
electronics

Article

On the Lifetime Estimation of SiC Power MOSFETs for Motor
Drive Applications

Carmelo Barbagallo , Santi Agatino Rizzo * , Giacomo Scelba, Giuseppe Scarcella and Mario Cacciato

����������
�������

Citation: Barbagallo, C.; Rizzo, S.A.;

Scelba, G.; Scarcella, G.; Cacciato, M.

On the Lifetime Estimation of SiC

Power MOSFETs for Motor Drive

Applications. Electronics 2021, 10, 324.

https://doi.org/10.3390/electronics

10030324

Academic Editor: Elio Chiodo

Received: 31 December 2020

Accepted: 25 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical, Electronics and Computer Engineering, University of Catania, 95129 Catania, Italy;
carmelo.barbagallo@unict.it (C.B.); giacomo.scelba@unict.it (G.S.); giuseppe.scarcella@unict.it (G.S.);
mario.cacciato@unict.it (M.C.)
* Correspondence: santi.rizzo@unict.it; Tel.: +39-095-738-2308

Abstract: This work presents a step-by-step procedure to estimate the lifetime of discrete SiC power
MOSFETs equipping three-phase inverters of electric drives. The stress of each power device when it
is subjected to thermal jumps from a few degrees up to about 80 ◦C was analyzed, starting from the
computation of the average power losses and the commitment of the electric drive. A customizable
mission profile was considered where, by accounting the working conditions of the drive, the
corresponding average power losses and junction temperatures of the SiC MOSFETs composing
the inverter can be computed. The tool exploits the Coffin–Manson theory, rainflow counting, and
Miner’s rule for the lifetime estimation of the semiconductor power devices. Different operating
scenarios were investigated, underlying their impact on the lifetime of SiC MOSFETs devices. The
lifetime estimation procedure was realized with the main goal of keeping limited computational
efforts, while providing an effective evaluation of the thermal effects. The method enables us to
set up any generic mission profile from the electric drive model. This gives us the possibility to
compare several operating scenario of the drive and predict the worse operating conditions for power
devices. Finally, although the lifetime estimation tool was applied to SiC power MOSFET devices for
a general-purpose application, it can be extended to any type of power switch technology.

Keywords: AC motor drive; junction temperature; lifetime prediction; power MOSFET; loss model-
ing; reliability; SiC MOSFET

