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ABSTRACT. A Banach space E has the Dunford-Pettis property (DPP, for short)
if every weakly compact (linear) operator on FE is completely continuous. The £,
and the £ ,-spaces have the DPP. In 1979 R. A. Ryan proved that F has the DPP
if and only if every weakly compact polynomial on E is completely continuous.

Every k-homogeneous (continuous) polynomial P € P(*E, F) between Banach
spaces E and F' admits an extension Pe P(*E**, F**) called the Aron-Berner
extension. The Aron-Berner extension of every weakly compact polynomial P €
P(KE, F) is F-valued, that is, P(E**) C F, but there are nonweakly compact
polynomials with F-valued Aron-Berner extension.

We strengthen Ryan’s result by showing that E has the DPP if and only if every
polynomial P € P(*E, F) with F-valued Aron-Berner extension is completely
continuous. This answers a question raised in 2003 by I. Villanueva and the
second named author. They proved the result for certain spaces FE, for instance,
the L.-spaces, but the question remained open for other spaces such as the £;-
spaces.

1. INTRODUCTION

Throughout F, F', G, X, and Z denote Banach spaces, E* is the dual of E, and
Bpg stands for its closed unit ball. The closed unit ball Bg« will always be endowed
with the weak-star topology. By N we represent the set of all natural numbers and
by K the scalar field (real or complex). We use the symbol L(F, F') for the space of
all (linear bounded) operators from E into F' endowed with the operator norm. For
T € L(E, F) we denote its adjoint by T* € L(F*, E*).

Given k € N, we use P(*E, F) for the space of all k-homogeneous (continuous)
polynomials from E into F endowed with the supremum norm. When F = K,
we omit the range space, writing P(*E) := P(*E,K). For the general theory of
polynomials on Banach spaces, we refer the reader to [Di] and [Mu]. For unexplained
notation and results in Banach space theory, the reader may see [Di, DJT, DU].

A polynomial P € P(*E, F) is (weakly) compact if P (Bg-) is relatively (weakly)
compact in F'.
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Given a polynomial P € P(*E, F), its adjoint P* is the operator
P F* — P(*E)
given by P*(¢) := 1 o P for every ¢ € F*. It is well-known that P is (weakly)
compact if and only if P* is (weakly) compact (see [AS, Proposition 3.2] for the
compact case and [R2, Proposition 2.1] for the weakly compact case).

We say that a polynomial P € P(*E, F) is completely continuous if it takes weak
Cauchy sequences into norm convergent sequences. We say that P is uncondition-
ally converging if, for every weakly unconditionally Cauchy series >z, in E, the
sequence (P(s,,))%_, is norm convergent, where s, 1= Y ", .

Every polynomial P € P(*E, F) between Banach spaces admits an extension
P € P(*E**, F**) called the Aron-Berner extension. We recall the construction of
the Aron-Berner extension of a polynomial following [CGKM, §2]. Let A be the
symmetric_k-linear mapping associated with P. We can extend A to a k-linear
mapping A from E** into F** in such a way that for each fixed j (1 < j < k) and
for each fixed z1,...,2;_1 € E and zj41, ..., 2 € E**, the linear mapping

2 ATy, L1, 2, 2 ) (z € E™) (1)
is weak*-to-weak* continuous. In other words, we define the image of the mapping in
(1) to be the weak*-limit of the net (X(ml, e L1, Ta, 24, - - -, 2k) ) for a weak®-
convergent net (z,) C E. By this weak"-to-weak" continuity, A can be extended

to a k-linear mapping A from E** into F** beginning with the last variable and
working backwards to the first. Then the restriction

P(2):=Az,...,2) (z¢€E")
is called the Aron-Berner extension of P. Given z € E* and w € F*, we have
P(z)(w) = wo P(z). (2)
Actually this equality is often used as the definition of the vector-valued Aron-Berner
extension based upon the scalar-valued Aron-Berner extension. Recall that A is not
symmetric in general.
The Aron-Berner extension was introduced in [AB]. A survey of its properties
may be seen in [Z]. It has been studied by many mathematicians. We only mention

a few examples: [AB, ACG, Ca, CG, CL, CGKM, DG, DGG, GGMM, GV, PVWY].
Given a Banach space F, we denote by

Or : P(*E) — P(*E™)

the Aron-Berner extension operator, given by ©p(P) := P for every P € P(*E).
The operator O is an isometric embedding [DG, Theorem 3].

