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Abstract. A Banach space E has the Dunford-Pettis property (DPP, for short)
if every weakly compact (linear) operator on E is completely continuous. The L1

and the L∞-spaces have the DPP. In 1979 R. A. Ryan proved that E has the DPP
if and only if every weakly compact polynomial on E is completely continuous.

Every k-homogeneous (continuous) polynomial P ∈ P(kE,F ) between Banach

spaces E and F admits an extension P̃ ∈ P(kE∗∗, F ∗∗) called the Aron-Berner
extension. The Aron-Berner extension of every weakly compact polynomial P ∈

P(kE,F ) is F -valued, that is, P̃ (E∗∗) ⊆ F , but there are nonweakly compact
polynomials with F -valued Aron-Berner extension.

We strengthen Ryan’s result by showing that E has the DPP if and only if every
polynomial P ∈ P(kE,F ) with F -valued Aron-Berner extension is completely
continuous. This answers a question raised in 2003 by I. Villanueva and the
second named author. They proved the result for certain spaces E, for instance,
the L∞-spaces, but the question remained open for other spaces such as the L1-
spaces.

1. Introduction

Throughout E, F , G, X , and Z denote Banach spaces, E∗ is the dual of E, and
BE stands for its closed unit ball. The closed unit ball BE∗ will always be endowed
with the weak-star topology. By N we represent the set of all natural numbers and
by K the scalar field (real or complex). We use the symbol L(E, F ) for the space of
all (linear bounded) operators from E into F endowed with the operator norm. For
T ∈ L(E, F ) we denote its adjoint by T ∗ ∈ L(F ∗, E∗).
Given k ∈ N, we use P(kE, F ) for the space of all k-homogeneous (continuous)

polynomials from E into F endowed with the supremum norm. When F = K,
we omit the range space, writing P(kE) := P(kE,K). For the general theory of
polynomials on Banach spaces, we refer the reader to [Di] and [Mu]. For unexplained
notation and results in Banach space theory, the reader may see [Di, DJT, DU].
A polynomial P ∈ P(kE, F ) is (weakly) compact if P (BE∗) is relatively (weakly)

compact in F .
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Given a polynomial P ∈ P(kE, F ), its adjoint P ∗ is the operator

P ∗ : F ∗ −→ P(kE)

given by P ∗(ψ) := ψ ◦ P for every ψ ∈ F ∗. It is well-known that P is (weakly)
compact if and only if P ∗ is (weakly) compact (see [AS, Proposition 3.2] for the
compact case and [R2, Proposition 2.1] for the weakly compact case).
We say that a polynomial P ∈ P(kE, F ) is completely continuous if it takes weak

Cauchy sequences into norm convergent sequences. We say that P is uncondition-
ally converging if, for every weakly unconditionally Cauchy series

∑
xn in E, the

sequence (P (sm))
∞
m=1 is norm convergent, where sm :=

∑m

n=1 xn.
Every polynomial P ∈ P(kE, F ) between Banach spaces admits an extension

P̃ ∈ P(kE∗∗, F ∗∗) called the Aron-Berner extension. We recall the construction of
the Aron-Berner extension of a polynomial following [CGKM, §2]. Let A be the
symmetric k-linear mapping associated with P . We can extend A to a k-linear

mapping Ã from E∗∗ into F ∗∗ in such a way that for each fixed j (1 ≤ j ≤ k) and
for each fixed x1, . . . , xj−1 ∈ E and zj+1, . . . , zk ∈ E∗∗, the linear mapping

z 7−→ Ã(x1, . . . , xj−1, z, zj+1, . . . , zk) (z ∈ E∗∗) (1)

is weak∗-to-weak∗ continuous. In other words, we define the image of the mapping in

(1) to be the weak∗-limit of the net
(
Ã(x1, . . . , xj−1, xα, zj+1, . . . , zk)

)
for a weak∗-

convergent net (xα) ⊂ E. By this weak∗-to-weak∗ continuity, A can be extended

to a k-linear mapping Ã from E∗∗ into F ∗∗ beginning with the last variable and
working backwards to the first. Then the restriction

P̃ (z) := Ã(z, . . . , z) (z ∈ E∗∗)

is called the Aron-Berner extension of P . Given z ∈ E∗∗ and w ∈ F ∗, we have

P̃ (z)(w) = w̃ ◦ P (z) . (2)