1. Introduction

The remarkable properties of silicon carbide (SiC) have made it a perfect candidate for
replacing silicon-based power electronic devices in high power, high-temperature applica-
tions. In fact, SiC MOSFET technology provides excellent performance to MOSFET power
devices in terms of low on-state resistance, high switching frequency, high breakdown
voltage, high current capability also at very high temperature. Therefore, this technology
represents a valid alternative to typical Si MOSFET and IGBT power devices for many
applications [1]. The prospects for strong growth in SiC devices are high and are even
stimulated by the increasing sales of plug-in hybrid and electric vehicles. Compared to
the well mature Si technology, the field reliability of SiC devices must be demonstrated for
various applications, and a voltage-derating design guideline needs to be established. This
is especially important for applications in which reliability is extremely critical, such as the
automotive and aerospace applications. Hence, it becomes imperative to apply in-depth
studies on the SiC devices performance and operating limits, especially when they are
used in very critical applications, for instance when they are integrated into three-phase
traction inverters powering electric motors. In fact, because power conversion systems
equipped with a SiC device potentially provide higher current density than one with Si
devices, which leads to a larger thermal ripple, they need more stringent requirements for
the package materials.
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Studies on the state-of-the-art SiC MOSFET’s reliability evaluation and failure mode
analysis were carried out in [2–4]; these studies pointed out the evolution and improve-
ments as well as the future challenges of this promising device technology. The electro-
thermal co-simulation approach based on a PSpice-based model, including temperature
dependency and a Simulink-based thermal network, was even proposed in [5] for SiC
MOSFETs. Some model quantities have been obtained by FEM simulation for more accu-
rate results, and a MATLAB script has been used to manage and interface the data from
the different simulation tools. An accelerated power cycling test platform using a current
source converter for SiC-MOSFET power modules was also presented in [6], where the
junction temperature variations of the devices were monitored without the removal of
silicone gel. Moreover, the analysis was used to examine some failure precursors and then
to estimate the useful lifetime of SiC MOSFET modules. A comparison in the area of device
reliability accounting for condition monitoring and active thermal control as well as the
lifetime was recently carried out [7]. A method to obtain the thermal impedance of a SiC
module by combining optical measurement and multi-physics simulations was proposed
in [8], where the measurement of the junction temperature was performed by using fiber
optic instead of temperature-sensitive electrical parameters. Several major achievements
and novel architectures in SiC modules packaging were analyzed in [9], where the authors
reported an accurate survey of the materials by considering their coefficient of thermal ex-
pansion and their proper combination to reduce the thermal stress in the material interfaces.
The impact of different pulse width modulation control techniques on the power losses
and thermal stress on SiC power modules used in a three-phase inverter was investigated
in [10]. The advantages and problems due to the use of SiC MOSFET in a traction inverter
were discussed in [11] to provide the guidelines for a viable solution. Electrical and thermal
issues, safety and reliability problems, and challenges due to device paralleling and layout
were analyzed by exploiting on-field experience in the industry sector, i.e., experimental
tests, finite element analysis, and circuit simulations.

To reduce the total design and maintenance cost and to guarantee the service continuity
as well as the human safety, it is also required to have an accurate prediction of the
remaining lifetime prediction of power converters, which can help to prevent unwanted
failures and generate better maintenance plans. While the reliability and lifetime prediction
of silicon (Si) semiconductor device based power converters have been widely investigated
in the literature [12–14], SiC MOSFETs are facing new reliability challenges. Hence, the
design of more reliable SiC power converters requires an accurate lifetime prediction
as well as online monitoring strategies for real-time lifetime prediction [15]. Different
approaches can be applied to estimate the lifetime of the SiC power devices and power
converters [16].

In the context discussed so far, this work presents a lifetime prediction method of SiC
power MOSFETs integrated into three-phase inverters supplying a three-phase induction
machine. The analysis exploits a suitable developed simulation tool realized in MATLAB
and Simulink to keep the computational burden low, and it also provides a modular
structure of the proposed procedure. The electric drive, the Coffin–Manson relation, the
rainflow counting method, and Miner’s rule are suitable for the analysis and are combined
to calculate the lifetime prediction [17–28]. As it is simple and reliable, Miner’s rule is the
most widely used fatigue life prediction technique in this field.

In the proposed approach, the off-line prediction of the lifetime is performed, starting
from the data obtained, by exploiting suitable modeling of the electric drive, operating at the
conditions provided by the mission profile (MP) of the application. In the investigated case,
several tests are carried out using 650 V, 45 A SiC power MOSFETs by customizing the MPs
with suitable weights based on the operating conditions. Hence, the proposed procedure
allows for the prediction of the behavior of the thermal stresses affecting the power switches
in a wide operating range. Moreover, the option of creating several customized MPs allows
us to quickly carry out many analyses and then making a comparison among them. In the
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following, a step-by-step description of the developed activity is provided, along with the
underlying advantages and limits of the approach.

2. Framework of the MATLAB-Simulink Tool for SiC MOSFET Lifetime Estimation

The tool provides a lifetime estimation by performing the main steps summarized in
Figure 1 and listed below:

1. Simulation of the motor drive to carry out the necessary electrical quantities required
to compute the power losses calculation in semiconductor power devices is described
as follows: Ion, man, cos(ϕ)n, and f en, where the parameters Ion, man, cos(ϕ)n, and f en
represent the maximum output current of one phase of the inverter (Ion) (considering
a balanced three-phase system); the amplitude modulation index (man); the power
factor (cos(ϕ)n); and the output electrical frequency ( f en). All quantities are evaluated
at steady-state conditions.

