THE POLYNOMIAL DUNFORD-PETTIS PROPERTY

RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

ABSTRACT. A Banach space E has the Dunford-Pettis property (DPP, for short) if every weakly compact (linear) operator on E is completely continuous. The \mathcal{L}_1 and the \mathcal{L}_{∞} -spaces have the DPP. In 1979 R. A. Ryan proved that E has the DPP if and only if every weakly compact polynomial on E is completely continuous.

Every k-homogeneous (continuous) polynomial $P \in \mathcal{P}({}^{k}E, F)$ between Banach spaces E and F admits an extension $\tilde{P} \in \mathcal{P}({}^{k}E^{**}, F^{**})$ called the Aron-Berner extension. The Aron-Berner extension of every weakly compact polynomial $P \in \mathcal{P}({}^{k}E, F)$ is F-valued, that is, $\tilde{P}(E^{**}) \subseteq F$, but there are nonweakly compact polynomials with F-valued Aron-Berner extension.

We strengthen Ryan's result by showing that E has the DPP if and only if every polynomial $P \in \mathcal{P}({}^{k}E, F)$ with F-valued Aron-Berner extension is completely continuous. This answers a question raised in 2003 by I. Villanueva and the second named author. They proved the result for certain spaces E, for instance, the \mathcal{L}_{∞} -spaces, but the question remained open for other spaces such as the \mathcal{L}_{1} spaces.

1. INTRODUCTION

Throughout E, F, G, X, and Z denote Banach spaces, E^* is the dual of E, and B_E stands for its closed unit ball. The closed unit ball B_{E^*} will always be endowed with the weak-star topology. By \mathbb{N} we represent the set of all natural numbers and by \mathbb{K} the scalar field (real or complex). We use the symbol $\mathcal{L}(E, F)$ for the space of all (linear bounded) operators from E into F endowed with the operator norm. For $T \in \mathcal{L}(E, F)$ we denote its adjoint by $T^* \in \mathcal{L}(F^*, E^*)$.

Given $k \in \mathbb{N}$, we use $\mathcal{P}({}^{k}E, F)$ for the space of all k-homogeneous (continuous) polynomials from E into F endowed with the supremum norm. When $F = \mathbb{K}$, we omit the range space, writing $\mathcal{P}({}^{k}E) := \mathcal{P}({}^{k}E, \mathbb{K})$. For the general theory of polynomials on Banach spaces, we refer the reader to [Di] and [Mu]. For unexplained notation and results in Banach space theory, the reader may see [Di, DJT, DU].

A polynomial $P \in \mathcal{P}({}^{k}E, F)$ is *(weakly) compact* if $P(B_{E^*})$ is relatively (weakly) compact in F.

file PDPP17.tex.

²⁰¹⁰ Mathematics Subject Classification. Primary: 47H60. Secondary: 46G25, 46B03.

Key words and phrases. Aron-Berner extension of polynomials, Dunford-Pettis property, completely continuous polynomials.

Both authors were supported in part by Dirección General de Investigación, MTM2015–65825–P (Spain).

The first named author was partially supported by GNSAGA (Italy).

Given a polynomial $P \in \mathcal{P}(^{k}E, F)$, its adjoint P^* is the operator

$$P^*: F^* \longrightarrow \mathcal{P}(^k E)$$

given by $P^*(\psi) := \psi \circ P$ for every $\psi \in F^*$. It is well-known that P is (weakly) compact if and only if P^* is (weakly) compact (see [AS, Proposition 3.2] for the compact case and [R2, Proposition 2.1] for the weakly compact case).

We say that a polynomial $P \in \mathcal{P}({}^{k}E, F)$ is completely continuous if it takes weak Cauchy sequences into norm convergent sequences. We say that P is unconditionally converging if, for every weakly unconditionally Cauchy series $\sum x_n$ in E, the sequence $(P(s_m))_{m=1}^{\infty}$ is norm convergent, where $s_m := \sum_{n=1}^m x_n$.

