THE POLYNOMIAL DUNFORD-PETTIS PROPERTY

RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

Abstract

A Banach space E has the Dunford-Pettis property (DPP, for short) if every weakly compact (linear) operator on E is completely continuous. The \mathcal{L}_{1} and the \mathcal{L}_{∞}-spaces have the DPP. In 1979 R. A. Ryan proved that E has the DPP if and only if every weakly compact polynomial on E is completely continuous.

Every k-homogeneous (continuous) polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ between Banach spaces E and F admits an extension $\widetilde{P} \in \mathcal{P}\left({ }^{k} E^{* *}, F^{* *}\right)$ called the Aron-Berner extension. The Aron-Berner extension of every weakly compact polynomial $P \in$ $\mathcal{P}\left({ }^{k} E, F\right)$ is F-valued, that is, $\widetilde{P}\left(E^{* *}\right) \subseteq F$, but there are nonweakly compact polynomials with F-valued Aron-Berner extension.

We strengthen Ryan's result by showing that E has the DPP if and only if every polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ with F-valued Aron-Berner extension is completely continuous. This answers a question raised in 2003 by I. Villanueva and the second named author. They proved the result for certain spaces E, for instance, the \mathcal{L}_{∞}-spaces, but the question remained open for other spaces such as the $\mathcal{L}_{1^{-}}$ spaces.

1. Introduction

Throughout E, F, G, X, and Z denote Banach spaces, E^{*} is the dual of E, and B_{E} stands for its closed unit ball. The closed unit ball $B_{E^{*}}$ will always be endowed with the weak-star topology. By \mathbb{N} we represent the set of all natural numbers and by \mathbb{K} the scalar field (real or complex). We use the symbol $\mathcal{L}(E, F)$ for the space of all (linear bounded) operators from E into F endowed with the operator norm. For $T \in \mathcal{L}(E, F)$ we denote its adjoint by $T^{*} \in \mathcal{L}\left(F^{*}, E^{*}\right)$.

Given $k \in \mathbb{N}$, we use $\mathcal{P}\left({ }^{k} E, F\right)$ for the space of all k-homogeneous (continuous) polynomials from E into F endowed with the supremum norm. When $F=\mathbb{K}$, we omit the range space, writing $\mathcal{P}\left({ }^{k} E\right):=\mathcal{P}\left({ }^{k} E, \mathbb{K}\right)$. For the general theory of polynomials on Banach spaces, we refer the reader to [Di] and $[\mathrm{Mu}]$. For unexplained notation and results in Banach space theory, the reader may see [Di, DJT, DU].

A polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ is (weakly) compact if $P\left(B_{E^{*}}\right)$ is relatively (weakly) compact in F.

[^0]Given a polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$, its adjoint P^{*} is the operator

$$
P^{*}: F^{*} \longrightarrow \mathcal{P}\left({ }^{k} E\right)
$$

given by $P^{*}(\psi):=\psi \circ P$ for every $\psi \in F^{*}$. It is well-known that P is (weakly) compact if and only if P^{*} is (weakly) compact (see [AS, Proposition 3.2] for the compact case and [R2, Proposition 2.1] for the weakly compact case).

We say that a polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ is completely continuous if it takes weak Cauchy sequences into norm convergent sequences. We say that P is unconditionally converging if, for every weakly unconditionally Cauchy series $\sum x_{n}$ in E, the sequence $\left(P\left(s_{m}\right)\right)_{m=1}^{\infty}$ is norm convergent, where $s_{m}:=\sum_{n=1}^{m} x_{n}$.

Every polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ between Banach spaces admits an extension $\widetilde{P} \in \mathcal{P}\left({ }^{k} E^{* *}, F^{* *}\right)$ called the Aron-Berner extension. We recall the construction of the Aron-Berner extension of a polynomial following [CGKM, §2]. Let A be the symmetric k-linear mapping associated with P. We can extend A to a k-linear mapping \widetilde{A} from $E^{* *}$ into $F^{* *}$ in such a way that for each fixed $j(1 \leq j \leq k)$ and for each fixed $x_{1}, \ldots, x_{j-1} \in E$ and $z_{j+1}, \ldots, z_{k} \in E^{* *}$, the linear mapping

$$
\begin{equation*}
z \longmapsto \widetilde{A}\left(x_{1}, \ldots, x_{j-1}, z, z_{j+1}, \ldots, z_{k}\right) \quad\left(z \in E^{* *}\right) \tag{1}
\end{equation*}
$$