2. The temporal weight assignment is decided here, as well as the grouping of the motor
drive operating conditions.

3. Power losses calculation is performed by considering the inverter driven by a space
vector pulse width modulation (SVPWM) strategy. The average value of the dissipated
power is computed at each switching period of the carrier signal.

4. Junction temperature estimation is performed by using a thermal Foster network,
where the power losses represent the inputs of the thermal network.

5. The rainflow counting theory is applied to the junction temperature profiles obtained
from the previous step to determine the number of cycles Nc associated with the n-th
operating condition of the drive.

6. The number of cycles to failure N f is calculated by applying the Coffin–Manson law.
7. Lifetime estimation is performed by exploiting Miner’s rule.
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Figure 1. Workflow of the lifetime prediction starting from the electric drive system mission profile.

2.1. Generation of the Mission Profile
2.1.1. Motor Drive System

The electric drive was modelled on Simulink, which is a MATLAB-based graphical
programming environment and was exploited to model the entire electric drive. The
model includes a three-phase asynchronous machine whose characteristics are shown in
Table 1. The motor is supplied by an ideal three-phase inverter and controlled according
to an indirect field oriented control (IFOC) [16]. The mission profile was carried out
through the execution of a series of simulations by setting a matrix of reference speeds and
reference torques values. The results of the simulations represent the dataset establishing
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the operating conditions of the inverter and thus power devices, according to the considered
mission profile. The Simulink model of the electric drive is shown in Figure 2. It consists of
different grouped blocks: vector control IFOC, modulation block SVPWM (space vector
pulse width modulation), a three-phase inverter realized with ideal power switches, and
the asynchronous motor. The block “Power Factor” performs the calculation of the quantity
cos(ϕ(t)), while the block “To Workspace” allows the average values of the modulation
index ma(t), the power factor cos(ϕ)(t), electric frequency fe(t) and the maximum current
of the phase a, ias(t) to be available, thus allowing us to extract the following quantities:

• I0 →maximum value of the generic motor phase current;
• maavg → average value of the amplitude modulation index at the steady-state;
• cos(ϕ)avg → average value of the power factor at steady-state;
• fe_avg → average value of the fundamental frequency at steady-state.

Table 1. Technical specification of the induction motor.

Parameters Symbols Value u.m.

Pole pairs P 2 /
Nominal power An 15 kVA
Nominal voltage Vn 400 V

Nominal frequency fe,n 50 Hz
Nominal speed nn 1460 rpm
Stator resistance Rs 214.7 mΩ

Stator leakage inductance Lls 991 µH
Equivalent rotor resistance R′r 220.5 mΩ

Equivalent rotor leakage inductance L′lr 991 µH
Mutual inductance Lm 64.19 mH
Inertia coefficient J 0.102 kg·m2

Friction coefficient F 0.009541 N·m·s
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Figure 2. Simulink model of the electric drive system.

The simulations were carried out by using a sampling time Ts = 3×10−6 s, an input
dc voltage of the inverter Vdc = 560 V, and a switching frequency of the power switches
equal to fsw = 10 kHz.