Every polynomial $P \in \mathcal{P}({}^{k}E, F)$ between Banach spaces admits an extension $\widetilde{P} \in \mathcal{P}({}^{k}E^{**}, F^{**})$ called the Aron-Berner extension. We recall the construction of the Aron-Berner extension of a polynomial following [CGKM, §2]. Let A be the symmetric k-linear mapping associated with P. We can extend A to a k-linear mapping \widetilde{A} from E^{**} into F^{**} in such a way that for each fixed j $(1 \leq j \leq k)$ and for each fixed $x_1, \ldots, x_{j-1} \in E$ and $z_{j+1}, \ldots, z_k \in E^{**}$, the linear mapping

$$z \longmapsto \widetilde{A}(x_1, \dots, x_{j-1}, z, z_{j+1}, \dots, z_k) \qquad (z \in E^{**})$$
(1)

is weak*-to-weak* continuous. In other words, we define the image of the mapping in (1) to be the weak*-limit of the net $(\widetilde{A}(x_1, \ldots, x_{j-1}, x_{\alpha}, z_{j+1}, \ldots, z_k))$ for a weak*- convergent net $(x_{\alpha}) \subset E$. By this weak*-to-weak* continuity, A can be extended to a k-linear mapping \widetilde{A} from E^{**} into F^{**} beginning with the last variable and working backwards to the first. Then the restriction

$$\widetilde{P}(z) := \widetilde{A}(z, \dots, z) \qquad (z \in E^{**})$$

is called the Aron-Berner extension of P. Given $z \in E^{**}$ and $w \in F^*$, we have

$$\widetilde{P}(z)(w) = \widetilde{w \circ P}(z) \,. \tag{2}$$

Actually this equality is often used as the definition of the vector-valued Aron-Berner extension based upon the scalar-valued Aron-Berner extension. Recall that \widetilde{A} is not symmetric in general.

The Aron-Berner extension was introduced in [AB]. A survey of its properties may be seen in [Z]. It has been studied by many mathematicians. We only mention a few examples: [AB, ACG, Ca, CG, CL, CGKM, DG, DGG, GGMM, GV, PVWY].

Given a Banach space E, we denote by

$$\Theta_E: \mathcal{P}(^k\!E) \longrightarrow \mathcal{P}(^k\!E^{**})$$

the Aron-Berner extension operator, given by $\Theta_E(P) := \widetilde{P}$ for every $P \in \mathcal{P}(^kE)$. The operator Θ_E is an isometric embedding [DG, Theorem 3].

The Aron-Berner extension of every weakly compact polynomial is F-valued, that is, $\tilde{P}(E^{**}) \subseteq F$ [Ca, Proposition 1.4], but there are polynomials with F-valued Aron-Berner extension which are not weakly compact. The most typical and basic example may be the polynomial $Q \in \mathcal{P}({}^{k}\ell_{2}, \ell_{1})$ given by $Q(x) := (x_{n}^{k})_{n=1}^{\infty}$ for all $x = (x_{n})_{n=1}^{\infty} \in \ell_{2}$. The polynomials with F-valued Aron-Berner extension are often more useful than the weakly compact polynomials when it comes to characterize isomorphic properties of Banach spaces: see for instance [GV]. In the polynomial setting they play somehow the role of the weakly compact operators in the linear setting.

The bounded weak-star topology bw^{*} on a dual Banach space E^* is the finest topology that coincides with the weak-star topology on bounded subsets of E^* . The bw^{*} topology is locally convex [Me, Theorem 2.7.2].

It should be noted that the statement of [GV, Lemma 3.3] (given without proof) is wrong. This lemma is used in several places of [GV]. A corrected version of the lemma and subsequent results of [GV] is given in $[PVWY, \S 2]$.

A Banach space has the Dunford-Pettis property (DPP, for short) if every weakly compact operator on E is completely continuous. Ryan proved [R1] that E has the DPP if and only if every weakly compact polynomial on E is completely continuous. An attempt to strengthen this result was made in [GV] where the question was raised of knowing if the DPP of E implies the complete continuity of every polynomial from E into an arbitrary Banach space F so that the Aron-Berner extension of P is Fvalued. A partial affirmative answer was given in [GV] for spaces E such that every operator from E into E^* is weakly compact, but the question remained open in general and was unknown for instance for \mathcal{L}_1 -spaces.

In the present paper we prove that E has the DPP if and only if whenever P is a polynomial from E into an arbitrary Banach space F with F-valued Aron-Berner extension, then P is completely continuous. We achieve this result by a careful study of the composition of Dunford-Pettis operators (see definition below) with polynomials having F-valued Aron-Berner extension.

We summarize some characterizations of isomorphic properties of Banach spaces that can be obtained using polynomials with *F*-valued Aron-Berner extension:

(a) The DPP as mentioned above.

(b) Recall that E has the reciprocal Dunford-Pettis property (RDPP, for short) if every completely continuous operator on E is weakly compact. A space E has the RDPP if and only if every completely continuous polynomial from E into an arbitrary Banach space F has F-valued Aron-Berner extension [GV, Corollary 3.5].

