The following facts admit straightforward proofs:

• w̃, the set of all images f̄ , is a universe;
• f̄ ∈ ḡ if and only if f j ∈ g j a.e.;
• f̄ = ḡ if and only if f j = g j a.e.

Much as before, there is a natural one-one correspondence between ŝ and those
functions, in the domain of ,̄ which are a.e. constant; hence the embedding ∗of ŝ into
w̃ announced at the beginning of this section is plainly induced by ¯ . This function
∗will soon be extended by bringing into its domain many subsets of ŝ which do not
belong to ŝ.

————
Before going any further, let us pause to recall thatMartinworks under the assump-

tion that “we have available some given sufficiently large set I of true individuals
(sometimes called urelemente), about which we assume nothing except that they are
not sets” [14, p. 11], and he repeatedly stresses that questions as to the true ‘nature’
of such entities are irrelevant to mathematical practice.8 Anyway, we will have to
face this issue (see Sect. 10.8) while carrying out our formalization task, because our
framework will be a set theory devoid of individuals proper: our ‘individuals’ will
simply be sets whose elements are ‘inaccessible’ from within the superstructure.

10.3 Bounded Formulae and the Transfer Principle

The link between logic and computing is to a great extent the notion of a formal language,
which is the kind of language machines understand. [18, p. 83]

Formulas ofLU can be used not only to make assertions aboutU , but also to define subsets
of U . [14, p. 23]

In order to make assertions about a universeU and to introduce its definable subsets,
[14, pp. 20–21] specifies a language LU endowed with:

T0. constants c, which are in one-one correspondence with the elements of U
(each c is meant to designate the corresponding element c of U );

T1. a countable infinitude x1, x2, x3, . . . of variables (each ranging over U );
T2. dyadic function symbols 〈s,,, t〉 and (s ��� t) (which are meant to designate, re-

spectively, ordered pair formation and function application);

F0. dyadic relation symbols (s = t) and (s ∈ t) (designating = and ∈);
F1. propositional connectives¬¬¬ (monadic) and & (dyadic);
F2. bounded quantifiers of the form (∃∃∃ xn ∈ t), where t stands for a term where xn

does not appear.

8In a similar attitude, [11, p. 54] states that “one possible view is that the integers are atoms and
should not be viewed as sets. Even in this case, one might still wish to prevent the existence of
unrestricted atoms. In any case, for the ‘genuine’ sets, Extensionality holds and the other sets are
merely harmless curiosities.”.
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More detailed syntactic rules about terms and formulae of LU , as well as the
semantics of LU , follow the pattern familiar to anyone who has encountered first-
order predicate languages; we leave them as understood for the time being and will
belabor this point when arriving at our formalization task (see Sect. 10.9). Anyway,
it will best suit our purposes to handle only formulae in negative normal form: hence
we admit as primitive constructs also the propositional connective ∨∨∨ and bounded
universal quantifiers (∀∀∀ xn ∈ t); moreover, we confine¬¬¬ inside contexts of the forms
¬¬¬(s = t) and¬¬¬(s ∈ t), shortened as usual to (s �= t) and (s /∈ t).

If exactly one variable, say xn , occurs free in a formula α ofLU , then we indicate
by α(c) the sentence9 resulting from α when all free occurrences of xn get replaced
by a constant, c, that designates some c ∈ U .

Definition 10.2 A set d ⊆ U is called definable if there is a formula α of LU

with one free variable such that d = {c ∈ U | α(c) is true in U }. 
Consider, now, the languages Lŝ and Lw̃ of the standard universe and of its

nonstandard counterpart. Let the notation |= α express the fact that α, a sentence of
Lŝ, is true in ŝ; similarly, indicate by ∗∗∗|=β the fact that β, a sentence of Lw̃, is true
in w̃.

A translation λ �→ ∗∗∗λ of terms and formulae from Lŝ into Lw̃ can be specified
as follows: to get ∗∗∗λ, replace every constant c occurring in λ by the constant ∗∗∗c that
designates the image ∗c of c.

We can now state two propositions, both easily obtainable from Łoś’s theorem, a
fundamental result of model theory which we underplay here:

Theorem 10.1 If α, β are formulae of Lŝ where the only free variable is x1 and

{c ∈ ŝ | |= α(c)} = {c ∈ ŝ | |= β(c)}

holds, then
{c ∈ w̃ | ∗∗∗|= ∗∗∗α(c)} = {c ∈ w̃ | ∗∗∗|= ∗∗∗β(c)} .

Theorem 10.2 (Transfer principle) For every sentence α of Lŝ,

∗∗∗|= ∗∗∗α if and only if |= α .

Thanks toTheorem10.1,we can add to the domain of the function ∗every definable
subset d of ŝ, via the unambiguous stipulation that

∗d = {c ∈ w̃ | ∗∗∗|= ∗∗∗α(c)} when d = {c ∈ ŝ | |= α(c)} .

9When the need will arise, we will adjust this notation also to terms, indicating by t (c) a term devoid
of variables resulting from replacement of a variable of t by a constant c.
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Davis thus briefly conveys the significance of the transfer principle:

There is a formal language that can be used to make assertions that are ambiguous in that
they can refer to either of the two structures. · · · The transfer principle roughly states that the
same assertions of the formal language are true in the standard universe as in the nonstandard
universe. It is typically used by proving a desired result in the nonstandard universe, and
then, noting that the result is expressible in the language, concluding that it holds in the
standard universe as well. [14, pp. 2–3]

————
Let us pause again, to observe that the task of formalizing within set theory such

model-theoretic propositions as the above Theorems 10.1 and 10.2 presupposes that
we encode terms and formulae via sets: wewill display a technique for that purpose in
Sect. 10.9. Similar tasks arise frequently in logic, when it comes to investigate inside
a formal system some meta-theoretical issues regarding the system itself. E.g., in
preparation for the proof that an axiomatic theory of sets is essentially undecidable
onewill encode its formulae, inside ∅̂ (see [33]) or even bymeans of natural numbers.
Our encoding cannot be carried outwith the sameparsimonyofmeans, due to the tight
interplay between syntax and intended semantics in our languages (see the formation
rule T0 of each LU ); we will manage, nonetheless, to encode the formulae of Lŝ

inside ŝ and the ones of Lw̃ inside ŵ.