Figure 3 shows some of the results carried out from these simulations. In particular, it
displays the waveforms of the above-listed electrical quantities when the reference speed
and reference torque of the drive are 1400 rpm and 80 Nm, respectively. The blue traces
represent the instantaneous values, while the orange traces represent the steady-state
values. A campaign of simulations in which the speed is varied from 0 to 1400 rpm and
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the torque from 0 to 80 Nm was executed, allowing us to identify the variation ranges of
the electrical quantities, which are summarized in the surfaces shown in Figure 4. These
surfaces represent the input dataset required in the next step.
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2.1.2. Weights Assignment

For each operating condition, expressed in terms of speed and torque, a unique
set of current, modulation index, power factor, and frequency values were obtained. A
customizable MP, i.e., related to a specific use of the electric drive, can be obtained by
assigning a time interval to each operating condition, according to a preset probability of
occurrence. In this study, the sum of gaussian distributions, given by Equation (1), was
used to achieve a customized time interval weights distribution, and was normalized so
that their sum is equal to 100%.

f (x, y) =
n

∑
i=1

Ai·exp

[
−
(
(x− x0,i)

2

2·σ2
x,i

+
(y− y0,i)

2

2·σ2
x,i

)]
(1)

where:

• Ai → peak amplitude of the i-th Gaussian distribution;
• x0,i and y0,i → central values of x-axis and y-axis of the i-th Gaussian distribution;
• σx,i and σy,i → standard deviation of x-axis and y-axis of the i-th distribution;
• x and y→ torque and speed input vectors, respectively.

The above expression was applied to the dataset carried out in the previous step, by
substituting the values of speed and torque to the quantities x and y respectively, while x0,i
and y0,i are the central values of each Gaussian distribution. In practice, Equation (1) pro-
vides the sum of Gaussian surfaces, which establishes the weight that has to be assigned to
each operating condition of the drive; in the proposed procedure, these surfaces were gen-
erated by using a MATLAB algorithm. Figure 5 shows two examples of distribution when
the index i = 1 (single Gaussian distribution) and i > 1 (multiple Gaussian distributions).
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2.1.3. Grouping of the Motor Drive Operating Conditions

After having assigned the weights to each operating condition of the drive according
to the MP, a grouping process is required to group similar operating conditions, thus
reducing the computational burden required to the entire lifetime estimation procedure.
The grouping is performed by initially splitting in a certain number of intervals the values
of I0, maavg, cos(ϕ)avg, fe_avg, defining the minimum, maximum, step, and central value of
each interval, according to Table 2. Then, the values of the electrical quantities extracted
from the simulations of the electric drive are inserted in the corresponding intervals. A
suitable number of intervals have to be chosen to guarantee a good compromise between
the representative conditions of the drive and the computational efforts needed to compute
the lifetime of the SiC power device [22,23].

Table 2. Grouping of the electric drive operating conditions.

Io [A] ma cos(ϕ) fe [Hz]

Min 0 0 0.05 0.0
Max 43.1 0.95 0.99 48.7
Step 10 0.2 0.2 10

Central value of each interval 5-15-25-35-45 0.1-0.3-0.5-0.7-0.9 0.1-0.3-0.5-0.7-0.9 5-15-25-35-45

A MATLAB function was implemented to perform the grouping procedure by assign-
ing each working condition of the drive to a specific set data, as seen in Figure 6. All empty
intervals were discarded, and they are not included in the calculation of power losses.
Obviously, such an approach can be adopted even when there are data from a real MP.
Even in case of handling a huge number of operating condition datasets, this mechanism
enables a significant reduction of operating conditions for which the power losses have to
be calculated, thus reducing the lifetime prediction time.
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2.2. SiC MOSFET Power Losses Computation

The power losses of each SiC device composing the inverter are carried out from the
dataset obtained in the grouping procedure. In this analysis, the lifetime estimation is based
on solder degradation, strictly correlated to the ∆Tj variations of junction temperatures in
the fundamental period of the stator voltages; therefore, the calculation of the power losses
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was implemented by considering the average value of the power, over each switching
period Tsw. The following equations show the method used for the calculation [22–25]:

DCn =

{
DCn

MOS = 0.5·[1 + ma·sin(2π fe·nTsw)] se 0 ≤ nTsw < Te
2

DCn
SBD = 0.5·[1 + ma·sin(2π fe·nTsw)] se Te

2 ≤ nTsw < Te

}
(2)