Actually this equality is often used as the definition of the vector-valued Aron-Berner

extension based upon the scalar-valued Aron-Berner extension. Recall that Ã is not
symmetric in general.
The Aron-Berner extension was introduced in [AB]. A survey of its properties

may be seen in [Z]. It has been studied by many mathematicians. We only mention
a few examples: [AB, ACG, Ca, CG, CL, CGKM, DG, DGG, GGMM, GV, PVWY].
Given a Banach space E, we denote by

ΘE : P(kE) −→ P(kE∗∗)

the Aron-Berner extension operator, given by ΘE(P ) := P̃ for every P ∈ P(kE).
The operator ΘE is an isometric embedding [DG, Theorem 3].
The Aron-Berner extension of every weakly compact polynomial is F -valued, that

is, P̃ (E∗∗) ⊆ F [Ca, Proposition 1.4], but there are polynomials with F -valued
Aron-Berner extension which are not weakly compact. The most typical and basic
example may be the polynomial Q ∈ P(kℓ2, ℓ1) given by Q(x) :=

(
xkn

)∞
n=1

for all
x = (xn)

∞
n=1 ∈ ℓ2. The polynomials with F -valued Aron-Berner extension are often
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more useful than the weakly compact polynomials when it comes to characterize
isomorphic properties of Banach spaces: see for instance [GV]. In the polynomial
setting they play somehow the role of the weakly compact operators in the linear
setting.
The bounded weak-star topology bw∗ on a dual Banach space E∗ is the finest

topology that coincides with the weak-star topology on bounded subsets of E∗. The
bw∗ topology is locally convex [Me, Theorem 2.7.2].
It should be noted that the statement of [GV, Lemma 3.3] (given without proof)

is wrong. This lemma is used in several places of [GV]. A corrected version of the
lemma and subsequent results of [GV] is given in [PVWY, §2].
A Banach space has the Dunford-Pettis property (DPP, for short) if every weakly

compact operator on E is completely continuous. Ryan proved [R1] that E has the
DPP if and only if every weakly compact polynomial on E is completely continuous.
An attempt to strengthen this result was made in [GV] where the question was raised
of knowing if the DPP of E implies the complete continuity of every polynomial from
E into an arbitrary Banach space F so that the Aron-Berner extension of P is F -
valued. A partial affirmative answer was given in [GV] for spaces E such that every
operator from E into E∗ is weakly compact, but the question remained open in
general and was unknown for instance for L1-spaces.
In the present paper we prove that E has the DPP if and only if whenever P is

a polynomial from E into an arbitrary Banach space F with F -valued Aron-Berner
extension, then P is completely continuous. We achieve this result by a careful
study of the composition of Dunford-Pettis operators (see definition below) with
polynomials having F -valued Aron-Berner extension.
We summarize some characterizations of isomorphic properties of Banach spaces

that can be obtained using polynomials with F -valued Aron-Berner extension:
(a) The DPP as mentioned above.
(b) Recall that E has the reciprocal Dunford-Pettis property (RDPP, for short)

if every completely continuous operator on E is weakly compact. A space E has
the RDPP if and only if every completely continuous polynomial from E into an
arbitrary Banach space F has F -valued Aron-Berner extension [GV, Corollary 3.5].
(c) E is said to have property (V) if every unconditionally converging operator on

E is weakly compact. A space E has property (V) if and only if every unconditionally
converging polynomial from E into an arbitrary Banach space F has F -valued Aron-
Berner extension [GV, Corollary 4.3].
A subset A of a Banach space E is a Dunford-Pettis set (DP set, for short) [An,

Theorem 1] if, for every weakly null sequence (x∗n) ⊂ E∗, we have

lim
n

sup
x∈A

|〈x, x∗n〉| = 0 .

An operator S ∈ L(G,E) is a Dunford-Pettis operator if S(BG) is a DP set in
E. We denote by DP the ideal of Dunford-Pettis operators which has been studied
under a different notation in [GG1].
A subset A of a Banach space E is said to be a Rosenthal set if every sequence

in A contains a weak Cauchy subsequence.
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Given an operator S ∈ L(G,E), we denote by S1 ∈ L(G, S(G)) the operator given
by S1(g) := S(g) for g ∈ G. Note that the normed space S(G) is not necessarily
complete.