10.4 A Kind of ‘All-at-Once Compactification’

Another technique is concurrence. This is a logical technique that guarantees that the ex-
tended structure contains all possible completions, compactifications and so forth. [14, p. 3]

Suppose that s is infinite. If ï is also infinite and an injection g of ï into s exists,
it will suffice to require that no finite set belongs to the ultrafilter æ in order that
g j �= x a.e. for any x ∈ s; thus g must differ from any function h from ï to s which
is a.e. constant, and nonstandard individuals exist! This is one way of making the
nonstandard enlargement non-trivial (see [28, p. 52]).

Preliminary to the construction of a much richer nonstandard universe, [14, p. 34]
defines concurrence. In our own, slightly readjusted terms:

Definition 10.3 Relative to a universe U , a dyadic relation r such that r ∈ U and
r ∪ dom(r) ⊆ U is said to be concurrent if to every finite d ⊆ dom(r) there
corresponds some b ∈ U s.t. d × {b} ⊆ r . 

Now let ï be the set of functions φ such that dom(φ) is the set of all concurrent
relations r ∈ ŝ and φ r is a finite subset of dom(r) for each such r . The ultrafilter æ
will then be chosen so that ï = ⋃

æ holds and the membership relation

{φ ∈ ï | ψ r ⊆ φ r for each concurrent r ∈ ŝ } ∈ æ
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also holds, for each ψ ∈ ï. Here comes a key theorem, due to Abraham Robinson:

Theorem 10.3 (Concurrence theorem) To every concurrent relation r ∈ ŝ there cor-
responds some 
 ∈ w̃ such that {∗a : a ∈ dom(r)} × {
} ⊆ ∗r .

From this claim, [14, p. 36] draws the conclusion that nonstandard individuals
exist: for, assuming N ⊆ s in order to slightly simplify the argument, one such is the
‘limit’ element 
 corresponding to the concurrent relation

{〈n,m〉 : n ∈ N , m ∈ N | n < m} ;

in fact, 
 ∈ ∗
N \ s.

The third technique is internality. A set s of elements of the nonstandard universe is internal
if s itself is an element of the nonstandard universe; otherwise, s is external. A surprisingly
useful method of proof is one by reductio ad absurdum in which the contradiction is that
some set one knows to be external would in fact be internal under the assumption being
refuted. [14, p. 3]

Definition 10.4 We call

external set: every element of ŵ \ w̃;
internal set: every element of w̃ \ w. 

After showing, with the aid of the transfer principle, that ∗
N \ N is an external set,

[14, pp. 39–41] provides criteria for demonstrating the internality of specific sets:

Theorem 10.4 (Internality theorem) If d ⊆ w̃ is definable in w̃ and a is an internal
set, then a ∩ d is an internal set.

Theorem 10.5 If a and b are internal sets, then so is a × b.

Theorem 10.6 (Internal function theorem) If f ∈ ba, where a and b are internal
sets, and for a suitable term t of Lw̃ involving one free variable

f c is the value of t (c) in w̃ , for each c ∈ a ,

then f is internal.

Along the way, [14, pp. 39–41] shows N to be an external set.

10.5 Key Application of the Nonstandard Methods

In [14, Chap. 2] the construction of the nonstandard universe is used twice: first
to obtain R, the field of real numbers, from the field Q of the rationals; on second
application, to work out the structure of ∗

R from R. The first use can supersede such
classical constructions as the ones devised by George Cantor and Richard Dedekind.
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The second use brings infinitesimals into play, along with their inverses, which are
infinite numbers: one is thus led into the realm of hyperreal numbers.

To briefly see how these embeddings work, consider first an ordered field D (in
the customary sense). For any such field, we can assume w.l.o.g. that Q ⊆ D.

Definition 10.5 Put

F = ⋃
n∈N

{ x ∈ D | 0 ≤ x ≤ n ∨ 0 < −x ≤ n } ,

I = { x ∈ D | x = 0 ∨ (1/x) ∈ D \ F } .

An element x of D is said to be finite, infinite, or infinitesimal, depending as
whether x ∈ F , x ∈ D \ F , or x ∈ I . For x, y in D, we say that x is near y if
x − y ∈ I ; if so, we write x ≈ y.

D is called Archimedean if F = D; otherwise stated, if I = {0}. 
As is plain, I is an ideal in the subring F of D; moreover, ≈ is an equivalence
relation on D, whose restriction to F equals the equivalence relation induced by
I . Consequently, the quotient F/ ≈= F/I is a ring; actually, it is an Archimedean
ordered field.