DCn =

{
DCn

MOS = 0.5·[1 + ma·sin(2π fe·nTsw)] se 0 ≤ nTsw < Te
2

DCn
SBD = 0.5·[1 + ma·sin(2π fe·nTsw)] se Te

2 ≤ nTsw < Te

}
(3)

In
o = Io· sin(2π fe·nTsw − ϕ) (4)

where:

• DCn
MOS , DCn

SBD → duty cycles of MOSFET and diode in the n-th switching period;
• Vn

on,MOS(In
o ), Vn

on,SBD(In
o )→ voltage drops on MOSFET and diode in the n-th switching

period;
• Esw,MOS(In

o ), Esw,SBD(In
o ) → switching energy losses on MOSFET and diode in the

n-th;
• fsw and Tsw → switching frequency and switching period;
• fe and Te → fundamental frequency and period of the electrical quantities;
• Io and ϕ→ peak amplitude of the current and phase shift angle.

The voltage drops were carried out from the output characteristics of the SiC devices
contained in the datasheets, as well as the switching energy loss and the reverse conduction
characteristic. The characteristics of the SiC device under test are shown in Figure 7.
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Figure 7. Technical specifications of the device under test: (a) output characteristic; (b) reverse conduction characteristic;
(c) switching energy losses; (d) thermal impedance.

Figure 8 shows the power losses curve of a SiC device in a fundamental period, given
for different operating conditions.
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2.3. Junction Temperature Estimation

The junction temperatures of the SiC Mosfets under test were estimated by exploiting
a linear thermal model, whose generalized mathematical representation is given by [26]:

T1
j (t)

T2
j (t)

T3
j (t)
...

Tn
j (t)

 =


Z11

th (t) Z21
th (t) · · · Zn1

th (t)
Z12

th (t) Z22
th (t) · · · Zn2

th (t)
Z13

th (t) Z23
th (t) · · · Zn3

th (t)
· · · · · · · · · · · ·

Z1n
th (t) Z2n

th (t) · · · Znn
th (t)




P1(t)
P2(t)
P3(t)

...
Pn(t)

+ [Ta(t)] (5)

where:

• Tj(t)→ junction temperature;
• Zth(t)→ thermal impedance (see Figure 7d);
• P(t)→ dissipated power;
• Ta → ambient temperature.

Given that in this analysis we are considering discrete SiC power devices, the thermal
coupling with other devices can be assumed to be negligible, and thus the terms of mutual
coupling can be nullified. Hence, Equation (5) can be rewritten as follows:

Tj (t) = [Zth(t)·P(t)] + Ta(t) (6)

According to Equation (6), the computation of the junction temperature Tj(t) requires
the knowledge of the thermal impedances Zth(t). The last is graphically provided in the
datasheet of the power switch, but a circuital representation of Zth(t) is required to easily
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simulate variable power losses profiles. This goal is reached by combining a curve-fitting
procedure followed by the implementation of an equivalent Foster thermal network, as
intently described in the following step.

2.3.1. Curve Fitting

Starting from the thermal impedance profile Zth(t), it is possible to implement a
curve-fitting procedure on it by using Equation (7), where it is assumed to achieve a profile
of Zth(t) with a Foster thermal network, whose parameters Rth,n and Cth,n constitute the
n-th pole of the network [26,27]. Zth(t) =

Np

∑
n=1

Rth,n·
(

1− e−
t

τn

)
τn = Rth,n·Cth,n

(7)

where:

• Rth,n → resistance value of the n-th pole;
• Cth → capacitance value of the n-th pole;
• τn → dissipated power;
• Ta → ambient temperature;
• Np → number of poles.