2. The results

Given k ∈ N and an operator S ∈ L(G,E), we define the operator

S∗

k : P(kE) −→ P(kG) (or S∗

k : P(kS(G)) → P(kG))

by S∗
k(P )(g) := P (S(g)) for all P ∈ P(kE) (or P(kS(G))) and g ∈ G. Similarly, we

define

S∗∗∗

k : P(kE∗∗) −→ P(kG∗∗) (or S∗∗∗

k : P(kS(G)∗∗) → P(kG∗∗))

by S∗∗∗
k (Q)(g∗∗) := Q(S∗∗(g∗∗)) for all Q ∈ P(kE∗∗) (or P(kS(G)∗∗)) and g∗∗ ∈ G∗∗.

Given a polynomial P ∈ P(kE, F ) and an operator S ∈ L(G,E), we shall use the
following diagram:

F ∗ P(kE) P(kS(G)) P(kG)

P(kE∗∗) P(kS(G)∗∗) P(kG∗∗)

P ∗ ρk

ΘE

S∗

k

ΘS(G) ΘG

ρb
k

S∗∗∗

k

(3)

where ρk and ρbk are restriction operators. The superscript “b” stands for “bidual”.
We show that the diagram commutes. Indeed, the only part which needs a proof

is the right hand rectangle. For R ∈ P(kS(G)), we have

ΘG ◦ S∗

k(R)(g
∗∗) = ΘG(R ◦ S1)(g

∗∗) = R̃ ◦ S∗∗

1 (g∗∗) = ΘS(G)(R)(S
∗∗

1 (g∗∗))

= S∗∗∗

k

(
ΘS(G)(R)

)
(g∗∗) .

We say that a net of polynomials (Pα) ⊂ P(kE) is τbp -convergent to P ∈ P(kE) if,
for every x∗∗ ∈ E∗∗, we have

P̃α(x
∗∗) −→

α
P̃ (x∗∗)

for every x∗∗ ∈ E∗∗. The subscript “p” stands for “pointwise” and the superscript
“b” for “bidual”.

Proposition 2.1. Let S ∈ L(G,E) and P ∈ P(kE, F ). The following assertions
are equivalent:

(a) P̃ ◦ S∗∗(G∗∗) ⊆ F ;
(b) ΘG ◦ S∗

k ◦ ρk ◦ P
∗ is weak∗-to-τbp continuous;

(c) ΘG ◦ S∗
k ◦ ρk ◦ P

∗ is bw∗-to-τbp continuous.

Proof. (a) ⇒ (b). Let (f ∗
α) ⊂ F ∗ be a weak∗-null net. Then, for all g∗∗ ∈ G∗∗, we

have

ΘG ◦ S∗

k ◦ ρk ◦ P
∗ (f ∗

α) (g
∗∗) = S∗∗∗

k ◦ΘS(G) ◦ ρk ◦ P
∗ (f ∗

α) (g
∗∗)

= ΘS(G) ◦ ρk ◦ P
∗ (f ∗

α) (S
∗∗(g∗∗))
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=
(
f ∗

α ◦ P̃
)
(S∗∗(g∗∗))

=
〈
P̃ (S∗∗(g∗∗)), f ∗

α

〉
−→
α

0 ,

since P̃ (S∗∗(g∗∗)) ∈ F .
(b) ⇒ (c) is obvious since bw∗ is finer than the weak-star topology.
(c) ⇒ (a). Let (f ∗

α) ⊂ F ∗ be a bw∗-null net. By the above calculations, we have
for all g∗∗ ∈ G∗∗: 〈

P̃ (S∗∗(g∗∗)), f ∗

α

〉
−→
α

0 ,

so P̃ (S∗∗(g∗∗)) ∈ (F ∗, bw∗)∗ = F [Me, Theorem 2.7.8]. 2

Proposition 2.2. Let Q ∈ P(kE) and S ∈ DP(G,E). Then Q̃ ∈ P(kE∗∗) is weak-
star continuous on S∗∗ (BG∗∗).