(c) E is said to have property (V) if every unconditionally converging operator on E is weakly compact. A space E has property (V) if and only if every unconditionally converging polynomial from E into an arbitrary Banach space F has F-valued Aron-Berner extension [GV, Corollary 4.3].

A subset A of a Banach space E is a Dunford-Pettis set (DP set, for short) [An, Theorem 1] if, for every weakly null sequence $(x_n^*) \subset E^*$, we have

$$\lim_{n} \sup_{x \in A} |\langle x, x_n^* \rangle| = 0.$$

An operator $S \in \mathcal{L}(G, E)$ is a *Dunford-Pettis operator* if $S(B_G)$ is a DP set in E. We denote by \mathcal{DP} the ideal of Dunford-Pettis operators which has been studied under a different notation in [GG1].

A subset A of a Banach space E is said to be a *Rosenthal set* if every sequence in A contains a weak Cauchy subsequence. Given an operator $S \in \mathcal{L}(G, E)$, we denote by $S_1 \in \mathcal{L}(G, S(G))$ the operator given by $S_1(g) := S(g)$ for $g \in G$. Note that the normed space S(G) is not necessarily complete.

2. The results

Given $k \in \mathbb{N}$ and an operator $S \in \mathcal{L}(G, E)$, we define the operator

$$S_k^* : \mathcal{P}({}^k\!E) \longrightarrow \mathcal{P}({}^k\!G) \qquad (\text{or} \quad S_k^* : \mathcal{P}({}^kS(G)) \to \mathcal{P}({}^kG))$$

by $S_k^*(P)(g) := P(S(g))$ for all $P \in \mathcal{P}(^kE)$ (or $\mathcal{P}(^kS(G))$) and $g \in G$. Similarly, we define

$$S_k^{***}: \mathcal{P}(^kE^{**}) \longrightarrow \mathcal{P}(^kG^{**}) \qquad (\text{or} \quad S_k^{***}: \mathcal{P}(^kS(G)^{**}) \to \mathcal{P}(^kG^{**}))$$

by $S_k^{***}(Q)(g^{**}) := Q(S^{**}(g^{**}))$ for all $Q \in \mathcal{P}(^kE^{**})$ (or $\mathcal{P}(^kS(G)^{**})$) and $g^{**} \in G^{**}$. Given a polynomial $P \in \mathcal{P}(^kE, F)$ and an operator $S \in \mathcal{L}(G, E)$, we shall use the following diagram:

$$F^{*} \xrightarrow{P^{*}} \mathcal{P}(^{k}E) \xrightarrow{\rho_{k}} \mathcal{P}(^{k}S(G)) \xrightarrow{S_{k}^{*}} \mathcal{P}(^{k}G)$$

$$\begin{array}{c} \Theta_{E} \downarrow & \Theta_{S(G)} \downarrow & \Theta_{G} \downarrow \\ \mathcal{P}(^{k}E^{**}) \xrightarrow{\rho_{k}^{b}} \mathcal{P}(^{k}S(G)^{**}) \xrightarrow{S_{k}^{***}} \mathcal{P}(^{k}G^{**}) \end{array}$$

$$(3)$$

where ρ_k and $\rho_k^{\rm b}$ are restriction operators. The superscript "b" stands for "bidual".

We show that the diagram commutes. Indeed, the only part which needs a proof is the right hand rectangle. For $R \in \mathcal{P}({}^kS(G))$, we have

$$\Theta_G \circ S_k^*(R)(g^{**}) = \Theta_G(R \circ S_1)(g^{**}) = \widetilde{R} \circ S_1^{**}(g^{**}) = \Theta_{S(G)}(R)(S_1^{**}(g^{**}))$$
$$= S_k^{***} \left(\Theta_{S(G)}(R)\right)(g^{**}).$$

We say that a net of polynomials $(P_{\alpha}) \subset \mathcal{P}({}^{k}E)$ is τ_{p}^{b} -convergent to $P \in \mathcal{P}({}^{k}E)$ if, for every $x^{**} \in E^{**}$, we have

$$\widetilde{P}_{\alpha}(x^{**}) \xrightarrow{\alpha} \widetilde{P}(x^{**})$$

for every $x^{**} \in E^{**}$. The subscript "p" stands for "pointwise" and the superscript "b" for "bidual".