It is important to underline the choice of the number of poles. A low number of poles
does not guarantee the necessary accuracy, while a high number of poles will certainly be
more accurate but results in an increase of the computational efforts. By applying the curve
fitting algorithm to the SiC devices under tests, the best compromise has been obtained
with seven poles, as shown in Figure 9.
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2.3.2. Foster Network

The Foster network can be realized starting from the Rth,n and Cth,n parameters
obtained from the previous step, reproducing the thermal behavior of the device under
test. Figure 10 displays the Foster network realized to emulate the Zth(t) of Figure 7d.
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2.3.3. Examples of Junction Temperature Profiles

Figure 11 displays the temperature trends of the die junction temperature for different
motor drive operating conditions. It should be noted that a significant temperature varia-
tion can be experienced during the fundamental period of the phase motor current, leading
to high thermal stresses. Moreover, different power losses distributions can be appreciated
at varying of the load conditions, which is consistent with the theoretical analysis.
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2.4. Rainflow Counting

The rainflow-counting (or cycle counting) algorithm is used to count the number of
cycles present in a generic waveform. It is a statistical method for the analysis of the random
load process, and its counting principle is carried out based on the stress-deformation
behavior of the material, as shown in Figure 12. It combines load reversals by defining
hysteresis cycles. Each of them has a range of deformation and average stress that can be
compared with the constant amplitude.
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The rules for the rainflow counting method are the following: Let X be the range taken
into consideration; let Y be the previous range, adjacent to X; let S be the starting point in
the history of the load profile [17,18,28]:

1. Read the next peak or valley. If the data are not available, go to step 6.
2. If there are less than three peaks and/or valleys (i.e., A, B, C of Figure 12), go to step

1. Form the X and Y ranges using the three most recent peaks and valleys that have
not been discarded.

3. Compare the absolute values of the X and Y ranges:

a. If X <Y, go to step 1.
b. If X ≥ Y, go to step 4.

4. If range Y contains starting point S, go to step 5. Otherwise, count range Y as a cycle,
discard the peak and valley of Y and go to step 2.
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5. Count the Y interval as a half cycle, discard the first point (peak or valley) of the Y
range, move the starting point to the second point in the Y interval, and go to step 2.

6. Count any range that was not previously counted as a half cycle.

Figure 12 summarizes the rainflow counting procedure.
The load history of Figure 12a is used to illustrate the process. Details of the cycle

counting are as follows [28]:

1. S = A; Y = |A–B|; X = |B–C|; X > Y. Y contains S, that is, point A. Count |A–B| as
one-half cycle and discard point A; S = B.

2. Y = |B–C|; X = |C–D|; X > Y. Y contains S, that is, point B. Count |B–C| as one-half
cycle and discard point B; S = C.

3. Y = |C–D|; X = |D–E|; X < Y.
4. Y = |D–E|; X = |E–F|; X < Y.
5. Y = |E–F|; X = |F–G|; X > Y. Count |E-F| as one cycle and discard points E and F

(note that a cycle is formed by pairing range E-F and a portion of range F-G).
6. Y = |C–D|; X = |D–G|; X > Y; Y contains S, that is, point C. Count |C-D| as one-half

cycle and discard point C. S = D.
7. Y = |D–G|; X = |G–H|; X < Y.
8. Y = |G–H|; X = |H–I|; X < Y. End of data.
9. Count |D–G| as one-half cycle, |G–H| as one-half cycle, and |H–I| as one-half

cycle.
10. End of counting (see Table 3 for a summary of the cycles counted in this example).

Table 3. Example of rainflow counting referred to Figure 12a [28].

Range Cycle Counts Events

1 0 /
2 0 /
3 0.5 A–B
4 1.5 B–C, G–H
5 0 /
6 0.5 H–I
7 0 /
8 1.0 C–D, G–H
9 0.5 D–G
10 0 /

After having satisfied the criterion for counting cycles Nc, the amplitude and the
corresponding mean values of stress or strain for each cycle were calculated. A matrix with
information on the cycle, mean value, and amplitude of stress or strain forming a cycle is
thus created.