is weak*-to-weak* continuous. In other words, we define the image of the mapping in (1) to be the weak*-limit of the net $\left(\widetilde{A}\left(x_{1}, \ldots, x_{j-1}, x_{\alpha}, z_{j+1}, \ldots, z_{k}\right)\right)$ for a weak*convergent net $\left(x_{\alpha}\right) \subset E$. By this weak*-to-weak* continuity, A can be extended to a k-linear mapping \widetilde{A} from $E^{* *}$ into $F^{* *}$ beginning with the last variable and working backwards to the first. Then the restriction

$$
\widetilde{P}(z):=\widetilde{A}(z, \ldots, z) \quad\left(z \in E^{* *}\right)
$$

is called the Aron-Berner extension of P. Given $z \in E^{* *}$ and $w \in F^{*}$, we have

$$
\begin{equation*}
\widetilde{P}(z)(w)=\widetilde{w \circ P}(z) \tag{2}
\end{equation*}
$$

Actually this equality is often used as the definition of the vector-valued Aron-Berner extension based upon the scalar-valued Aron-Berner extension. Recall that \widetilde{A} is not symmetric in general.

The Aron-Berner extension was introduced in [AB]. A survey of its properties may be seen in $[\mathrm{Z}]$. It has been studied by many mathematicians. We only mention a few examples: $[\mathrm{AB}, \mathrm{ACG}, \mathrm{Ca}, \mathrm{CG}, \mathrm{CL}, \mathrm{CGKM}, \mathrm{DG}, \mathrm{DGG}, ~ G G M M, ~ G V, ~ P V W Y] . ~$

Given a Banach space E, we denote by

$$
\Theta_{E}: \mathcal{P}\left({ }^{k} E\right) \longrightarrow \mathcal{P}\left({ }^{k} E^{* *}\right)
$$

the Aron-Berner extension operator, given by $\Theta_{E}(P):=\widetilde{P}$ for every $P \in \mathcal{P}\left({ }^{k} E\right)$. The operator Θ_{E} is an isometric embedding [DG, Theorem 3].

The Aron-Berner extension of every weakly compact polynomial is F-valued, that is, $\widetilde{P}\left(E^{* *}\right) \subseteq F[\mathrm{Ca}$, Proposition 1.4], but there are polynomials with F-valued Aron-Berner extension which are not weakly compact. The most typical and basic example may be the polynomial $Q \in \mathcal{P}\left({ }^{k} \ell_{2}, \ell_{1}\right)$ given by $Q(x):=\left(x_{n}^{k}\right)_{n=1}^{\infty}$ for all $x=\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{2}$. The polynomials with F-valued Aron-Berner extension are often
more useful than the weakly compact polynomials when it comes to characterize isomorphic properties of Banach spaces: see for instance [GV]. In the polynomial setting they play somehow the role of the weakly compact operators in the linear setting.

The bounded weak-star topology bw^{*} on a dual Banach space E^{*} is the finest topology that coincides with the weak-star topology on bounded subsets of E^{*}. The bw* topology is locally convex [Me, Theorem 2.7.2].

It should be noted that the statement of [GV, Lemma 3.3] (given without proof) is wrong. This lemma is used in several places of [GV]. A corrected version of the lemma and subsequent results of $[\mathrm{GV}]$ is given in [PVWY, §2].

A Banach space has the Dunford-Pettis property (DPP, for short) if every weakly compact operator on E is completely continuous. Ryan proved [R1] that E has the DPP if and only if every weakly compact polynomial on E is completely continuous. An attempt to strengthen this result was made in [GV] where the question was raised of knowing if the DPP of E implies the complete continuity of every polynomial from E into an arbitrary Banach space F so that the Aron-Berner extension of P is F valued. A partial affirmative answer was given in [GV] for spaces E such that every operator from E into E^{*} is weakly compact, but the question remained open in general and was unknown for instance for \mathcal{L}_{1}-spaces.

In the present paper we prove that E has the DPP if and only if whenever P is a polynomial from E into an arbitrary Banach space F with F-valued Aron-Berner extension, then P is completely continuous. We achieve this result by a careful study of the composition of Dunford-Pettis operators (see definition below) with polynomials having F-valued Aron-Berner extension.