Proposition 2.1. Let $S \in \mathcal{L}(G, E)$ and $P \in \mathcal{P}({}^{k}E, F)$. The following assertions are equivalent:

(a) $\widetilde{P} \circ S^{**}(G^{**}) \subseteq F$; (b) $\Theta_G \circ S_k^* \circ \rho_k \circ P^*$ is weak*-to- $\tau_p^{\rm b}$ continuous; (c) $\Theta_G \circ S_k^* \circ \rho_k \circ P^*$ is bw*-to- $\tau_p^{\rm b}$ continuous.

PROOF. (a) \Rightarrow (b). Let $(f_{\alpha}^*) \subset F^*$ be a weak*-null net. Then, for all $g^{**} \in G^{**}$, we have

$$\Theta_G \circ S_k^* \circ \rho_k \circ P^* \left(f_\alpha^* \right) \left(g^{**} \right) = S_k^{***} \circ \Theta_{S(G)} \circ \rho_k \circ P^* \left(f_\alpha^* \right) \left(g^{**} \right)$$
$$= \Theta_{S(G)} \circ \rho_k \circ P^* \left(f_\alpha^* \right) \left(S^{**} \left(g^{**} \right) \right)$$

$$= \left(f_{\alpha}^* \circ \widetilde{P}\right) \left(S^{**}(g^{**})\right)$$
$$= \left\langle \widetilde{P}(S^{**}(g^{**})), f_{\alpha}^* \right\rangle \xrightarrow{\alpha} 0,$$

since $\widetilde{P}(S^{**}(g^{**})) \in F$.

(b) \Rightarrow (c) is obvious since bw^{*} is finer than the weak-star topology.

(c) \Rightarrow (a). Let $(f_{\alpha}^*) \subset F^*$ be a bw*-null net. By the above calculations, we have for all $g^{**} \in G^{**}$:

$$\left\langle \widetilde{P}(S^{**}(g^{**})), f^*_{\alpha} \right\rangle \xrightarrow[\alpha]{} 0,$$

= $F[M_{\alpha}]$ Theorem 2.7.8]

so $\widetilde{P}(S^{**}(g^{**})) \in (F^*, bw^*)^* = F$ [Me, Theorem 2.7.8].

Proposition 2.2. Let $Q \in \mathcal{P}(^{k}E)$ and $S \in \mathcal{DP}(G, E)$. Then $\widetilde{Q} \in \mathcal{P}(^{k}E^{**})$ is weak-star continuous on $S^{**}(B_{G^{**}})$.

PROOF. We modify the proof of [GG1, Proposition 3.1]. Let $A := S(B_G)$ which is an absolutely convex DP set in E. By [DFJP, Lemma 1], we can find a Banach space Z and an operator $j \in \mathcal{L}(Z, E)$ so that:

- (a) $A \subseteq j(B_Z)$;
- (b) $j^{**}: Z^{**} \to E^{**}$ is injective and $j^{**-1}(E) = Z$;
- (c) $j(B_Z) \subseteq 2^n A + 2^{-n} B_E$ for every $n \in \mathbb{N}$.

Using Goldstine's theorem, it is easy to check that $S^{**}(B_{G^{**}}) \subseteq j^{**}(B_{Z^{**}})$. Let $(z_{\alpha}^{**}) \subset B_{Z^{**}}$ be a net such that weak*-lim $j^{**}(z_{\alpha}^{**}) = 0$. Assume that (z_{α}^{**}) is not weak-star null. Then every subnet has a weak-star Cauchy subnet, so this subnet must be weak-star convergent and its limit has to be 0 by the injectivity of j^{**} . Therefore, the original net (z_{α}^{**}) is itself weak-star null. So $B_{Z^{**}}$ and $j^{**}(B_{Z^{**}})$ are weak-star homeomorphic.

Let $(g_{\alpha}^{**}) \subset B_{G^{**}}$ be a net such that

$$S^{**}\left(g_{\alpha}^{**}\right) \xrightarrow{\mathbf{w}^{*}} x^{**} \in E^{**}.$$

Since $S^{**}(B_{G^{**}})$ is weak-star compact, we can find $g^{**} \in B_{G^{**}}$ so that $x^{**} = S^{**}(g^{**})$. Let $z_{\alpha}^{**} \in B_{Z^{**}}$ with $S^{**}(g_{\alpha}^{**}) = j^{**}(z_{\alpha}^{**})$ and $z^{**} \in B_{Z^{**}}$ so that $S^{**}(g^{**}) = j^{**}(z^{**})$. By the above weak-star homeomorphism, we have weak*-lim $z_{\alpha}^{**} = z^{**}$.