The Aron-Berner extension of every weakly compact polynomial is F-valued, that
is, P(E**) C F [Ca, Proposition 1.4], but there are polynomials with F-valued
Aron-Berner extension which are not weakly compact. The most typical and basic
example may be the polynomial Q € P (¥, ¢;) given by Q(z) = (:Eﬁ)zozl for all
x = (x,)22, € ly. The polynomials with F-valued Aron-Berner extension are often
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more useful than the weakly compact polynomials when it comes to characterize
isomorphic properties of Banach spaces: see for instance [GV]. In the polynomial
setting they play somehow the role of the weakly compact operators in the linear
setting.

The bounded weak-star topology bw* on a dual Banach space E* is the finest
topology that coincides with the weak-star topology on bounded subsets of E*. The
bw* topology is locally convex [Me, Theorem 2.7.2].

It should be noted that the statement of [GV, Lemma 3.3] (given without proof)
is wrong. This lemma is used in several places of [GV]. A corrected version of the
lemma and subsequent results of [GV] is given in [PVWY, §2].

A Banach space has the Dunford-Pettis property (DPP, for short) if every weakly
compact operator on F is completely continuous. Ryan proved [R1] that E has the
DPP if and only if every weakly compact polynomial on E is completely continuous.
An attempt to strengthen this result was made in [GV] where the question was raised
of knowing if the DPP of E implies the complete continuity of every polynomial from
E into an arbitrary Banach space F' so that the Aron-Berner extension of P is F-
valued. A partial affirmative answer was given in [GV] for spaces E such that every
operator from F into E* is weakly compact, but the question remained open in
general and was unknown for instance for £;-spaces.

In the present paper we prove that E has the DPP if and only if whenever P is
a polynomial from FE into an arbitrary Banach space F' with F-valued Aron-Berner
extension, then P is completely continuous. We achieve this result by a careful
study of the composition of Dunford-Pettis operators (see definition below) with
polynomials having F-valued Aron-Berner extension.

We summarize some characterizations of isomorphic properties of Banach spaces
that can be obtained using polynomials with F-valued Aron-Berner extension:

(a) The DPP as mentioned above.

(b) Recall that E has the reciprocal Dunford-Pettis property (RDPP, for short)
if every completely continuous operator on E is weakly compact. A space E has
the RDPP if and only if every completely continuous polynomial from E into an
arbitrary Banach space I has F-valued Aron-Berner extension |GV, Corollary 3.5].

(c) E is said to have property (V) if every unconditionally converging operator on
F is weakly compact. A space F has property (V) if and only if every unconditionally
converging polynomial from FE into an arbitrary Banach space F' has F-valued Aron-
Berner extension [GV, Corollary 4.3].

A subset A of a Banach space E' is a Dunford-Pettis set (DP set, for short) [An,
Theorem 1] if, for every weakly null sequence (z}) C E*, we have

limsup [(x,z))| = 0.
n zeA

An operator S € L(G, E) is a Dunford-Pettis operator if S(Bg) is a DP set in
E. We denote by DP the ideal of Dunford-Pettis operators which has been studied
under a different notation in [GG1].

A subset A of a Banach space E is said to be a Rosenthal set if every sequence
in A contains a weak Cauchy subsequence.
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Given an operator S € L(G, E), we denote by S; € L(G, S(G)) the operator given
by Si(g) := S(g) for g € G. Note that the normed space S(G) is not necessarily
complete.