Proof. We modify the proof of [GG1, Proposition 3.1]. Let A := S(BG) which
is an absolutely convex DP set in E. By [DFJP, Lemma 1], we can find a Banach
space Z and an operator j ∈ L(Z,E) so that:
(a) A ⊆ j(BZ);
(b) j∗∗ : Z∗∗ → E∗∗ is injective and j∗∗−1(E) = Z;
(c) j(BZ) ⊆ 2nA+ 2−nBE for every n ∈ N.
Using Goldstine’s theorem, it is easy to check that S∗∗ (BG∗∗) ⊆ j∗∗ (BZ∗∗). Let

(z∗∗α ) ⊂ BZ∗∗ be a net such that weak∗-lim j∗∗ (z∗∗α ) = 0. Assume that (z∗∗α ) is not
weak-star null. Then every subnet has a weak-star Cauchy subnet, so this subnet
must be weak-star convergent and its limit has to be 0 by the injectivity of j∗∗.
Therefore, the original net (z∗∗α ) is itself weak-star null. So BZ∗∗ and j∗∗ (BZ∗∗) are
weak-star homeomorphic.
Let (g∗∗α ) ⊂ BG∗∗ be a net such that

S∗∗ (g∗∗α )
w∗

−→ x∗∗ ∈ E∗∗ .

Since S∗∗ (BG∗∗) is weak-star compact, we can find g∗∗ ∈ BG∗∗ so that x∗∗ = S∗∗(g∗∗).
Let z∗∗α ∈ BZ∗∗ with S∗∗ (g∗∗α ) = j∗∗ (z∗∗α ) and z∗∗ ∈ BZ∗∗ so that S∗∗ (g∗∗) = j∗∗ (z∗∗).
By the above weak-star homeomorphism, we have weak∗-lim z∗∗α = z∗∗.
By (c), j(BZ) is a DP set (see the proof in [GG1, Proposition 3.1]). By [GG1,

Proposition 3.6 and Theorem 3.5], the polynomial Q ◦ j is weakly continuous on

bounded subsets of Z. By [ACG, Theorem 7.1], its Aron-Berner extension Q̃ ◦ j∗∗

is weak-star continuous on bounded sets of Z∗∗, and

Q̃ ◦ S∗∗ (g∗∗α ) = Q̃ ◦ j∗∗ (z∗∗α ) −→
α

Q̃ ◦ j∗∗(z∗∗) = Q̃ ◦ S∗∗(g∗∗) . 2

Corollary 2.3. Given a polynomial P ∈ P(kE, F ) and an operator S ∈ DP(G,E)

so that P̃ ◦S∗∗(G∗∗) ⊆ F , we have that P̃ is weak∗-to-weak continuous on S∗∗ (BG∗∗)

and so the polynomial P̃ ◦ S∗∗ is weakly compact.



6 R. CILIA AND J. M. GUTIÉRREZ

Proof. Consider the commutative diagram:

G E F

G∗∗ E∗∗

kG

S P

kE

S∗∗

P̃

where kE and kG are the canonical isometric embeddings. Let (g∗∗α ) ⊂ BG∗∗ be a net
and g∗∗ ∈ BG∗∗ so that

S∗∗ (g∗∗α )
w∗

−→ S∗∗(g∗∗) .

By Proposition 2.2, we have for all f ∗ ∈ BF ∗ ,(
f ∗ ◦ P̃

)
(S∗∗ (g∗∗α )) = f̃ ∗ ◦ P (S∗∗ (g∗∗α ))

−→
α

f̃ ∗ ◦ P (S∗∗ (g∗∗)) =
(
f ∗ ◦ P̃

)
(S∗∗ (g∗∗)) .

Therefore,

P̃ (S∗∗ (g∗∗α ))
weak
−→ P̃ (S∗∗ (g∗∗)) in F . 2

Theorem 2.4. Let S ∈ DP(G,E) and (Pn) ⊂ P(kE) be a sequence of polynomials

such that, for every g∗∗ ∈ G∗∗, we have P̃n ◦ S
∗∗(g∗∗) → 0. Then we have

lim
n

sup
g∈BG

|Pn ◦ S(g)| = 0 .

Proof. Assume the result fails. Then, passing to a subsequence if necessary, we
can find a sequence (gn) ⊂ BG and δ > 0 such that |Pn ◦ S(gn)| > δ for all n ∈ N.

Let An : E× (k). . . ×E → K be the unique symmetric k-linear form associated with
Pn. Then, ∣∣∣An

(
S(gn),

(k). . ., S(gn)
)∣∣∣ > δ (n ∈ N) .