By (c), $j(B_Z)$ is a DP set (see the proof in [GG1, Proposition 3.1]). By [GG1, Proposition 3.6 and Theorem 3.5], the polynomial $Q \circ j$ is weakly continuous on bounded subsets of Z. By [ACG, Theorem 7.1], its Aron-Berner extension $\widetilde{Q} \circ j^{**}$ is weak-star continuous on bounded sets of Z^{**} , and

$$\widetilde{Q} \circ S^{**}(g_{\alpha}^{**}) = \widetilde{Q} \circ j^{**}(z_{\alpha}^{**}) \xrightarrow{\alpha} \widetilde{Q} \circ j^{**}(z^{**}) = \widetilde{Q} \circ S^{**}(g^{**}).$$

Corollary 2.3. Given a polynomial $P \in \mathcal{P}({}^{k}E, F)$ and an operator $S \in \mathcal{DP}(G, E)$ so that $\widetilde{P} \circ S^{**}(G^{**}) \subseteq F$, we have that \widetilde{P} is weak*-to-weak continuous on $S^{**}(B_{G^{**}})$ and so the polynomial $\widetilde{P} \circ S^{**}$ is weakly compact.

PROOF. Consider the commutative diagram:

$$\begin{array}{ccc} G & \xrightarrow{S} & E & \xrightarrow{P} & F \\ k_G & & & & \\ G^{**} & \xrightarrow{S^{**}} & E^{**} \end{array}$$

where k_E and k_G are the canonical isometric embeddings. Let $(g_{\alpha}^{**}) \subset B_{G^{**}}$ be a net and $g^{**} \in B_{G^{**}}$ so that

$$S^{**}(g^{**}_{\alpha}) \xrightarrow{\mathrm{w}^*} S^{**}(g^{**}).$$

By Proposition 2.2, we have for all $f^* \in B_{F^*}$,

$$\begin{pmatrix} f^* \circ \widetilde{P} \end{pmatrix} (S^{**} (g_{\alpha}^{**})) = \widetilde{f^* \circ P} (S^{**} (g_{\alpha}^{**}))$$
$$\xrightarrow{\alpha} \widetilde{f^* \circ P} (S^{**} (g^{**})) = \left(f^* \circ \widetilde{P}\right) (S^{**} (g^{**})) .$$

Therefore,

$$\widetilde{P}\left(S^{**}\left(g_{\alpha}^{**}\right)\right) \xrightarrow{\text{weak}} \widetilde{P}\left(S^{**}\left(g^{**}\right)\right) \quad \text{in} \quad F.$$

Theorem 2.4. Let $S \in \mathcal{DP}(G, E)$ and $(P_n) \subset \mathcal{P}({}^kE)$ be a sequence of polynomials such that, for every $g^{**} \in G^{**}$, we have $\widetilde{P_n} \circ S^{**}(g^{**}) \to 0$. Then we have

$$\lim_{n} \sup_{g \in B_{G}} |P_{n} \circ S(g)| = 0$$

PROOF. Assume the result fails. Then, passing to a subsequence if necessary, we can find a sequence $(g_n) \subset B_G$ and $\delta > 0$ such that $|P_n \circ S(g_n)| > \delta$ for all $n \in \mathbb{N}$. Let $A_n : E \times \stackrel{(k)}{\ldots} \times E \to \mathbb{K}$ be the unique symmetric k-linear form associated with P_n . Then,

$$\left|A_n\left(S(g_n), \stackrel{(k)}{\dots}, S(g_n)\right)\right| > \delta \qquad (n \in \mathbb{N}).$$

Since $S(B_G)$ is a DP set in the Banach space S(G), the sequence

$$\left(A_n\left(S(g_n), \stackrel{(k-1)}{\dots}, S(g_n), \cdot\right)\right)_{n=1}^{\infty}$$

is not weakly null in $S(G)^*$. So, passing again to a subsequence if necessary, there are $x_k^{**} \in S(G)^{**}$ and $\delta_1 > 0$ such that

$$\left|\widetilde{A_n}\left(S(g_n), \stackrel{(k-1)}{\dots}, S(g_n), x_k^{**}\right)\right| > \delta_1 \qquad (n \in \mathbb{N}).$$

$$\tag{4}$$

Consider the operator $S_1 \in \mathcal{L}(G, S(G))$. By [Me, Theorem 3.1.17], the operator

