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Abstract: The G protein-coupled estrogen receptor (GPER, formerly known as GPR30) is a
seven-transmembrane receptor that mediates estrogen signals in both normal and malignant cells.
In particular, GPER has been involved in the activation of diverse signaling pathways toward
transcriptional and biological responses that characterize the progression of breast cancer (BC). In this
context, a correlation between GPER expression and worse clinical-pathological features of BC has
been suggested, although controversial data have also been reported. In order to better assess the
biological significance of GPER in the aggressive estrogen receptor (ER)-negative BC, we performed
a bioinformatics analysis using the information provided by The Invasive Breast Cancer Cohort of
The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) datasets. Gene expression correlation and the statistical analysis were
carried out with R studio base functions and the tidyverse package. Pathway enrichment analysis
was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the Database for
Annotation, Visualization and Integrated Discovery (DAVID) website, whereas gene set enrichment
analysis (GSEA) was performed with the R package phenoTest. The survival analysis was determined
with the R package survivALL. Analyzing the expression data of more than 2500 primary BC,
we ascertained that GPER levels are associated with pro-migratory and metastatic genes belonging to
cell adhesion molecules (CAMs), extracellular matrix (ECM)-receptor interaction, and focal adhesion
(FA) signaling pathways. Thereafter, evaluating the disease-free interval (DFI) in ER-negative BC
patients, we found that the subjects expressing high GPER levels exhibited a shorter DFI in respect
to those exhibiting low GPER levels. Overall, our results may pave the way to further dissect
the network triggered by GPER in the breast malignancies lacking ER toward a better assessment
of its prognostic significance and the action elicited in mediating the aggressive features of the
aforementioned BC subtype.
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1. Introduction

Breast cancer (BC) is the most frequently diagnosed tumor worldwide (24.2%) and the leading
cause of cancer death among females (14.5%) [1]. The breast malignancies encompass diverse subtypes
(Luminal A, Luminal B, Her2-enriched, Triple-negative/basal-like, and Normal-like) that are characterized
by peculiar gene expression profiles, biological features, and clinical outcomes [2]. Estrogens play a
pivotal role in numerous physiological conditions; however, the action of these steroids is also extensively
associated with an increased risk of BC development [3]. The estrogen signaling is mainly mediated
by the estrogen receptor (ER)α and ERβ that, upon ligand activation, regulate the expression of target
genes involved in cell growth, invasion, and survival [4]. A growing body of data has also evidenced
that the seven-transmembrane G protein-coupled estrogen receptor (GPER, previously known as GPR30)
can mediate the estrogen action in diverse normal and malignant cell contexts, including BC [5].
The activation of GPER triggers diverse transduction pathways including the epidermal growth factor
receptor (EGFR), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and mitogen-activated
protein kinases (MAPKs) toward transcriptional and biological responses driving the progression of
BC [5–8]. In this regard, we recently found that GPER mediates the activation of the focal adhesion kinase
(FAK) and the formation of focal adhesions (FAs) in triple negative BC cells (TNBC), thus contributing
to the acquisition of aggressive features by breast malignancies [9]. In accordance with these data,
immunohistochemical studies on breast tumors have shown that the expression of GPER is correlated
with increased tumor size, distant metastasis, and recurrence [10,11]. Conversely, Martin and co-workers
demonstrated that low expression levels of GPER are associated with aggressive features in a large
cohort of primary invasive BC patients [12]. These controversial observations may deserve further
investigations in order to better assess prognostic and therapeutic values of GPER, particularly in BC.