Since S(BG) is a DP set in the Banach space S(G), the sequence
(
An

(
S(gn),

(k−1). . . , S(gn), ·
))∞

n=1

is not weakly null in S(G)∗. So, passing again to a subsequence if necessary, there
are x∗∗k ∈ S(G)∗∗ and δ1 > 0 such that

∣∣∣Ãn

(
S(gn),

(k−1). . . , S(gn), x
∗∗

k

)∣∣∣ > δ1 (n ∈ N) . (4)

Consider the operator S1 ∈ L(G, S(G)). By [Me, Theorem 3.1.17], the operator

S(G)∗
S∗

1−→ G∗

is injective, and the operator

G∗∗
S∗∗

1−→ S(G)∗∗

has weak-star dense range. Therefore, by the weak-star continuity of

An

(
S(gn),

(k−1). . . , S(gn), ·
)
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on S(G)∗∗ and using (4), we can find g∗∗k ∈ G∗∗ so that
∣∣∣Ãn

(
S(gn),

(k−1). . . , S(gn), S
∗∗ (g∗∗k )

)∣∣∣ > δ1 (n ∈ N) .

Iterating the argument, the sequence
(
Ãn

(
S(gn),

(k−2). . . , S(gn), · , S
∗∗ (g∗∗k )

))∞

n=1

is not weakly null in S(G)∗ so, passing to a subsequence if necessary, there are
x∗∗k−1 ∈ S(G)∗∗ and δ2 > 0 such that

∣∣∣Ãn

(
S(gn),

(k−2). . . , S(gn), x
∗∗

k−1, S
∗∗ (g∗∗k )

)∣∣∣ > δ2 (n ∈ N) .

As above, we can find g∗∗k−1 ∈ G∗∗ so that
∣∣∣Ãn

(
S(gn),

(k−2). . . , S(gn), S
∗∗
(
g∗∗k−1

)
, S∗∗ (g∗∗k )

)∣∣∣ > δ2 (n ∈ N) .

Proceeding up to the first variable, we can find g∗∗1 ∈ G∗∗ and δk > 0 so that∣∣∣Ãn (S
∗∗ (g∗∗1 ) , . . . , S∗∗ (g∗∗k ))

∣∣∣ > δk (n ∈ N) .

By the polarization formula [Mu, Theorem 1.10], we obtain

k!2kδk <

∣∣∣∣∣∣

∑

ǫj=±1

ǫ1 · · · ǫkÃn ◦ S
∗∗ (ǫ1g

∗∗

1 + · · ·+ ǫkg
∗∗

k )k

∣∣∣∣∣∣

≤
∑

ǫj=±1

∣∣∣Ãn ◦ S
∗∗ (ǫ1g

∗∗

1 + · · ·+ ǫkg
∗∗

k )k
∣∣∣

=
∑

ǫj=±1

∣∣∣P̃n ◦ S
∗∗ (ǫ1g

∗∗

1 + · · ·+ ǫkg
∗∗

k )
∣∣∣ (n ∈ N) , (5)

where we have used the notation

Ãn ◦ S
∗∗ (g∗∗)k := Ãn

(
S∗∗(g∗∗), (k). . ., S∗∗(g∗∗)

)

for g∗∗ ∈ G∗∗. Since each summand of (5) tends to zero as n goes to ∞, we reach a
contradiction. 2

Theorem 2.5. Given S ∈ DP(G,E) and P ∈ P(kE, F ) with BF ∗ weak-star se-

quentially compact, assume that P̃ ◦ S∗∗(G∗∗) ⊆ F . Then the polynomial P ◦ S is
compact.

Proof. Suppose P ◦ S is not compact. Then its adjoint S∗
k ◦ P

∗ is not compact,
so there is a sequence (f ∗

n) ⊂ BF ∗ such that the sequence (S∗
k ◦ P

∗ (f ∗
n))

∞

n=1 does not
have any convergent subsequence. By the weak-star sequential compactness of BF ∗ ,
we can assume that (f ∗

n) is weak-star convergent. By linearity of S∗
k ◦ P ∗, we can

assume that (f ∗
n) is weak-star null.

By passing to a subsequence if necessary, we can find a sequence (gn) ⊂ BG and
δ > 0 so that

|P ∗ (f ∗

n) (S(gn))| = |S∗

k ◦ P
∗ (f ∗

n) (gn)| > δ (n ∈ N) . (6)
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Since P̃ ◦ S∗∗(G∗∗) ⊆ F , Proposition 2.1 implies that ΘG ◦ S∗
k ◦ ρk ◦ P

∗ (f ∗
n) → 0

pointwise on G∗∗ so

f̃ ∗
n ◦ P (S∗∗(g∗∗)) =

(
f ∗

n ◦ P̃
)
(S∗∗(g∗∗)) = ΘG ◦ S∗

k ◦ ρk ◦ P
∗ (f ∗

n) (g
∗∗) −→

n
0 .