Suppose next that D is an Archimedean ordered field and that D ⊆ s, where s is
as in Sects. 10.2, 10.3, and 10.4. By virtue of the transfer principle, the ∗D resulting
from D through the ultrapower construction is, in its turn, an ordered field (of which
D is a subfield). It is no longer Archimedean, though; for, its nonnull subset ∗

N \ s
consists of elements which are infinite. If we now designate by F and I the set of
all finite, respectively infinitesimal, elements of ∗D, then it readily turns out that the
canonical homomorphism ◦ of F onto F/I acts as a monomorphism of D into F/I.
After so embedding D in the Archimedean field F/I, [14, p. 51] goes on to prove that
F, D, I, and ∗D \ F are all external subsets of ∗D; then, by resorting to the concurrence
theorem, [14] obtains the following:

Theorem 10.7 (Dedekind’s Theorem) If A, B are nonnull subsets of D such that
a < b holds for all a ∈ A and b ∈ B, then there is a c ∈ F/I such that a ≤ c ≤ b
holds for all a ∈ A and b ∈ B.

From this, [14] gets that

Theorem 10.8 F/I is a complete ordered field,

after noting that between two elements x, y of an Archimedean ordered field such
that x < y there always lies a q ∈ Q such that x < q < y. Archimedean ordered
fields exist (one such is, of course, Q); therefore, a complete ordered field exists as
well. Up to isomorphism, this must be unique (owing, in particular, to the fact that
any complete ordered field is Archimedean): by definition, R is taken to be this field.

If we go over the same construction again, now taking D = R ⊆ s, we can natu-
rally identifyF/IwithR and, accordingly, think of ◦ as being the field homomorphism
that sends each finite hyperreal number to its standard part, namely to the sole real
number which lies near it. It can also be shown (see [14, pp. 53, 56]) that infinitesi-
mally near each real number there is a q ∈ ∗

Q.
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Typical notions of elementary real analysis can be captured in new terms from
the nonstandard viewpoint, after which classical theorems can be obtained by non-
standard methods. Various illustrations of this are provided in [14, pp. 56–74], e.g.:

Theorem 10.9 Consider a sequence { sn : n ∈ N \ {0} } of real numbers sn and a
real number 
. Then

• the sequence converges to 
 if and only if (∗s)n ≈ 
 holds for all infinite n ∈ ∗
N;

• (∗s)n ≈ 
 holds for some infinite n ∈ ∗
N if and only if, for each ε > 0 in R, the

inequality |sn − 
| < ε is satisfied for infinitely many n ∈ N.

Theorem 10.10 Let f be a real-valued function on the closed interval [a, b] =Def

{ x ∈ R | a ≤ x ≤ b }, where a, b ∈ R and a < b. Then f is continuous at x0 ∈
[a, b] if and only if, for all x ∈ ∗[a, b], x ≈ x0 implies ∗ f (x) ≈ ∗ f (x0).

Theorem 10.11 Let f be a continuous real-valued function on the closed interval
[a, b]. If f (a) < 0 < f (b), then f (c) = 0 holds for some c ∈ [a, b].
Proof 1 (Sketch) Consider the function t : N × N −→ R defined as follows:

t ( n, i ) =
{
a + i (b − a)/n if n ∈ N \ {0} and 0 ≤ i ≤ n ,

0 otherwise,

so that ∗t : ∗
N × ∗

N −→ ∗
Rmeets an analogous condition, by the transfer principle.

Choose ν ∈ ∗
N \ N. Since L = { i ∈ ∗

N | f (∗t(ν, i)) > 0 and i ≤ ν } is a defin-
able subset of ∗s, L is also internal by Theorem 10.4; and since ν ∈ L , there is a least
element j > 0 in L . If we take c to be the standard part of ∗t(ν, j), it turns out that c ≈
∗t(ν, j) ≈ ∗t(ν, j − 1); therefore f (c) ≈ f (∗t(ν, j)) ≈ f (∗t(ν, j − 1)), and hence
f (c) = ◦( f (∗t(ν, j))) = ◦( f (∗t(ν, j − 1))), where the inequalities ◦( f (∗t(ν, j)))
≥ 0 and ◦( f (∗t(ν, j − 1))) ≤ 0 hold. We conclude that f (c) = 0, as desired. �

10.6 Basic Features of Our Proof Checker

Our proof-checker Ref, a.k.a. ÆtnaNova or Referee, processes script files, named
scenarios, which consist of definitions, theorems, and detailed proofs of the theo-
rems. After checking a scenario for syntactic validity, Ref verifies that the proofs are
compliant with the version of set theory built into it. The language in which scenarios
are written extends the usual language of first-order predicate logic with constructs
reflecting the theory which underlies Ref: we can for example, as shown by most
of the abbreviating definitions in Fig. 10.1,10 exploit a very flexible set abstraction
construct of the form

10About Ref’s built-in operator arb (X) that occurs thrice in Fig. 10.1, suffice it to say for the time
being that it selects an element of its operand X when X �= ∅, and that arb (∅) = ∅.
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Fig. 10.1 A few basic operations over sets and maps; two special properties

{
term : iterators | condition

}

to specify many familiar operations and relations over sets.
Ref’s second-order construct named Theory enables one to package definitions

and theorems into reusable proofware components. Besides providing theorems of
which it holds the proofs, a Theory has the ability to bring into a mathematical
discourse decisive clues.11 Like procedures of a programming language, Ref’s The-
orys have input formal parameters, in exchange for whose actualization they supply
useful information. Actual input parameters must satisfy a conjunction of statements,
called the assumptions of the Theory. A Theory usually encapsulates the defi-
nitions of entities related to the input parameters and it supplies, along with some
consequences of the assumptions, theorems talking about those internally defined
entities that the Theory returns as output parameters. After having been derived by
the user once and for all inside the Theory, the consequences of the assumptions,
as well as the claims involving the output parameters, are available to be exploited
repeatedly.