We summarize some characterizations of isomorphic properties of Banach spaces that can be obtained using polynomials with F-valued Aron-Berner extension:
(a) The DPP as mentioned above.
(b) Recall that E has the reciprocal Dunford-Pettis property (RDPP, for short) if every completely continuous operator on E is weakly compact. A space E has the RDPP if and only if every completely continuous polynomial from E into an arbitrary Banach space F has F-valued Aron-Berner extension [GV, Corollary 3.5].
(c) E is said to have property (V) if every unconditionally converging operator on E is weakly compact. A space E has property (V) if and only if every unconditionally converging polynomial from E into an arbitrary Banach space F has F-valued AronBerner extension [GV, Corollary 4.3].

A subset A of a Banach space E is a Dunford-Pettis set (DP set, for short) [An, Theorem 1] if, for every weakly null sequence $\left(x_{n}^{*}\right) \subset E^{*}$, we have

$$
\limsup _{n} \sup _{A}\left|\left\langle x, x_{n}^{*}\right\rangle\right|=0 .
$$

An operator $S \in \mathcal{L}(G, E)$ is a Dunford-Pettis operator if $S\left(B_{G}\right)$ is a DP set in E. We denote by $\mathcal{D P}$ the ideal of Dunford-Pettis operators which has been studied under a different notation in [GG1].

A subset A of a Banach space E is said to be a Rosenthal set if every sequence in A contains a weak Cauchy subsequence.

Given an operator $S \in \mathcal{L}(G, E)$, we denote by $S_{1} \in \mathcal{L}(G, S(G))$ the operator given by $S_{1}(g):=S(g)$ for $g \in G$. Note that the normed space $S(G)$ is not necessarily complete.

2. The results

Given $k \in \mathbb{N}$ and an operator $S \in \mathcal{L}(G, E)$, we define the operator

$$
S_{k}^{*}: \mathcal{P}\left({ }^{k} E\right) \longrightarrow \mathcal{P}\left({ }^{k} G\right) \quad\left(\text { or } \quad S_{k}^{*}: \mathcal{P}\left({ }^{k} S(G)\right) \rightarrow \mathcal{P}\left({ }^{k} G\right)\right)
$$

by $S_{k}^{*}(P)(g):=P(S(g))$ for all $P \in \mathcal{P}\left({ }^{k} E\right)$ (or $\left.\mathcal{P}\left({ }^{k} S(G)\right)\right)$ and $g \in G$. Similarly, we define

$$
S_{k}^{* * *}: \mathcal{P}\left({ }^{k} E^{* *}\right) \longrightarrow \mathcal{P}\left({ }^{k} G^{* *}\right) \quad\left(\text { or } \quad S_{k}^{* * *}: \mathcal{P}\left({ }^{k} S(G)^{* *}\right) \rightarrow \mathcal{P}\left({ }^{k} G^{* *}\right)\right)
$$

by $S_{k}^{* * *}(Q)\left(g^{* *}\right):=Q\left(S^{* *}\left(g^{* *}\right)\right)$ for all $Q \in \mathcal{P}\left({ }^{k} E^{* *}\right)\left(\right.$ or $\left.\mathcal{P}\left({ }^{k} S(G)^{* *}\right)\right)$ and $g^{* *} \in G^{* *}$.
Given a polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ and an operator $S \in \mathcal{L}(G, E)$, we shall use the following diagram:

where ρ_{k} and ρ_{k}^{b} are restriction operators. The superscript "b" stands for "bidual".
We show that the diagram commutes. Indeed, the only part which needs a proof is the right hand rectangle. For $R \in \mathcal{P}\left({ }^{k} S(G)\right)$, we have

$$
\begin{aligned}
\Theta_{G} \circ S_{k}^{*}(R)\left(g^{* *}\right) & =\Theta_{G}\left(R \circ S_{1}\right)\left(g^{* *}\right)=\widetilde{R} \circ S_{1}^{* *}\left(g^{* *}\right)=\Theta_{S(G)}(R)\left(S_{1}^{* *}\left(g^{* *}\right)\right) \\
& =S_{k}^{* * *}\left(\Theta_{S(G)}(R)\right)\left(g^{* *}\right) .
\end{aligned}
$$

We say that a net of polynomials $\left(P_{\alpha}\right) \subset \mathcal{P}\left({ }^{k} E\right)$ is $\tau_{\mathrm{p}}^{\mathrm{b}}$-convergent to $P \in \mathcal{P}\left({ }^{k} E\right)$ if, for every $x^{* *} \in E^{* *}$, we have

$$
\widetilde{P}_{\alpha}\left(x^{* *}\right) \underset{\alpha}{\longrightarrow} \widetilde{P}\left(x^{* *}\right)
$$

for every $x^{* *} \in E^{* *}$. The subscript "p" stands for "pointwise" and the superscript "b" for "bidual".