In the last years, high throughput techniques have been employed in handling and extracting
meaningful information from large multiomic datasets [13]. In particular, big data analysis methods
and classification techniques have allowed accurate and comprehensive examination of global gene
expression profiles [14]. As cancer genomic datasets incessantly grow in terms of size and complexity,
the availability of accessible computational resources may facilitate rapid and cost-effective analysis
toward new discoveries in cancer biology and profiling [15]. The Cancer Genome Atlas (TCGA) project,
initiated in 2005 by the National Cancer Institute, aims to collect genomic alterations implicated in
cancer using genome analysis technologies [16]. Furthermore, the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) is a Canada-United Kingdom project integrating
genomic and transcriptomic profiles of a large cohort of primary breast tumors (over two thousand)
along with long-term clinical follow-up [17]. In particular, systematic advances in cancer genomics
provided by both the TCGA and METABRIC databases have contributed to highlight similarities and
differences in the genomic architecture of the breast malignancy as well as to identify new candidate
biomarkers and drug tumor targets toward tailored therapeutic strategies [17–19]. Here, we focused
on data extracted from both TCGA and METABRIC datasets in order to better understand the role
exerted by GPER as well as its prognostic value in the aggressive BC subtype lacking ER. Indeed,
our analysis provides new insights regarding the association of pro-metastatic pathways with GPER in
the ER-negative BC, therefore opening a new scenario for subsequent studies aimed to better evaluate
its role in breast tumors characterized by a worse prognosis.

2. Materials and Methods

2.1. Data Source

Data from the publically available TCGA and METABRIC datasets were used in the current
study. mRNA expression data (RNA Seq V2 RSEM) and associated clinical information reported in
the Invasive Breast Cancer Cohort of the TCGA project were retrieved on 4 November 2019 from
cBioPortal for cancer genomics (http://www.cbioportal.org/) as well as microarray gene expression
data (Log2 transformed intensity values) and clinical information of the METABRIC cohort. Patients of
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both TCGA (N = 817) and METABRIC (N = 1980) were classified on the basis of the presence or the
absence of ER (detected by immunohistochemistry). Gene expression and clinical information were
filtered for missing values. The filtering resulted in 775 patients of TCGA and 1904 of METABRIC,
which were used for the subsequent analysis.

2.2. Correlation Analysis

The Pearson correlation coefficients (r-values) between the expression levels of GPER and the other
genes of the TCGA (N = 36877) and METABRIC (N = 24367) datasets were assessed in ER-negative BC
patients using the cor.test() function and setting the method as “Pearson” in R Studio (version 3.6.1).
The first 1000 most correlated genes of each dataset were intersected with the intersect() function in
order to obtain the most correlated genes shared by the two datasets. The statistical analysis was
performed by using the t-tests, and p < 0.001 was considered statistically significant.

2.3. Pathway Enrichment Analysis

In order to obtain the enrichment results of the selected genes into significant pathways,
we uploaded our lists on the Database for Annotation, Visualization and Integrated Discovery
(DAVID) functional annotation analysis website [20]. We analyzed a list of the 277 top GPER-correlated
genes of the ER-negative patients shared by TCGA and METABRIC, choosing the official gene symbol
as “select identifier” and gene list as “list type” in the options of the upload and selecting a limit
species of “Homo sapiens” in the background. Selecting the functional annotation tool and the option of
pathways, crucial pathways were obtained by KEGG pathway of DAVID and their numbers in the
KEGG database.

2.4. Gene Set Enrichment Analysis (GSEA)

GSEA was performed using the gsea() function of the phenoTest package (https://bioconductor.
org/packages/release/bioc/html/phenoTest.html) in R Studio in order to test the association between
the predefined groups of genes and a specific phenotype. The gene lists used for this analysis,
derived from DAVID functional annotation tool, are the CAMs pathway (KEGG entry = hsa04514), the
ECM-receptor interaction pathway (KEGG entry = hsa04512), and the FA signaling pathway (KEGG
entry = hsa04510). We ranked the genes in accordance with the differential expression within GPER
high and low (median expression value as threshold assessment) samples in the ER-negative subgroup
of BC patients, verifying if the selected set of genes were enriched at the bottom or the top of the
ranked list. We calculated the enrichment score (ES) that reflects the degree to which a set of genes is
overrepresented at the extremes (top or bottom) of the entire ranked list. The magnitude of the increment
depends on the correlation of one gene with the phenotype. In this analysis, 20,000 simulations were
used (B = 20,000). p < 0.05 was considered significant.