Two Theory interfaces are shown in Fig. 10.2. The Theory finiteImage awaits
as input parameters a set f0, assumed to be finite, and a global function g, namely one
that sends every set x to a value g x ; whenever applied to fitting actual parameters,
this finiteImagewill simply produce a claim of the formFinite

( {g x : x ∈ f0}
)
. The

other one, reachGlob,12 only expects a global function g; it will return the global
function globΘ sending every set b to the smallest superset

{
b, g b, g

(
g b

)
, . . .

}
of

11In a passage echoing AbrahamRobinson’s ‘provocative remark’ which we have recalled in the In-
troduction throughMartin’swords, Jack says about this ability of Theorys [35, p. 9]: “· · · definitions
serve to ‘instantiate’, that is, to introduce the objects whose special properties are crucial to an in-
tended argument. Like the selection of crucial lines, points, and circles from the infinity of geometric
elements that might be considered in a Euclidean argument, definitions of this kind often carry a
proof’s most vital ideas”. A typical case of this kind is, in arithmetic, the selection of the least
natural number that meets some key property.
12This is a specialized variant of the Theory reachability presented in [35, Sect. 7.3]. As seen
here, the formal output parameters of a Theory always carry a subscript Θ .
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Fig. 10.2 Interfaces of two Ref Theorys

{b} which is closed under application of g to its own elements, as precisely stated by
the claims which this Theory will supply.

An example of the use of reachability through a global function is the construction
of the set of all natural numbers intended à la von Neumann, which can be carried
out in two steps:13

Apply 〈globΘ : count〉reachGlob
(
g(X) �→ X ∪ {X} )⇒Thm natsa: [Upwardcounting]

〈∀ y, x, z | y ∈ count(x) & z ∈ count(y) → z ∈ count(x)〉 &
〈∀ b, x, y | b ∈ count(b) &

(
x ∈ count(b) & y = x ∪ {x} → y ∈ count(b)

)〉 &
〈∀ b, t | b ∈ t & 〈∀x ∈ t | x ∪ {x} ∈ t〉 → count(b) ⊆ t〉 &
〈∀ b | count(b) = {b} ∪ {u ∪ {u} : u ∈ count(b)} 〉.

Def nats: [vonNeumann′snaturalnumbers] N =Def count(∅).

It would be pointless to discuss here the inferential armory of Ref, because we
are still in the phase of designing how to formalize the basic techniques underlying
nonstandard analysis, and the expected outcome of such a formalization is best
described by a plan concerning the core Theory interfaces and by choices as to how
implement some key definitions.

————

An important enhancement to the Zermelo-Fraenkel set theory came historically
with von Neumann’s introduction of an axiom,

∀ x ∃ a ∀ y ∈ x ( a ∈ x & y /∈ a ),

which forbids membership to form infinite chains 
0 � 
1 � 
2 � · · · ; this is tersely
stated by singling out, for any given set x , a set a disjoint from x that belongs to x
unless x = ∅. In Ref this principle is embodied by a construct, arb (X), such that

13What follows is not meant to imply that the definition of N shown is the ideal one.
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∀ x
(
arb (x) ∩ x = ∅ & arb (x) ∈ x ∪ {x}

)

(implying arb (∅) = ∅). Themeaning of arb is competently handled by amost basic
inference method of Ref.

To appreciate the usefulness of arb, consider the Theory whose interface ap-
pears on the left of Fig. 10.3. Upon receipt of a set n0 that meets a given property
P , this Theory will return a set transfIndΘ still enjoying P but none of whose
elements satisfies P . In its hidden internal working, transfInduction first applies the
Theory reachGlob seen in Fig. 10.2 to g(X) = arb ({u ∈ X | P(u)}) and then
applies the resulting globΘ to n0 to get a set N0 = {

n0 , g n0 , g
(
g n0

)
, . . . ,∅}

such
that arb ({w ∈ N0 | P(w)}) is the sought transfIndΘ .

In Ref the well-foundedness of membership also lies behind a definition mecha-
nism based on ∈-recursion, shown at work with the specification of img in Fig. 10.4
and which we will repeatedly use in the ongoing. A discussion about the syntax of
∈-recursive definitions can be found in [35, pp. 216–217]); concrete illustrations of
it will suffice here. A basic example is

rk (X) =Def

⋃ {
rk (y) ∪ {rk (y)} : y ∈ X

}
,

defining the rank of a set X . The mechanism at stake is akin to recursion as used
in computer programming; like it, it resorts to a base case to avoid circularity: in
fact, rk (X) = ∅ when X = ∅, since obviously {rk (y) ∪ {rk (y)} : y ∈ ∅} = ∅. But
rk (X) might also be an infinite set (actually, a transfinite ordinal), a situation which
will occur, e.g., when X is infinite or has some infinite elements.

Fig. 10.3 Transfinite induction contrasted with finite induction. The former exploits the well-
foundedness of ∈while the latter exploits the well-foundedness of �over finite sets. Other classical
forms of induction, e.g., arithmetic induction or induction over ordinals, can be conveniently hooked
to membership or inclusion

Fig. 10.4 A viable specification of the iterated images of g and of the output symbol globΘ inside
the Theory reachGlob of Fig. 10.2. Here σ∞ is a Ref’s built-in constant subject to the assumption
that σ∞ �= ∅ & 〈∀x ∈ σ∞ | {x} ∈ σ∞〉
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Let us digress briefly. The α’s satisfying the equality α = rk (α) turn out to be
precisely the sets known, after von Neumann, as ordinal numbers;14 and it is not
hard to prove, about the indexed class of sets which satisfy the conditions

V∅ = ∅ ,

Vγ∪{γ } = P
(
Vγ

)
for every ordinal number γ ,

Vλ = ⋃
β∈λ Vβ for every nonnull ordinal λ not of the form γ ∪ {γ }

—historically called the cumulative hierarchy—, that Vα consists, for each ordinal
α, of all sets whose ranks lie below α. Now consider the property

V (L) ↔Def L = ⋃ {P(
) : 
 ∈ L | V (
)} .