By Theorem 2.4 we have
P ∗ (f ∗

n) (S(gn)) −→
n

0

in contradiction with (6). 2

Theorem 2.6. Let P ∈ P(kE, F ) be a polynomial such that P̃ (E∗∗) ⊆ F . Then P
is weakly continuous on DP sets of E.

Proof. Let S ∈ DP(G,E). By Corollary 2.3, the polynomial P ◦ S is weakly
compact. By [R2, Theorem 3.7], there are a reflexive Banach space Z, a polynomial
Q ∈ P(kG,Z) and an operator U ∈ L(Z, F ) such that P ◦ S = U ◦Q.

Let X := U(Z) ⊆ F with embedding i : X →֒ F . Then X is weakly compactly
generated [FHHMZ, page 575]. By [Di, Chapter XIII, Theorem 4], BX∗ is weak-star
sequentially compact. Denote by U1 ∈ L(Z,X) the operator given by U1(z) := U(z)
for z ∈ Z.
Let P1 ∈ P(kS(G), X) be the polynomial defined by P1(S(g)) := U1 ◦Q(g) for all

g ∈ G.

G S(G) X

Z F

Q

S

P◦S

P1

i

U

U1

We have i ◦ P1 ◦ S = P ◦ S. Since Z is reflexive, we have Q̃(G∗∗) ⊆ Z, so

P̃1 ◦ S = P̃1 ◦S
∗∗ = U1 ◦ Q̃ and P̃1 ◦S

∗∗(G∗∗) ⊆ X . By Theorem 2.5, the polynomial
P1 ◦ S is compact. Hence, P ◦ S = i ◦ P1 ◦ S is compact. Since S ∈ DP(G,E) is
arbitrary, [GG1, Proposition 3.6] implies that P is weakly continuous on DP sets of
E. 2

Corollary 2.7. Given a Banach space E and k ∈ N, the following assertions are
equivalent:
(a) E has the DPP;

(b) for every Banach space F , every polynomial P ∈ P(kE, F ) with P̃ (E∗∗) ⊆ F

is completely continuous;

(c) every polynomial P ∈ P(kE, c0) with P̃ (E
∗∗) ⊆ c0 is completely continuous.

Proof. (a) ⇒ (b). If P̃ (E∗∗) ⊆ F , Theorem 2.6 implies that P is weakly con-
tinuous on DP sets of E. Since E has the DPP, [GG1, Proposition 1.2] implies
that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1,
Corollary 3.7], P is weakly uniformly continuous on Rosenthal sets and so P takes
weak Cauchy sequences into norm convergent sequences.
(b) ⇒ (c) is obvious.

(c) ⇒ (a). Let P ∈ P(kE, c0) be a weakly compact polynomial. Then P̃ (E∗∗) ⊆ c0
so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP. 2



THE POLYNOMIAL DUNFORD-PETTIS PROPERTY 9

3. The holomorphic DPP

Suppose now that E and F are complex Banach spaces. We denote by Hb(E, F )
the space of holomorphic mappings of bounded type from E into F , that is, every
f ∈ Hb(E, F ) is bounded on bounded subsets of E. We refer the reader to Isidro’s
paper [I] for basic properties of this well-known space. Given f ∈ Hb(E, F ) with
Taylor series expansion at the origin f =

∑
∞

k=0 Pk where Pk ∈ P(kE, F ), f has

F -valued Aron-Berner extension f̃ ∈ Hb(E
∗∗, F ) if and only if P̃k is F -valued for

all k ∈ N [GGMM, Theorem 3.3]. Using the arguments of [GV, §5], we obtain the
following results:

Theorem 3.1. Given f ∈ Hb(E, F ) with F -valued Aron-Berner extension, f is
weakly continuous on DP sets.

Corollary 3.2. A complex Banach space E has the DPP if and only if every f ∈
Hb(E, F ) with F -valued Aron-Berner extension is completely continuous.
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Departamento de Matemática Aplicada, ETS de Ingenieros Industriales, Univer-
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