2.5. Survival Analysis

Comprehensive survival analysis was conducted using TCGA gene expression data of GPER
along with the DFI information; patients were filtered for missing values, and the ER and the HER2
statuses were used to divide the population. The survivALL package was employed to examine
Cox proportional hazards for all possible points-of-separation (low-high cut-points), selecting the
cut-point with the lowest p-value [21] and separating the patients into high (N = 27) and low (N = 93)
GPER expression levels. The Kaplan–Meier survival curves were generated using the survival and the
survminer packages.

2.6. Statistical Analysis

In this study, the analyses, including the t-test, and the scatter plots were performed with the R
tydiverse package. p-values < 0.05 were considered significant. Heatmaps were performed with the R
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pheatmap package. Gene expression values of both TCGA and METABRIC datasets were normalized
by calculating their respective normalized z-scores.

3. Results

Considering that GPER-mediated signaling has been involved in BC development and
aggressiveness [6,7,19], we began our study correlating the expression of GPER with the genes
present in both TCGA and METABRIC datasets. In particular, we focused our investigations on
ER-negative BC, as this malignancy is characterized by a worse prognosis [1,2,19]. To this end,
we ranked the genes by Pearson correlation coefficient, assessing for the next evaluations the first
1000 genes positively correlated with GPER either in TCGA or METABRIC cohorts. Hence, we found
277 shared genes between the two datasets, as shown in Figure 1A and detailed in the Supplementary
Table S1.
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Figure 1. (A) Intersection of the top 1000 G protein-coupled estrogen receptor (GPER) correlated
genes in estrogen receptor (ER)-negative breast cancer (BC) patients querying The Cancer Genome
Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
datasets. (B) GPER expression is correlated with pro-metastatic pathways in ER-negative BC samples,
as evaluated by The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
of the 277 genes shared by the TCGA and METABRIC datasets and their positive correlation with
GPER in ER-negative BC patients. The −log10 adjusted values are displayed along the x-axis, while
the different KEGG pathways are shown along the y-axis. The number of the genes included in the
identified pathways is plotted on the right of each bar.
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In order to investigate the biological significance of the aforementioned 277 genes, we then
performed KEGG (The Kyoto Encyclopedia of Genes and Genomes) pathway analysis using the online
Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov).
The 277 genes were enriched in a number of pathways, as schematically shown in Figure 1B. Of note,
transduction pathways that characterize aggressive cancer features as cell adhesion molecules (CAMs),
extracellular matrix (ECM)-receptor interaction, and focal adhesion (FA) appeared to be the most
significant, as indicated by their respective -log10 adj p-value.

Thereafter, we performed gene set enrichment analysis (GSEA) to explore the expression profile of
the genes belonging to the CAMs, ECM-receptor interaction, and the FA pathways in the high and low
GPER phenotypes of TCGA and METABRIC cohorts of ER-negative BC patients. It is worth noting
that the genes included in these signaling pathways were found enriched in the group of patients
showing high GPER levels (Supplementary Figure S1). In addition, we assessed the profile of the most
GPER-correlated genes shared by the TCGA and METABRIC datasets. In this regard, we identified
pro-tumorigenic genes belonging to the CAMs pathway as for instance the cell adhesion molecule 3
(CADM3), the CD34 molecule (CD34), the cadherin 5 (CDH5), the claudin 5 (CLDN5), the endothelial
cell adhesion molecule (ESAM) and the junctional adhesion molecules namely JAM2 and JAM3
(Figure 2A). In addition, we evidenced further pro-tumorigenic genes belonging to the ECM-receptor
interaction and FA pathways including for instance the caveolin 1 (CAV1), the alpha(α)1(VI) and the
alpha(α)2(VI) chain of type VI collagen (COL6A1 and COL6A2, respectively), the insulin like growth
factor 1 (IGF1), the integrin subunit alpha 5 and the integrin subunit alpha 7 (ITGA5 and ITGA7,
respectively), the laminin subunit beta 2 (LAMB2), the platelet derived growth factor receptor beta
(PDGFRB), the placental growth factor (PGF) and the von Willebrand factor (VWF) (Figure 2B).
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Figure 2. GPER correlates with the expression of cell adhesion molecules (CAMs), extracellular matrix
(ECM)-receptor interaction, and focal adhesion (FA) pathway genes as determined querying the TCGA
and the METABRIC datasets. The heatmaps, ranked from left to right, show the most GPER correlated
genes belonging to the CAMs pathway (A) and to the ECM-receptor interaction and FA molecular
pathways (B) in ER-negative breast tumor samples. Colors are z-score normalized values, red indicates
high and blue indicates low.