2. THE RESULTS

Given k € N and an operator S € L(G, E), we define the operator
S: . P(*E) — P(*G) (or S;:P(*S(Q)) — P*Q))
by S;(P)(g) :== P(S(g)) for all P € P(*E) (or P(*S(G))) and g € G. Similarly, we
define
S PCET) > PRGT) (or S PS(G)) 5 PG

by S (Q)(g**) == Q(S**(g*)) for all Q € P(*E**) (or P(*S(G)*)) and g** € G**.

Given a polynomial P € P(*E, F) and an operator S € L(G, E), we shall use the
following diagram:

Sk

F* . pE) 2 P(RS(G)) P(*G)
@El @S(G)l 9@1 (3>

pk kKK

where p, and p? are restriction operators. The superscript “b” stands for “bidual”.
We show that the diagram commutes. Indeed, the only part which needs a proof
is the right hand rectangle. For R € P(*S(G)), we have

Oc 0 S{(R)(9™) = Oc(R 0 $1)(g™) = Ro S{"(g™) = Ose)(R)(S{"(9™))
= 5 (050 (R)) (5.
We say that a net of polynomials (P,) C P(*E) is 7p-convergent to P € P(*E) if,
for every ** € E**, we have
ﬁa(z**) 7 ﬁ(!lf**)

W

for every x** € E**. The subscript “p” stands for “pointwise” and the superscript
“b” for “bidual”.

Proposition 2.1. Let S € L(G,E) and P € P(*E,F). The following assertions
are equivalent:

(a) PoS™(G*) C F;

(b) O¢ o S; o p o P* is weak*-to-1 continuous;

(¢c) O 0 S; o pi o P* is bw*-to-1) continuous.
PROOF. (a) = (b). Let (fX) C F* be a weak*-null net. Then, for all ¢** € G**, we
have

OgoSpopro P (fy)(g™) =S 0Ogopro P (fy)(g™)
= Og@ o pr o P (f3) (S™(9™))
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— (fa0P) (5" (g™)
= (P(S™(g™). fi) — 0.

since P(S*(g™)) € F.

(b) = (c) is obvious since bw* is finer than the weak-star topology.

(c) = (a). Let (fX) C F* be a bw*-null net. By the above calculations, we have
for all g** € G**:

(P(S™ (™)), fa) — 0,
so P(S**(g**)) € (F*,bw")* = F [Me, Theorem 2.7.8]. O

Proposition 2.2. Let Q € P(*E) and S € DP(G, E). Then Q € P(*E**) is weak-
star continuous on S™* (Bgs+).

PrOOF. We modify the proof of [GG1, Proposition 3.1]. Let A := S(Bg) which
is an absolutely convex DP set in E. By [DFJP, Lemma 1], we can find a Banach
space Z and an operator j € L(Z, E) so that:

(a) A € j(Bz);

(b) j** : Z** — E** is injective and j***(E) = Z;

(c) j(Bz) C2"A+ 2 "B for every n € N.

Using Goldstine’s theorem, it is easy to check that S*™* (Bgw) C j™* (Bg«). Let
(22*) C Bgzs+ be a net such that weak*-lim j** (2*) = 0. Assume that (2}*) is not
weak-star null. Then every subnet has a weak-star Cauchy subnet, so this subnet
must be weak-star convergent and its limit has to be 0 by the injectivity of j**.
Therefore, the original net (z*) is itself weak-star null. So Bz« and j** (Bgz«) are
weak-star homeomorphic.

Let (¢%*) C Bg++ be a net such that
Since S** (Bg++) is weak-star compact, we can find g** € Bg+ so that x** = S**(g**).
Let z5* € By« with S* (¢*) = 5™ (2%*) and 2™ € Bys« so that S (¢**) = j** (2*).
By the above weak-star homeomorphism, we have weak*-lim 22* = 2**.