$$S(G)^* \xrightarrow{S_1^*} G^*$$

is injective, and the operator

$$G^{**} \xrightarrow{S_1^{**}} S(G)^{**}$$

has weak-star dense range. Therefore, by the weak-star continuity of

$$A_n\left(S(g_n), \stackrel{(k-1)}{\dots}, S(g_n), \cdot\right)$$

on $S(G)^{**}$ and using (4), we can find $g_k^{**} \in G^{**}$ so that

$$\left|\widetilde{A_n}\left(S(g_n), \stackrel{(k-1)}{\dots}, S(g_n), S^{**}(g_k^{**})\right)\right| > \delta_1 \qquad (n \in \mathbb{N}).$$

Iterating the argument, the sequence

$$\left(\widetilde{A_n}\left(S(g_n), \stackrel{(k-2)}{\dots}, S(g_n), \cdot, S^{**}\left(g_k^{**}\right)\right)\right)_{n=1}^{\infty}$$

is not weakly null in $S(G)^*$ so, passing to a subsequence if necessary, there are $x_{k-1}^{**} \in S(G)^{**}$ and $\delta_2 > 0$ such that

$$\left|\widetilde{A_n}\left(S(g_n), \stackrel{(k-2)}{\ldots}, S(g_n), x_{k-1}^{**}, S^{**}(g_k^{**})\right)\right| > \delta_2 \qquad (n \in \mathbb{N}).$$

As above, we can find $g_{k-1}^{**} \in G^{**}$ so that

$$\left|\widetilde{A_n}\left(S(g_n), \stackrel{(k-2)}{\dots}, S(g_n), S^{**}\left(g_{k-1}^{**}\right), S^{**}\left(g_k^{**}\right)\right)\right| > \delta_2 \qquad (n \in \mathbb{N})$$

Proceeding up to the first variable, we can find $g_1^{**} \in G^{**}$ and $\delta_k > 0$ so that

$$\left|\widetilde{A_n}\left(S^{**}\left(g_1^{**}\right),\ldots,S^{**}\left(g_k^{**}\right)\right)\right| > \delta_k \qquad (n \in \mathbb{N})$$

By the polarization formula [Mu, Theorem 1.10], we obtain

$$k! 2^{k} \delta_{k} < \left| \sum_{\epsilon_{j}=\pm 1} \epsilon_{1} \cdots \epsilon_{k} \widetilde{A_{n}} \circ S^{**} \left(\epsilon_{1} g_{1}^{**} + \cdots + \epsilon_{k} g_{k}^{**} \right)^{k} \right|$$

$$\leq \sum_{\epsilon_{j}=\pm 1} \left| \widetilde{A_{n}} \circ S^{**} \left(\epsilon_{1} g_{1}^{**} + \cdots + \epsilon_{k} g_{k}^{**} \right)^{k} \right|$$

$$= \sum_{\epsilon_{j}=\pm 1} \left| \widetilde{P_{n}} \circ S^{**} \left(\epsilon_{1} g_{1}^{**} + \cdots + \epsilon_{k} g_{k}^{**} \right) \right| \qquad (n \in N), \qquad (5)$$

where we have used the notation

$$\widetilde{A_n} \circ S^{**} (g^{**})^k := \widetilde{A_n} \left(S^{**}(g^{**}), \stackrel{(k)}{\dots}, S^{**}(g^{**}) \right)$$

for $g^{**} \in G^{**}$. Since each summand of (5) tends to zero as n goes to ∞ , we reach a contradiction.

Theorem 2.5. Given $S \in \mathcal{DP}(G, E)$ and $P \in \mathcal{P}({}^{k}E, F)$ with B_{F^*} weak-star sequentially compact, assume that $\widetilde{P} \circ S^{**}(G^{**}) \subseteq F$. Then the polynomial $P \circ S$ is compact.

PROOF. Suppose $P \circ S$ is not compact. Then its adjoint $S_k^* \circ P^*$ is not compact, so there is a sequence $(f_n^*) \subset B_{F^*}$ such that the sequence $(S_k^* \circ P^* (f_n^*))_{n=1}^{\infty}$ does not have any convergent subsequence. By the weak-star sequential compactness of B_{F^*} , we can assume that (f_n^*) is weak-star convergent. By linearity of $S_k^* \circ P^*$, we can assume that (f_n^*) is weak-star null.