Next, we evaluated whether the expression of GPER would be predictive for the outcome of
the aggressive BC subtype characterized by the lack of both ER the human epidermal growth factor
receptor 2 (HER2). Using the disease free interval (DFI) data, a significant cut-point was predictable
only from the TCGA cohort. Ranking the gene expression data according to the low and high GPER
levels, all possible points-of-separation and their significance were reported in the survivALL plot by
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which the most significant cut-point was assessed (Figure 3A). Thereafter, the Kaplan-Meier survival
curve revealed that a worse DFI characterizes the group of BC patients exhibiting a high expression of
GPER (Figure 3B).Cells 2020, 9, 622 6 of 13 

 

 
Figure 3. Clinical outcome on the basis of GPER expression in ER-negative BC patients. (A) ER-
negative BC patients of the TCGA cohort divided into high and low expression levels of GPER on the 
basis of the established cut-point. The color bar gradient stands for range of the most significant 
points-of-separation of the population (low-high significance = blue-yellow gradient) based on GPER 
expression and survival of each patient. The x-axis represents the patients ordered by the increasing 
expression of GPER. (B) Correlation between GPER expression and disease free interval (DFI) of ER-
negative BC patients in the TCGA cohort. 

4. Discussion 

The great amount of data on cancer-related molecular interactions and gene expression patterns 
has challenged the use of comprehensive information highlighting the multifaceted functions driving 
tumor progression. In this vein, large-scale informatics studies have provided the chance to handle 
and analyze the open-source biological datasets. As a better understanding of key regulatory 
networks involved in cancer biology may strongly boost the identification of new targets and 
innovative therapeutic approaches, the use of big data regarding the gene expression landscape in 
cohorts of cancer patients could represent a promising perspective. Considering the aforementioned 
remarks, the TCGA and the METABRIC datasets were queried to deepen the current knowledge on 
the action of GPER in BC development. Our data analysis demonstrated that a significant association 
of GPER with genes belonging to pro-migratory and metastatic signaling pathways occurs in the 
subset of BC patients lacking ER. Of note, these findings suggest that GPER may be involved in the 
metastatic dissemination of BC cells in the aforementioned patients. Finally, we ascertained that a 
worse DFI characterizes the subgroup of both ER and HER2-negative BC patients exhibiting a high 
expression of GPER, hence highlighting its potential role in the aggressive subtype of breast 
malignancies. 

The action of GPER in mediating the stimulatory effects of estrogens in BC has been extensively 
reported [6,19,22,23]. In particular, it was established that GPER is involved in a complex 
transduction network that includes, for instance, the EGFR/MAPK signaling cascade, the adenylyl 
cyclase, and PI3K, which in turn leads to gene expression changes and biological responses as the 
proliferation, the survival, and the migration of BC cells [5,6,24]. GPER and ER are considered to be 
unique estrogen receptors on the basis of their different chromosomal localization and the 

Figure 3. Clinical outcome on the basis of GPER expression in ER-negative BC patients. (A) ER-negative
BC patients of the TCGA cohort divided into high and low expression levels of GPER on the basis of the
established cut-point. The color bar gradient stands for range of the most significant points-of-separation
of the population (low-high significance = blue-yellow gradient) based on GPER expression and survival
of each patient. The x-axis represents the patients ordered by the increasing expression of GPER.
(B) Correlation between GPER expression and disease free interval (DFI) of ER-negative BC patients in
the TCGA cohort.