By (c), j(Bz) is a DP set (see the proof in [GG1, Proposition 3.1]). By [GGI,
Proposition 3.6 and Theorem 3.5], the polynomial @ o j is weakly continuous on
bounded subsets of Z. By [ACG, Theorem 7.1}, its Aron-Berner extension @ o j**
is weak-star continuous on bounded sets of Z**, and

QoS™(gr) = Qo (23) —> Qo™ (z"™) = Qo 5™(g"™). O

Corollary 2.3. Given a polynomial P € P(*E, F) and an operator S € DP(G, E)
so that Po S*(G**) C F, we have that P is weak*-to-weak continuous on S** (Bgs+)
and so the polynomial P o §** is weakly compact.
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Proor. Consider the commutative diagram:
G 2~ E-L~F

W ow]

where kg and k¢ are the canonical isometric embeddings. Let (¢2*) C Bg«+ be a net

and g** € Bg++ so that
57 (g2) > (9.

By Proposition 2.2, we have for all f* € Bp«,

(£70P) (5™ (g2) = Fr o P(S™ (g2)
— [P (™ (g") = (F1 o P) (5" (™)) -
Therefore, N
P(87(g27) ™5 P(8™(g™)) i F. -

Theorem 2.4. Let S € DP(G, E) and (P,) C P(*E) be a sequence of polynomials

such that, for every g** € G**, we have P, o S**(g**) — 0. Then we have
lim sup |P, 0 S(g)|=0.

" geBg

PROOF. Assume the result fails. Then, passing to a subsequence if necessary, we
can find a sequence (g,) C Bg and ¢ > 0 such that |P, o S(g,)| > 0 for all n € N.

Let A, : Ex ¥ xE — K be the unique symmetric k-linear form associated with
P,. Then,

‘An (S(gn), ®), S(gn))) >6 (neN).

Since S(Bg) is a DP set in the Banach space S(G), the sequence

(An (S(gn), (k-1 S(g,.), - ))

is not weakly null in S(G)*. So, passing again to a subsequence if necessary, there
are x;* € S(G)™ and 0, > 0 such that

‘Z; <S(gn), (kD). S(gn),x,’g*)‘ 6 (neN). (4)
Consider the operator S; € L(G, S(G)). By [Me, Theorem 3.1.17], the operator
(e) ites

[e.e]

n=1

is injective, and the operator
Sp*

G — S(G)™

has weak-star dense range. Therefore, by the weak-star continuity of

A, (S(gn), =1 S(g,), - )
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on S(G)** and using (4), we can find ¢g;* € G** so that
A (S(90), 620, 8(90), 5 (6i)| > 0 (meN).

[terating the argument, the sequence
(40 (S(90). 422, S(ga), -5 (51)))

is not weakly null in S(G)* so, passing to a subsequence if necessary, there are
zyt, € S(G)* and 6, > 0 such that

A (S(90), 62, 8(90) 0, 87 (97)) | > 82 (nEW).
As above, we can find g;*; € G** so that
4, (80000, 42, 8(00), 5 (172) .57 (1) | =62 (ne ).
Proceeding up to the first variable, we can find ¢gi* € G*™ and d; > 0 so that
A (57 (g1), ST G| > e (e).

o0

n=1

By the polarization formula [Mu, Theorem 1.10], we obtain

k'Qkék < Z €1 Gk;{; o S** (Elgi* + Ekg;ck*)k

ej==%1
< Z ‘;1; oS (e1gi" + -+ €kgz*)k‘
ej==%1
= > |BoST (g o tag)|  (meN), (5)

ej=%1

where we have used the notation

for g* € G**. Since each summand of (5) tends to zero as n goes to co, we reach a
contradiction. O

Theorem 2.5. Given S € DP(G,E) and P € P(*E, F) with Bp- weak-star se-

quentially compact, assume that Po S*(G**) C F. Then the polynomial P o S is
compact.