In this new instance of ∈-recursion, the reader can recognize a streamlined definition
of the stages of the cumulative hierarchy: as one readily sees, V (∅) holds; more
generally, one can show that V (L) is logically equivalent to the existence of an
ordinalα such that L = Vα .We do not prove this fact but do call attention to it because
a similar change of perspective will motivate our formalization of superstructures in
the following section.

10.7 Top-Down Recognition of Superstructure Stages

Concerning the unusual way, just hinted at, of approaching the cumulative hierarchy,
one might contend that it is presumably harder—or, if anything, less transparent—to
infer directly from the definition of V (L) a statement such as

(
V (L ′) & V (L ′′)

)
→ (L ′

� L ′′ ↔ L ′ ∈ L ′′)

than to prove, for any pair α, β of ordinals, the biimplications

(
Vβ � Vα ↔ β ∈ α

)
&

(
Vβ ∈ Vα ↔ β ∈ α

)
.

A tentative reply is that transfinite induction of the kind schematized in Fig. 10.3 (left)
is often a shortcut compared to a proof pattern relying on the theory of ordinals. On

14A common definition of ordinals, owing to a simplification due to Raphael Robinson, is:

Ord(U ) ↔Def ∀ x (x ∈ U → x ⊆ U ) & ∀ x ∀ y
( {x, y} ⊆ U → (x ∈ y ∨ y ∈ x ∨ x = y)

)
.
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a smaller scale, as will now be seen, we can treat superstructures without numbering
their stages: with virtually no recourse to natural numbers.15

We can exploit recursion to describe sets L which are stages of a superstructure.
The first of the three definitions shown below is ∈-recursive and specifies a function
seeking a set s of individuals (recall Sect. 10.2) such that sm = L for some m ∈ N;
if such an s exists, it can be found by repeated extraction

L � log L � log log L � · · · � s

of the ‘logarithm’ of L , where 
 = log L momentarily means that L = 
 ∪ P(
)

(needless to say, this equation has either one or no solution—in the former case,
∅ ∈ L and hence L cannot be regarded as a set of individuals):

basis(L) =Def if ∅ /∈ L & L ∩ ⋃
L = ∅ then L

elseif
(∃ 
 | L = 
 ∪ P(
) &P(
) ∩ ⋃

(
 \ P(
)) = ∅)

then arb ({basis(
) : 
 ∈ L | L = 
 ∪ P(
)})
else {∅} fi ;

Stage(L , S) ↔Def L = ∅ ∨ (
basis(L) = S & S �= {∅} ) ;

Ur (S) ↔Def ∅ /∈ S & S ∩ ⋃
S = ∅ &(∀ 
 | Stage(
, S) → P(
) ∩ ⋃

S = ∅)
.

The chain L = L0, Ln+1 = log Ln of logarithms surely has finite length but may
end with a set Lm such that either ∅ ∈ Lm or Lm ∩ ⋃

Lm �= ∅ holds, in which cases
Lm cannot serve as a set of individuals. When this happens, basis(L) will flag the
failure by returning {∅}; but failure can be detected earlier during the descent, should
P(Ln) ∩ ⋃

(Ln \ P(Ln)) be nonnull at some point. The predicate Stage(L , S)

indicates L as a potential stage of the superstructure—if any—generated by its ‘ulti-
mate logarithm’ S = basis(L) when the latter is obtained without failure; but even
when so, S does not qualify as a set of individuals unless one can indefinitely as-
cend, starting with S, through stages none of which reveals the inner structure of its
elements. The property Ur (S) captures the sense of our last remark.

Under the assumption Ur (s0), we have in fact checked with the assistance of Ref
that ŝ0 behaves as desired (see Fig. 10.5), even though genuine individuals (‘ure-
lemente’ of the nature set forth in [14, p. 11]) do not exist in the von Neumann
cumulative universe of all sets.

The interface, shown in Fig. 10.5, of the Theory superstructure may look in-
timidating, the cause being that it exploits the property 〈∃
 | Stage(
, s0) & X ∈ 
〉

15Natural numbers will play an irreplaceable role in the informal arguments providing the rationale
for the formal constructions that follow; within the formal treatment, their collection N will act as
a set whose infinitude is easiest to prove (and infinite sets will be crucial in Sect. 10.8).
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Fig. 10.5 Interfaces of the Theorys of universes and superstructures

as a temporary surrogate of the sought ŝ0. Only its final claim shows that the X ’s
enjoying that property form a set, namely the output parameter sstrΘ to be then
actualized as ŝ0 outside the Theory; even so we can exploit the said property as a
universe to get, through the Theory universe, derived closure properties. Observe,
in fact, that the second-to-last and penultimate claim of superstructure match the
assumptions of universe and its internally derived conclusions.

The moral is that our recursive characterization of the stages of a superstructure
disclosed handy patterns to our formal reasoning about them; however, at one point
we had to resort to a construction from below, closer in spirit to [14, Sect. 1.3]:
this happened when it came to ascertaining that the union-class of all the stages is,
in fact, a set. For that purpose, we applied the Theory reachGlob (see Fig. 10.2
above) to the actual input parameter if X = ∅ & s0 �= ∅ then s0 else X ∪ P(X) fi,

thus getting a function glob whence the sought superstructure was obtained simply
by taking sstrΘ = ⋃

glob(∅). The following triad of equations conveys the idea, in
functionally equivalent terms:
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nextStage(L) = if L = ∅ & s0 �= ∅ then s0 else L ∪ P(L) fi ,

stage(I ) = arb ({nextStage(stage( j)) : j ∈ I }) ,

sstrΘ = ⋃ {stage(i) : i ∈ σ∞} .