4. Discussion

The great amount of data on cancer-related molecular interactions and gene expression patterns
has challenged the use of comprehensive information highlighting the multifaceted functions driving
tumor progression. In this vein, large-scale informatics studies have provided the chance to handle
and analyze the open-source biological datasets. As a better understanding of key regulatory networks
involved in cancer biology may strongly boost the identification of new targets and innovative
therapeutic approaches, the use of big data regarding the gene expression landscape in cohorts of
cancer patients could represent a promising perspective. Considering the aforementioned remarks,
the TCGA and the METABRIC datasets were queried to deepen the current knowledge on the action
of GPER in BC development. Our data analysis demonstrated that a significant association of GPER
with genes belonging to pro-migratory and metastatic signaling pathways occurs in the subset of BC
patients lacking ER. Of note, these findings suggest that GPER may be involved in the metastatic
dissemination of BC cells in the aforementioned patients. Finally, we ascertained that a worse DFI
characterizes the subgroup of both ER and HER2-negative BC patients exhibiting a high expression of
GPER, hence highlighting its potential role in the aggressive subtype of breast malignancies.

The action of GPER in mediating the stimulatory effects of estrogens in BC has been extensively
reported [6,19,22,23]. In particular, it was established that GPER is involved in a complex transduction
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network that includes, for instance, the EGFR/MAPK signaling cascade, the adenylyl cyclase, and
PI3K, which in turn leads to gene expression changes and biological responses as the proliferation, the
survival, and the migration of BC cells [5,6,24]. GPER and ER are considered to be unique estrogen
receptors on the basis of their different chromosomal localization and the biochemical, the biological,
and the pharmacological properties [19]. Worthy, the observations that BC cells lacking ER may express
GPER and that the transcription of the two receptors is differentially regulated in BC phenotypes
may indicate an independent beyond a cooperative action of GPER and ER in mediating the estrogen
signaling [10,25,26]. In this respect, a physical and functional interaction occurring between these main
transduction mediators was shown to regulate transcriptional and biological responses in cancer cells,
hence indicating that GPER and ER may synergistically contribute to the malignant progression of
estrogen-sensitive tumors [27–30]. Yet, numerous clinical studies have demonstrated that, in diverse
cohorts of BC patients, high GPER levels are likely concomitant with an ER positivity [10,11,31,32].
Nevertheless, immunohistochemical analysis of 361 BC also revealed that the expression of GPER
and ER may be not interdependent, as approximately 50% of ER-negative breast tumors retained
GPER; therefore, GPER could drive estrogen responses in these peculiar cell contexts [10]. On the basis
of these findings, we therefore focused on the gene expression profile and the signaling pathways
associated with GPER in ER-negative BC patients. Of note, the expression of pro-metastatic CAMs,
ECM-receptor interaction, and FA genes was found as the most correlated with GPER in this cell context,
suggesting the potential of GPER to contribute to spreading and metastatic outgrowth of BC cells, as
previously reported [7,19,33–36]. CAMs are cell surface glycoproteins involved in the establishment
of normal tissue structure and function, hence contributing to a variety of physiological processes
as morphogenesis, embryogenesis, organogenesis, immunological function, wound healing, and
inflammation [37]. Cadherins, integrins, selectins, and members of the immunoglobulin superfamily
are the four major groups of CAMs mainly involved in transduction signaling, cytoskeletal organization,
and gene regulation upon cell-to-cell and cell-to-ECM interactions [38,39]. Hence, alterations in their
expression may contribute to peculiar features of neoplastic transformation, including the loss of cellular
morphology and tissue architecture [40,41] as well as cell invasion, migration, EMT, trans-endothelial
migration, intra- and extra-vasation, tumor angiogenesis, and organ-specific metastasis [42]. In line
with our and other previous studies [12,43,44], the present data analysis determined that one of the
most GPER-correlated genes belonging to the CAMs pathway is the microvessel density marker CD34.
As further pro-tumorigenic GPER-associated genes belonging to the CAMs pathway, CDH5, CLDN-5,
ESAM, CADM3, JAM2, and JAM3 were also identified. In particular, CDH5, CLDN-5, and ESAM were
indicated as relevant players in BC progression and recurrence [45–48]. As it concerns CADM3, JAM2,
and JAM3, their role in breast malignancies has not yet been elucidated; however, several studies
revealed their pro-tumorigenic role in diverse types of malignancy [49–52].