PROOF. Suppose P oS is not compact. Then its adjoint S} o P* is not compact,
so there is a sequence (f;¥) C Bp- such that the sequence (S; o P*(f¥)) -, does not
have any convergent subsequence. By the weak-star sequential compactness of Bp-,
we can assume that (f) is weak-star convergent. By linearity of S} o P*, we can
assume that (f) is weak-star null.

By passing to a subsequence if necessary, we can find a sequence (g,) C Bg and

6 > 0 so that
1P (fa) (S(ga))| = S o P*(f3) (ga)] > 6 (n€N). (6)
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Since P o $**(G**) C F, Proposition 2.1 implies that Og o Sf o pp o P* (f¥) = 0
pointwise on G** so

Fr o P(™(g™)) = (fio P) (S™(g™)) = O 0 S0 pro P* (£)(g™) — 0.

n

By Theorem 2.4 we have
P*(f3) (5(gn)) — 0

n

in contradiction with (6). O

Theorem 2.6. Let P € P(*E, F) be a polynomial such that P(E**) C F. Then P
1s weakly continuous on DP sets of E.

ProOOF. Let S € DP(G,FE). By Corollary 2.3, the polynomial P o S is weakly
compact. By [R2, Theorem 3.7], there are a reflexive Banach space Z, a polynomial
Q € P(*G, Z) and an operator U € L(Z, F) such that Po S =U o Q.

Let X := U(Z) C F with embedding i : X < F. Then X is weakly compactly
generated [FHHMZ, page 575]. By [Di, Chapter XIII, Theorem 4], Bx~ is weak-star
sequentially compact. Denote by U; € L(Z, X) the operator given by U;(2) := U(z2)
for z € Z.

Let P, € P(*S(G), X) be the polynomial defined by P,(S(g)) := Uy 0 Q(g) for all
g€q.

G —5+ S(G) P X

U \POS‘ [l

A F

We have i o P, oS = PoS. Since Z is reflexive, we have @(G**) C Z, so
PoS=PoS*=U, 0@ and P; o S*(G**) C X. By Theorem 2.5, the polynomial
Py o S is compact. Hence, Po S =io P, oS is compact. Since S € DP(G,E) is

arbitrary, [GG1, Proposition 3.6] implies that P is weakly continuous on DP sets of
E. O

Corollary 2.7. Given a Banach space E and k € N, the following assertions are
equivalent:

(a) E has the DPP;

(b) for every Banach space F, every polynomial P € P(*E, F) with P(E**) C F
15 completely continuous; N

(c) every polynomial P € P(*E, cy) with P(E**) C ¢y is completely continuous.

PrOOF. (a) = (b). If P(E*) C F, Theorem 2.6 implies that P is weakly con-
tinuous on DP sets of E. Since E has the DPP, [GG1, Proposition 1.2] implies
that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1,
Corollary 3.7], P is weakly wuniformly continuous on Rosenthal sets and so P takes
weak Cauchy sequences into norm convergent sequences.

(b) = (c) is obvious.

(c) = (a). Let P € P(*E, cy) be a weakly compact polynomial. Then P(E**) C ¢
so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP. O
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3. THE HOLOMORPHIC DPP

Suppose now that F and F' are complex Banach spaces. We denote by Hy(E, F')
the space of holomorphic mappings of bounded type from F into F, that is, every
f € Hu(E, F) is bounded on bounded subsets of E. We refer the reader to Isidro’s
paper [I] for basic properties of this well-known space. Given f € Hy(FE, F) with
Taylor series expansion at the origin f = > ;7 P, where P, € P(*E,F), f has
F-valued Aron-Berner extension f € H,(E*, F) if and only if Py is F-valued for
all & € N [GGMM, Theorem 3.3]. Using the arguments of [GV, §5], we obtain the
following results:

Theorem 3.1. Given f € Hy(E, F) with F-valued Aron-Berner extension, f is
weakly continuous on DP sets.

Corollary 3.2. A complex Banach space E has the DPP if and only if every f €
Hy(E, F) with F-valued Aron-Berner extension is completely continuous.
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