These equations, in fact, adjust the construction of Fig. 10.4 to the case at hand; as
said under that figure, σ∞ is a Ref’s built-in witnessing that infinite sets exist.

10.8 Forging Companion Sets of Individuals

When undertaking the construction of a standard universe, in practice one starts with
a pre-defined, infinite basis—say the setR of all real numbers—whose elements may
have an inner structure that prevents their direct use as individuals. If so, how can
we conceal their structure? We need a technique for converting a set s ′ whatsoever
into a set s ′′ so that Ur

(
s ′′) holds and there is a one-one correspondence between s ′

and s ′′.
One plainly sees that Ur

(
s ′′) cannot hold if any set of finite rank belongs to s ′′;

on the other hand, imposing that ∅ /∈ s ′′ and that all elements of elements of s ′′ share
the same infinite rank r suffices to ensure that Ur

(
s ′′) holds—one shows inductively,

in fact, that each stage originating from s ′′ is the union of a set of finite rank with a
set whose elements have ranks exceeding r . This observation makes it rather easy
to conceive an injection ur whose domain is the given s ′ and whose set of values,
s ′′ = {

ur x : x ∈ s ′}, can serve as basis in place of s ′ in the construction of the
standard superstructure. Should any rationale arise for doing so, we can even tune
the range of s ′′ by means of an auxiliary ‘gauge’ set c′, as suggested by the interface
of the Theory urification in Fig. 10.6.

This Theory receives sets s ′, c′ such that s ′ ∪ c′—and hence rk
(
s ′ ∪ c′)—is infi-

nite; it manufactures and produces in output a function urΘ sending injectively each
x ∈ s ′ to a set urΘ(x) all of whose elements have rank rk

(
s ′ ∪ c′)+ = rk

(
s ′ ∪ c′) ∪

Fig. 10.6 Gauged
transformation of a set s′
whatsoever into a set of
individuals
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{
rk

(
s ′ ∪ c′)}, where R+ =Def R ∪ {R}. The definition of urΘ—internally hidden,

insofar as immaterial outside the Theory urification—could well be

urΘ(X) =Def

{
s′ \ {X} ∪ {

s′ ∪ c′}
}

.

What really counts to us is that Ur
({

urΘ(x) : x ∈ s ′}) holds, as we aimed at.
To see a more sophisticated exploitation of the Theory at hand, suppose next

that we are given a set s along with an infinite set i ′ that we want to use as index
set for enlarging s, seen as a standard set of individuals, into a set w of nonstandard
individuals. To ease the discussion, we momentarily dismiss the concurrence issue
debated in Sect. 10.4; we will content ourselves with an ultrafilter none of whose
elements is a finite set, over (a counterpart i ′′ of) i ′.

First move. Convert i ′ into a set i ′′ so that all indices j in i ′′ have the same infinite
rank r , exceeding the rank of s, and there is a one-one correspondence u(X) between
i ′ and i ′′:

Apply (urΘ : u) urification( s′ �→ i ′, c′ �→ s ) ⇒ · · ·
Def i ′′ =Def

{
u(x) : x ∈ i ′

}

Second move. Observe that when W is a set of functions from i ′′ to s then each
element of

⋃
W is an ordered pair 〈 j, x〉 = {{ j} , { j, x}}, whose rank is infinite.

Trivially ∅ /∈ W and hence Ur (W ) holds.
Third move. Introduce an ultrafilter æ such that

⋃
æ = i ′′ and æ ⊇ {

i ′′ \ { j} : j ∈ i ′′
}

,

and at this point specify W as follows:

ρ(g) =Def arb
({
h ∈ si

′′ | {
j ∈ i ′′ | h j = g j

} ∈ æ
})

,

W =Def

{
ρ(g) : g ∈ si

′′
}

.

Now regard this W and its subset

S =Def

{
h ∈ W | (∃ y | dom

( (
i ′′ × {y}) ∩ h

) ∈ æ
)}

,

respectively, as the ‘wide’ and the ‘small’ set of all nonstandard individuals and of
the standard ones: it should be clear that S can act as a counterpart of the original
s, in view of the natural correspondence between the two.

What precedes has offered clues about how to implement the Theory whose
interface is shown in the lower part of Fig. 10.7.
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Fig. 10.7 Transformation of a set s into a set wΘ of nonstandard individuals

10.9 Set-Encoding of Bounded-Quantifier Formulae

Before we can exploit Ref to state and prove propositions such as the transfer prin-
ciple (not to mention Łoś’s theorem, see Sect. 10.3), we must devise a set-encoding
of terms and formulae that enables easy specifications of how to

(A) evaluate a term or formula under a set-assignment for its variables,
(B) determine the truth value of a sentence,
(C) replace a free variable by a constant within a term or formula,

and the like. Then we will be able to reason formally with Ref about the languages
of specific universes.

The set-theoretic representation of terms and formulae can be conceived of rather
liberally. By seeing each universe U as embedded in the class of all sets, which is
Ref’s domain of discourse, we will in particular

• treat the different languages LU by a single encoding instead of separately,
• specify the function val that evaluates a ‘term’ t under a set-assignment v for
the variables occurring in it so that val(t, v) yields a result even when t does not
encode a term.
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Fig. 10.8 Theory about the set-encoding of terms

About one feature of the representation of the syntax, we see no reason for being
flexible: each variable xn will be encoded by its subscript n, a positive integer.