Focal adhesions are protein complexes that connect the cell cytoskeleton to the ECM and then act
as scaffolds in outside-in transduction signaling [53–55]. In particular, the FAs-mediated intracellular
pathways cooperate with receptor tyrosine kinases toward the regulation of cell shape, polarity, adhesion,
migration, differentiation, survival, and proliferation [56]. As it concerns cancer development, an
altered expression and function of both ECM and FAs has been shown to be crucial for the dissemination
of breast tumor cells and therefore for the acquisition of malignant features [9,54,57–60]. Among the
GPER-associated genes belonging to the ECM-receptor interaction and the FA pathway, we found
COL6A1, COL6A2, and LAMB2 in particular. An increased collagen deposition was shown to exert a
fundamental role within the tumor microenvironment toward cancer growth and escape [61,62], and
specifically COL6A1 was involved in both cell proliferation and metastasis of diverse malignancies
as BC [63–67]. Likewise, laminins including LAMB2 have been involved in the maintenance and
the regulation of cell polarity, anchorage-independent growth, migration and invasion, EMT activity,
metastasis, resistance to anoikis, and a poor outcome in BC [68–75]. Further extending our previous
findings [43], the present analysis showed a positive correlation between GPER and IGF1 expression in
ER-negative BC patients. These data fit well with the capability of IGF1 to regulate GPER expression



Cells 2020, 9, 622 8 of 13

toward BC growth [28,43,76]. Moreover, in the current study, PDGFRB was demonstrated as an
additional FA gene associated with GPER. Although the role of the PDGFB/PDGFRB axis in BC
progression is still a subject of debate, PDGFRB overexpression was correlated with the acquisition of
vascular-like functional properties of TNBC, suggesting its involvement in tumor aggressiveness [77,78].
From our correlation and pathway analysis, two members of the ECM-receptor interaction and the FA
pathway, named PGF and VWF, which were indicated as prognostic markers in BC [79,80], appeared
to be associated with GPER.

The correlation between GPER expression and clinicopathological determinants of BC progression,
including survival, tumor size, number of positive lymph nodes, and vascular invasion, still remains
to be understood [11,12,31,32,81–83]. In this regard, we ascertained that a high expression of GPER
correlates with a short DFI in the aggressive BC lacking ER, hence corroborating our findings on the
gene expression profile associated with GPER in this subgroup of patients.

To date, controversial findings on the prognostic role of GPER in BC have been reported.
For instance, a recent survival analysis demonstrated an association of high expression of GPER with
low overall survival of BC patients [81]. In addition, the expression of GPER was indicated as an
independent unfavorable factor for relapse-free survival in BC patients treated with tamoxifen [83].
Accordingly, the involvement of GPER in the resistance to tamoxifen was suggested in previous
studies [84,85]. Moreover, immunohistochemical investigations associated the lack of GPER in the
plasma membrane with an improved long-term prognosis of tamoxifen-treated patients [86]. Overall,
these findings point to the need for a better understanding of the role exerted by GPER in breast tumors.

5. Conclusions and Future Perspectives

In the present study, we found a correlation between GPER expression and pro-metastatic genes
in ER-negative BC, as assessed querying the TCGA and the METABRIC datasets. In this respect,
a deeper understanding of the functional relationships between GPER and these genes would allow the
identification of the molecular mechanisms through which GPER may be involved in the aggressive
features of breast tumors lacking ER. We also determined that a high expression of GPER correlates
with a short DFI in the aforementioned BC subtype; nevertheless, further studies are required to better
assess the significance of GPER in breast malignancies characterized by a worse prognosis.
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by GSEA in ER-negative BC patients of TCGA and METABRIC datasets. Enrichment scores (ES) and relative
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of the ranked list. The score is calculated by walking down a list of genes ranked by their correlation with the
selected phenotype (high or low GPER levels), increasing a running-sum statistic when a gene in that gene set is
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in the gene set is encountered, Table S1: Genes correlated with GPER (n. 277) and shared between TCGA and
METABRIC datasets.
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