By passing to a subsequence if necessary, we can find a sequence $(g_n) \subset B_G$ and $\delta > 0$ so that

$$|P^*(f_n^*)(S(g_n))| = |S_k^* \circ P^*(f_n^*)(g_n)| > \delta \qquad (n \in \mathbb{N}).$$
(6)

Since $\widetilde{P} \circ S^{**}(G^{**}) \subseteq F$, Proposition 2.1 implies that $\Theta_G \circ S_k^* \circ \rho_k \circ P^*(f_n^*) \to 0$ pointwise on G^{**} so

$$\widetilde{f_n^* \circ P}(S^{**}(g^{**})) = \left(f_n^* \circ \widetilde{P}\right)(S^{**}(g^{**})) = \Theta_G \circ S_k^* \circ \rho_k \circ P^*\left(f_n^*\right)(g^{**}) \xrightarrow[n]{} 0$$

By Theorem 2.4 we have

$$P^*(f_n^*)(S(g_n)) \longrightarrow 0$$

in contradiction with (6).

Theorem 2.6. Let $P \in \mathcal{P}({}^{k}E, F)$ be a polynomial such that $\widetilde{P}(E^{**}) \subseteq F$. Then P is weakly continuous on DP sets of E.

PROOF. Let $S \in \mathcal{DP}(G, E)$. By Corollary 2.3, the polynomial $P \circ S$ is weakly compact. By [R2, Theorem 3.7], there are a reflexive Banach space Z, a polynomial $Q \in \mathcal{P}({}^{k}G, Z)$ and an operator $U \in \mathcal{L}(Z, F)$ such that $P \circ S = U \circ Q$.

Let $X := \overline{U(Z)} \subseteq F$ with embedding $i : X \hookrightarrow F$. Then X is weakly compactly generated [FHHMZ, page 575]. By [Di, Chapter XIII, Theorem 4], B_{X^*} is weak-star sequentially compact. Denote by $U_1 \in \mathcal{L}(Z, X)$ the operator given by $U_1(z) := U(z)$ for $z \in Z$.

Let $P_1 \in \mathcal{P}(^kS(G), X)$ be the polynomial defined by $P_1(S(g)) := U_1 \circ Q(g)$ for all $g \in G$.

We have $i \circ P_1 \circ S = P \circ S$. Since Z is reflexive, we have $\widetilde{Q}(G^{**}) \subseteq Z$, so $\widetilde{P_1} \circ S = \widetilde{P_1} \circ S^{**} = U_1 \circ \widetilde{Q}$ and $\widetilde{P_1} \circ S^{**}(G^{**}) \subseteq X$. By Theorem 2.5, the polynomial $P_1 \circ S$ is compact. Hence, $P \circ S = i \circ P_1 \circ S$ is compact. Since $S \in \mathcal{DP}(G, E)$ is arbitrary, [GG1, Proposition 3.6] implies that P is weakly continuous on DP sets of E.

Corollary 2.7. Given a Banach space E and $k \in \mathbb{N}$, the following assertions are equivalent:

(a) E has the DPP;

(b) for every Banach space F, every polynomial $P \in \mathcal{P}({}^{k}E, F)$ with $\widetilde{P}(E^{**}) \subseteq F$ is completely continuous;

(c) every polynomial $P \in \mathcal{P}({}^{k}E, c_{0})$ with $\widetilde{P}(E^{**}) \subseteq c_{0}$ is completely continuous.

PROOF. (a) \Rightarrow (b). If $\tilde{P}(E^{**}) \subseteq F$, Theorem 2.6 implies that P is weakly continuous on DP sets of E. Since E has the DPP, [GG1, Proposition 1.2] implies that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1, Corollary 3.7], P is weakly uniformly continuous on Rosenthal sets and so P takes weak Cauchy sequences into norm convergent sequences.

(b) \Rightarrow (c) is obvious.

(c) \Rightarrow (a). Let $P \in \mathcal{P}({}^{k}E, c_0)$ be a weakly compact polynomial. Then $\widetilde{P}(E^{**}) \subseteq c_0$ so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP. \Box

3. The holomorphic DPP

Suppose now that E and F are complex Banach spaces. We denote by $\mathcal{H}_{b}(E, F)$ the space of holomorphic mappings of bounded type from E into F, that is, every $f \in \mathcal{H}_{b}(E, F)$ is bounded on bounded subsets of E. We refer the reader to Isidro's paper [I] for basic properties of this well-known space. Given $f \in \mathcal{H}_{b}(E, F)$ with Taylor series expansion at the origin $f = \sum_{k=0}^{\infty} P_{k}$ where $P_{k} \in \mathcal{P}({}^{k}E, F)$, f has F-valued Aron-Berner extension $\tilde{f} \in \mathcal{H}_{b}(E^{**}, F)$ if and only if \tilde{P}_{k} is F-valued for all $k \in \mathbb{N}$ [GGMM, Theorem 3.3]. Using the arguments of [GV, §5], we obtain the following results:

Theorem 3.1. Given $f \in \mathcal{H}_{b}(E, F)$ with *F*-valued Aron-Berner extension, *f* is weakly continuous on DP sets.