The Theory interface displayed in Fig. 10.8 formulates the constraints to which
we submit our encoding of terms, effected via two properties, Pair and Appl, and
three functions: lft , rgt, and cst. The two properties are meant to indicate which sets
encode terms of the respective forms 〈
,,, r〉 and (
 ��� r); lft(p) and rgt(p)will provide,
when applied to a set p that encodes a termof the form 〈
,,, r〉, the two sets encoding the
immediate subterms, 
 and r respectively; lft(q) and rgt(q)will behave likewisewhen
q encodes a term of the form (
 ��� r). As for cst, it will send each set c to a constant
c designating it univocally: not only cst(c) �= cst(k) must hold whenever c �= k,
but we require also that ¬Pair(cst(c)), ¬Appl(cst(c)), and cst(c) /∈ N, to avoid
‘collision’ between cst(c) and any set encoding a non-constant term. Unambiguous
readability also demands that p /∈ N, q /∈ N, and p �= q hold when Appl(p) and
Pair(q) hold. This is the rationale behind the first two claims issued by the Theory
termEncoding. To understand the third, fourth, and fifth claim thereof, think of ∅ as
non-encoding set par excellence: for every pair x, y of sets which differ from ∅, we
want unique sets p, q to exist such that lft(p) = lft(q) = x , rgt(p) = rgt(q) = y, and
Pair(p), Appl(q) hold; conversely, we want lft(s) and rgt(s) to differ from ∅ when
either Pair(s) or Appl(s) holds. The last claim of termEncoding plays a technical
role: since the only built-in kind of recursion in Ref is ∈-recursion, by imposing that
the immediate subterms of any compound term t (as encoded by a set) belong to t ,
this claim will ease the recursive definition of functions over all terms.

Figure10.9 suggests onewayof implementing thewanted functions andproperties
inside termEncoding, based on the remark that when ∅ /∈ {x, y} the projections x, y
can be retrieved from both variants 〈x, y〉 ∪ {x, y}, 〈x, y〉 ∪ {x, y} ∪ {∅} (the former
of which equals {x, y}+ ∪ {{x}}) of Kuratowski’s pair 〈x, y〉.

Assuming that terms are encoded according to a quintuple such as the one pro-
duced by termEncoding, it is easy to implement their evaluation thus developing
the Theory evalTerm whose interface is shown in Fig. 10.10.
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Fig. 10.9 Aviable implementation of the quintuple needed to encode terms, followed by encodings
of literals of the forms (s ∈ t), (s /∈ t) and of bounded quantifiers of the forms (∃∃∃ xn ∈ t), (∀∀∀ xn ∈ t).
Equality can be eliminated in terms of membership

Fig. 10.10 A Theory about the evaluation of terms

ThisTheory receives, alongwith a quintuple of the said kind, a function th(N , V )

supplying the value of the N -th variable in a set-valued assignmentV ; itmanufactures
and produces in output the evaluating function valΘ . In order to represent a set-valued
assignment it suffices to use a finite-length list which must, in its turn, be modeled
somehow: in a manner—we propose—complying with the Theory interface shown
in Fig. 10.11.

The property Lst produced by the Theory list is meant to indicate which sets
represent lists; the dyadic function th associates with any such set 
 the number
of components of the list and the sets occupying those components.16 Specifically,
supposing thatLst(
) holds, th(0, 
)will exceed by one the overall number of compo-
nents of 
, and th(n, 
)will provide the n-th component of 
when 0 < n < th(0, 
).
It should be clear from this explanation that the three claims issued by list state that:

16One way of implementing lists is discussed in [30, pp. 127–128].
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Fig. 10.11 A Theory of lists

1. the length of every list is a finite ordinal;
2. the equality criterion for lists 
,m is that 
 and m have the same length h and the

same n-th component for n = 1, . . . , h;
3. from every triple m, h, x consisting of a list m, a natural number h, and a set x ,

one can obtain a list 
 of length h whose last component—if any—is x and whose
n-th component is th(n,m) for n = 1, . . . , h − 1; viz.:


 =
{ 〈 〉 if h = 0 ,

〈th(1,m), . . . , th(h − 1,m), x〉 otherwise.

For a sparing encoding of formulae, we can think of equality as a derived con-
struct; a logical equivalence by which it can be eliminated is in fact (s = t) ↔
(∃∃∃ xn ∈ 〈s,,, s〉)(t ∈ xn), where xn does not occur in s or in t . It is also advisable
to treat conjunction and disjunction as polyadic connectives, so that the only for-
mulae which need to be encoded directly are the ones of the forms (s ∈ t), (s /∈ t),

(∃∃∃ xn ∈ t)
(∧h

i=0 ϕi

)
, and (∀∀∀ xn ∈ t)

(∨k
j=0 ψ j

)
, where each ϕi and each ψ j has in

its turn one of these forms. An expedient way of representing a multiple conjunction
or disjunction, that owes much to Martin Davis for its dissemination in the early
1960s, is as the sets of conjuncts or disjuncts, respectively;17 we will rely on this
representation for completing our endeavor.

10.10 Related Work

Often [· · · ] the nonstandard definition of a concept is simpler than the standard definition
(both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types
or fewer alternations of quantifiers). As a result, nonstandard analysis sometimes makes it
easier to find proofs. [4, p. 37]

17This way of representing formulae in conjunctive normal form is widely used today. In recent
years [32] resorted to it, to give a Ref-based correctness proof for the DPLL satisfiability algorithm.
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Inwhat follows, we rely on [6] as an up-to-date comparative survey on systemswhich
offer automated proof abilities related to real analysis. Some of the formalizations
supported by such systems characterize real numbers axiomatically, as a given set
with specific operations and properties; others construct real numbers either from
rational Cauchy sequences or as Dedekind cuts. Nonstandard analysis is available
in ACL2(r) and in Isabelle/HOL (see [26, 27], respectively): both achievements are
reminiscent of [2, 3].