Example of Rainflow Counting

Figure 13 show an example of implementation of rainflow procedure on a temperature
profile carried out in a specific drive operating condition, by applying the previous steps
to the SiC MOSFETs under test; the temperature profile is first linearized to form peaks
and valleys. The cycle count Nc is carried out by considering the jumps of the junction
temperature ∆Tj and the average temperature Tm in each cycle.
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2.5. Coffin–Manson’s Equation

The main factors influencing the life of the power devices under test are the jumps in
the junction temperature ∆Tj and the average junction temperature Tm; in fact, the estimate
of the number of thermal cycles to failure N f is based on these two parameters.

Equation (8) shows the correlation between the number of cycles to failure with
thermal jumps and the average temperature of the cycles [17,19,20]

N f = a·
(
∆Tj
)−n·e

Ea
kB · Tm (8)

where:

• N f → number of cycles to failure;
• a→ experimental coefficient;
• ∆Tj → jumps of junction temperature;
• n→ experimental coefficient;
• kB → Boltzmann constant;
• Ea → activation energy.
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The parameters a and n of Equation (8) are determined according to the power cycling
tests. Figure 14a shows a type of power cycling (PCsec) in which an input stress is applied
for a period ton < 15 s. In this case, the tests exert a stress in the interconnection areas
close to the chips (bond wire, die-attach). On the contrary, Figure 14b shows a type of
power cycling PCmin in which a stress is applied for a period ton > 15 s, stressing the solder
layer. The resulting data of these tests give us information on the reliability of the devices
under examination under specific operating conditions, and it is normally provided by the
manufacturer [17,20,21].
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Figure 14. Types of power cycling: (a) fast power cycling PCsec; (b) slow power cycling PCmin.

An example of Coffin–Manson curves that were calculated by considering the follow-
ing parameters [20] are displayed in Figure 15.

• a = 3.71×1013

• n = 10.122
• kB = 8.617 × 10−5 eV

K
• Ea = 0.814 eV
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2.6. Miner’s Rule

The lifetime estimation is determined according to the Miner’s rule, or the theory of
the damage accumulation. In practice, the damage is associated with each stress condition
by making the ratio between the number of thermal cycles Nc and the relative Nf associated
with the same pair of ∆Tj and Tm. Extending this reasoning to all operating conditions, it is
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possible to assign damage to each of them. Palmgreen–Miner’s theory of linear cumulative
damage, called Miner’s rule, is given by [17,19,20]:

D =
k

∑
i = 1

Nc,i

N f ,i
(9)

T =
1
D

(10)

where:

• D→ total damage;
• Nc,i → number of cycles of the considered thermal profile associated with the i-th

operating condition of the drive;
• N f ,i → number of cycles to failure associated with the specific operating condition i-th

of the drive;
• k→ total number of stresses.

By computing the Nc,i/N f ,i ratios for all the i-th working points of the electric drive,
the overall damage of SiC power devices can be predicted. If the damage is less than 1,
then the power device is capable of handling the thermal stresses to which it was subjected
in the entire mission profile; otherwise (if Nc,i/N f ,i is greater than or equal to 1), the device
is considered faulty. Parameter T, which would be the inverse of D, provides an important
indication of how many cycles the device still has before failure. For “cycle”, we must
consider the stress input to the rainflow; in our case, one cycle corresponds to one second
of junction temperature at steady-state. To obtain the lifetime, Equation (11) was used:

Li f etime =
k

∑
i = 1

1
3600·h·365·wi·Di

(11)

where:

• h→ hours of work per day;
• wi → weight corresponding to the i-th operating condition;
• Di → damage corresponding to the i-th operating condition, considering one second

of junction temperature in steady-state condition;
• k→ total number of stresses.

Therefore, the lifetime is estimated considering a predetermined number of hours of
work per day.