Corollary 3.2. A complex Banach space E has the DPP if and only if every $f \in \mathcal{H}_{b}(E, F)$ with F-valued Aron-Berner extension is completely continuous.

References

- [An] K. T. Andrews, Dunford-Pettis sets in spaces of Bochner integrable functions, Math. Ann. 241 (1979), 35–41.
- [AB] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3–24.
- [ACG] R. M. Aron, B. J. Cole and T. W. Gamelin, Weak-star continuous analytic functions, Canad. J. Math. 47 (1995), 673–683.
- [AS] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. **21** (1976), 7–30.
- [Ca] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), 359–372.
- [CG] D. Carando and D. Galicer, Extending polynomials in maximal and minimal ideals, Publ. Res. Inst. Math. Sci. 46 (2010) 669-680.
- [CL] D. Carando and S. Lassalle, Extension of vector-valued integral polynomials, J. Math. Anal. Appl. 307 (2005), 77–85.
- [CGKM] Y. S. Choi, D. García, S. G. Kim, and M. Maestre, Composition, numerical range and Aron-Berner extension, *Math. Scand.* 103 (2008), 97–110.
- [DG] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356.
- [DFJP] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
- [Di] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984.
- [DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge 1995.
- [DU] J. Diestel and J. J. Uhl, Jr., *Vector Measures*, Math. Surveys Monographs **15**, American Mathematical Society, Providence RI 1977.
- [DGG] V. Dimant, D. Galicer, and R. García, Geometry of integral polynomials, *M*-ideals and unique norm preserving extensions, *J. Funct. Anal.* **262** (2012), 1987-2012.
- [Di] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, Berlin 1999.
- [FHHMZ] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Math., Springer, New York 2011.

- [GGMM] P. Galindo, D. García, M. Maestre, and J. Mujica, Extension of multilinear mappings on Banach spaces, *Studia Math.* 108 (1994), 55–76.
- [GG1] M. González and J. M. Gutiérrez, Weakly continuous mappings on Banach spaces with the Dunford-Pettis property, J. Math. Anal. Appl. 173 (1993), 470–482.
- [GV] J. M. Gutiérrez and I. Villanueva, Extensions of multilinear operators and Banach space properties, *Proc. Roy. Soc. Edinburgh* **133A** (2003), 549–566. See Corrigendum in [PVWY, §2].
- [I] J. M. Isidro, Topological duality on the functional space $(H_b(U, F), \tau_b)$, Proc. Roy. Irish Acad. Sect. A **79** (1979), 115–130.
- [Me] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Math. 183, Springer, Berlin 1998.
- [Mu] J. Mujica, *Complex Analysis in Banach Spaces*, Math. Studies **120**, North-Holland, Amsterdam 1986.
- [PVWY] A. M. Peralta, I. Villanueva, J. D. Maitland Wright, and K. Ylinen, Quasi-completely continuous multilinear operators, Proc. Roy. Soc. Edinburgh 140A (2010), 635–649.
- [R1] R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 373–379.
- [R2] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, *Pacific J. Math.* 131 (1988), 179–190.
- [Z] I. Zalduendo, Extending polynomials on Banach spaces—A survey, Rev. Un. Mat. Argentina 46 (2005), 45–72.

DIPARTIMENTO DI MATEMATICA, FACOLTÀ DI SCIENZE, UNIVERSITÀ DI CATANIA, VIALE ANDREA DORIA 6, 95125 CATANIA (ITALY) *E-mail address*: cilia@dmi.unict.it

DEPARTAMENTO DE MATEMÁTICA APLICADA, ETS DE INGENIEROS INDUSTRIALES, UNIVER-SIDAD POLITÉCNICA DE MADRID, C. JOSÉ GUTIÉRREZ ABASCAL 2, 28006 MADRID (SPAIN) *E-mail address*: jgutierrez@etsii.upm.es