The semi-automated theorem prover ACL2, which ACL2(r) potentiates, offers
limited support to quantifier handling (cf. [27, pp. 323–324]); in order to circumvent
that difficulty, ACL2(r) focuses on the extension ∗

R of the reals. With hyperreal
numbers, in fact, the quantifier alternation∀ ε > 0 ∃ δ > 0 . . . which affects the usual
formulas about limits becomes unnecessary, hence the proofs benefit from a higher
degree of automation. The formalism of ACL2(r) is based on an axiomatization of
∗
R as an autonomous domain.
The Isabelle/HOL-mechanization of real analysis, on the other hand, introduces

the standard, along with the nonstandard, definition of each concept; thereby, ‘users
will have the freedom either to stick with classical (standard) techniques, use non-
standard ones, or a combination of both’ [26, p. 161]. ‘Our first task’, the author
notes, ‘each time we introduce a new concept from analysis, is to prove that the two
definitions are equivalent’ [26, p. 150]. Thus, albeit implicitly, the transfer principle
plays a central role. It is ‘neither an axiom nor a theorem, but a meta-theorem, since it
applies to theorem statements’ and, as such, ‘it is not directly proved in Isabelle/HOL’
[6]; nevertheless, since this principle informs the general pattern followed by all the
equivalence proofs, the ultrapower construction of the hyperreals presupposed that
a proof of Zorn’s lemma and a theory of filters and ultrafilters were developed for
Isabelle/HOL (cf. [26, p. 145]).

As an eventual reward of the exploration discussed in this paper, we hope to
get Ref-based, nonstandard proofs of theorems of real analysis and to check by
means of Ref many of the results presented in Martin Davis’s chapter on hyperreal
numbers [14, Sects. 2.3–2.8]. However, a formal remake of real analysis along un-
conventional lines is only an incidental issue here. As discussed at the beginning, we
rather feel confronted with a proof-engineering issue—akin to metamathematical
extensibility—which our proof assistant could tackle well because a proof of the
relevant meta-theorem can be set up with relative ease in a full-fledged set theory.

After all, the guidelines for a Ref-based development of analysis which J. T.
Schwartz sketched in [35, Chap. 5] stick to the tradition; the use of nonstandard
methods can lead to much simpler and more elegant proofs than the classical ones,
but one can contend that it calls for an extra amount of work spent on preliminary
constructions, which may be out of scale with a proof of Rolle’s theorem (to cite a
result of analysis proper).
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For a large-scale endeavor, this additional work is justified by considerations such
as the following:

Not only does nonstandard analysis provide a rigorous treatment of infinitesimals in the area
of mathematics where they were originally used, it also gives elegant approaches to some
ideas that developed later.

[4, p. 37]

10.11 Concluding Remarks

The well known theorem of Gödel shows that every system of logic is in a certain sense
incomplete, but at the same time it indicates means whereby from a given system L of logic
a more complete system L ′ may be obtained. By repeating the process we get a sequence L ,
L1 = L ′, L2 = L ′

1, L3 = L ′
2, . . . of logics each more complete than the preceding.

(A. M. Turing, 1938)

The authors have at this point prepared the ground for verifying, with a proof-checker
based on set theory, the propositions in the first chapter of [14].18 A variant of the
Zermelo-Fraenkel set theory, postulating global choice, regularity and infinity,19 un-
derlies the logical armory of the proof-checker, Ref, on which our experimental
activity relies. The formally checked proofs regard, for the time being, only certain
parts of our planned work: in particular, we proved the conclusions of the The-
orys about universes, superstructures, and ‘urification’ shown in Figs. 10.5 and 10.6,
as well as the unique readability of the sets that encode terms inside the Theory
termEncoding (see Figs. 10.8 and 10.9); the proof of the ultrafilter theorem was
available from the outset,20 along with many minor but useful facts about finiteness,
rank, ordinals, the set constructs P,

⋃
, etc.

In the phase on which we have reported, anyway, our work has been mainly ar-
chitectural: given the availability of a second-order construct, ‘Theory’, supporting
modularization and proof reuse in Ref, we deem it wise to invest in designing the
Theory interfaces before formalizing proofs meticulously.

18A website reporting on our experiment is at
http://www2.units.it/eomodeo/InitialSetupForNonStandardAnalysis.html,
http://aetnanova.units.it/scenarios/InitialSetupForNonStandardAnalysis/.
19In Ref the well-foundendess of membership and statements of the axiom of choice easily result
from the availability of the construct arb discussed in Sect. 10.6, thanks to the interplay of arb
with abstract set formers; infinity is embodied by Ref’s built-in constant σ∞.
20For a Ref-based proof of Zorn’s lemma (whence the ultrafilter theorem follows easily), see [35,
pp. 373–405]. This lemma was used in Ref’s proof of the maximal ideal theorem for Boolean
algebras as presented in [9].
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We are confident thatwe canfinish the envisaged proof-development taskswithout
getting entangled in unforeseen difficulties. Then, as said in the introduction, wemust
adopt schemes of notation and extended rules of inference that conveniently assist
Ref’s users in exploitations of the nonstandard methods.

Even after those enhancements, Ref’s theory will be a conservative extension
of the specific set theory available in Ref’s initial endowment. A more challenging
and intriguing view on the extensibility of proof-checkers should cope with the
progressive extension of theories, in a frame of mind close to some of Alan Turing’s
early investigations (see [37]).
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