3. Case Studies

In this section, the aforementioned life prediction procedure was applied to different
operating scenarios for the drive so far considered: low speed–high torque, medium/high
speed–low torque, and mixed operation. The goal of the following activity is to analyze
the differences in lifetime estimation when different operating scenarios of the drive are
considered. Figures 17, 19, and 21 show the lifetimes of each scenario as a function of daily
working hours. For each scenario, daily use of the drive of 2 h is considered, although the
working hours of the drive can be highly variable depending on the application.

3.1. Case Study 1: Low Speed–High Torque

This scenario is characterized by low speeds and a wide range of torques. Figure 16
shows the weight distribution considered for this mission profile, where the frequency of
rotor speed is higher for values included in the range of 0–700 rpm. The conditions for
which the speed is 0 rpm have a considerable weight; this could represent the numerous
standing starts that normally occur in electric traction in the case of an urban cycle.
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Figure 17 shows the lifetime for this scenario, obtained by applying the step-by-step
procedure defined in the previous section. Assuming an average use of the motor drive
equal to 2 h per day, the lifetime of the SiC MOSFET composing the inverter of the electric
drive is estimated to be about 12 years.
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3.2. Case Study 2: Medium/High Speed–Low Torque

In this scenario, the drive is mainly operated at medium-high speeds and low torques.
A higher lifetime is expected because of the low torques, and thus low currents, which
should lead to a lower degradation of the SiC power device under examination. Figure 18
shows the weight distribution associated to this scenario, which is projected towards
medium-high speeds; in particular, a higher percentage of electric drive operation is
centered around 700–800 rpm, even though the motor operation is observed up to 1400 rpm.
The electromagnetic torque is normally kept quite low in this working profile, i.e., mainly
around 20–30 Nm.

Figure 19 shows the lifetime estimation of case study 2. As expected, for the same
hours of use, the lifetime of the SiC power MOSFET installed in the three-phase inverter is
higher than in scenario 1. For instance, when an average daily use of the drive equal to 2 h
is considered, the lifetime of the SiC devices is about 28 years.
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3.3. Case Study 3: Mixed Operation

In the case of mixed-use, an intermediate situation between the two previous scenarios
is considered here. The speed and torque ranges are much wider than the previous cases.
Figure 20 shows the weight distribution, and it can be noted how wide the speed range is,
i.e., from 200 to 1000 rpm, while the torque is mostly between 15 and 45.
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Figure 21 shows the lifetime estimation of case study 3. In this case, an intermediate
lifetime of previous use was found, as expected.
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3.4. Results Assessment

According to the previous analysis, it is possible to note a variable lifetime that is
consistent with the considered working scenarios. In fact, by assuming a daily work of the
SiC-based inverter equal to 2 h, the proposed procedure provided the following lifetimes:

• Case study 1: lifetime 12 years
• Case Study 2: lifetime 28 years
• Case Study 3: lifetime 18 years

On the other hand, the same procedure allows for evaluating the number of working
hours per day associated with each considered scenarios, when a lifetime equal to 15 years
is imposed as a constraint for the SiC devices. The results are as follows:

• Case study 1: 1.6 h/day
• Case study 2: 2.5 h/day
• Case study 3: 3.8 h/day

Figure 22 shows the comparison between the lifetime results.
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4. Conclusions

A detailed analysis of a lifetime estimation procedure devoted to discrete MOSFETs
was presented in this paper. Such a technique was set with the aim of keeping the computa-
tional efforts and simulation times limited and low while providing an effective evaluation
of thermal stresses and their effects on the power devices composing the electronic con-
verter. The method is of a general application, and it can be used for any mission profile
generated by the electric drive model. This allowed us to compare several operational
states of the drive and to predict the worse operating conditions for the power devices. The
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proposed approach can be extended to different operating scenarios and power devices
technologies, even though the main focus of this study is the SiC technology. In the case of
multi-chip modules, it is possible to easily extend the analysis also, while considering the
effects of mutual thermal coupling.
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