Proposition 2.1. Let $S \in \mathcal{L}(G, E)$ and $P \in \mathcal{P}\left({ }^{k} E, F\right)$. The following assertions are equivalent:
(a) $\widetilde{P} \circ S^{* *}\left(G^{* *}\right) \subseteq F$;
(b) $\Theta_{G} \circ S_{k}^{*} \circ \rho_{k} \circ P^{*}$ is weak ${ }^{*}-$ to- $\tau_{\mathrm{p}}^{\mathrm{b}}$ continuous;
(c) $\Theta_{G} \circ S_{k}^{*} \circ \rho_{k} \circ P^{*}$ is $\mathrm{bw}^{*}-t o-\tau_{\mathrm{p}}^{\mathrm{b}}$ continuous.

Proof. (a) $\Rightarrow(\mathrm{b})$. Let $\left(f_{\alpha}^{*}\right) \subset F^{*}$ be a weak*-null net. Then, for all $g^{* *} \in G^{* *}$, we have

$$
\begin{aligned}
\Theta_{G} \circ S_{k}^{*} \circ \rho_{k} \circ P^{*}\left(f_{\alpha}^{*}\right)\left(g^{* *}\right) & =S_{k}^{* * *} \circ \Theta_{S(G)} \circ \rho_{k} \circ P^{*}\left(f_{\alpha}^{*}\right)\left(g^{* *}\right) \\
& =\Theta_{S(G)} \circ \rho_{k} \circ P^{*}\left(f_{\alpha}^{*}\right)\left(S^{* *}\left(g^{* *}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(f_{\alpha}^{*} \circ \widetilde{P}\right)\left(S^{* *}\left(g^{* *}\right)\right) \\
& =\left\langle\widetilde{P}\left(S^{* *}\left(g^{* *}\right)\right), f_{\alpha}^{*}\right\rangle \underset{\alpha}{\longrightarrow} 0
\end{aligned}
$$

since $\widetilde{P}\left(S^{* *}\left(g^{* *}\right)\right) \in F$.
(b) \Rightarrow (c) is obvious since bw^{*} is finer than the weak-star topology.
(c) \Rightarrow (a). Let $\left(f_{\alpha}^{*}\right) \subset F^{*}$ be a bw**null net. By the above calculations, we have for all $g^{* *} \in G^{* *}$:

$$
\left\langle\widetilde{P}\left(S^{* *}\left(g^{* *}\right)\right), f_{\alpha}^{*}\right\rangle \underset{\alpha}{\longrightarrow} 0,
$$

so $\widetilde{P}\left(S^{* *}\left(g^{* *}\right)\right) \in\left(F^{*}, \mathrm{bw}^{*}\right)^{*}=F[\mathrm{Me}$, Theorem 2.7.8].
Proposition 2.2. Let $Q \in \mathcal{P}\left({ }^{k} E\right)$ and $S \in \mathcal{D} \mathcal{P}(G, E)$. Then $\widetilde{Q} \in \mathcal{P}\left({ }^{k} E^{* *}\right)$ is weakstar continuous on $S^{* *}\left(B_{G^{* *}}\right)$.

Proof. We modify the proof of [GG1, Proposition 3.1]. Let $A:=S\left(B_{G}\right)$ which is an absolutely convex DP set in E. By [DFJP, Lemma 1], we can find a Banach space Z and an operator $j \in \mathcal{L}(Z, E)$ so that:
(a) $A \subseteq j\left(B_{Z}\right)$;
(b) $j^{* *}: Z^{* *} \rightarrow E^{* *}$ is injective and $j^{* *-1}(E)=Z$;
(c) $j\left(B_{Z}\right) \subseteq 2^{n} A+2^{-n} B_{E}$ for every $n \in \mathbb{N}$.

Using Goldstine's theorem, it is easy to check that $S^{* *}\left(B_{G^{* *}}\right) \subseteq j^{* *}\left(B_{Z^{* *}}\right)$. Let $\left(z_{\alpha}^{* *}\right) \subset B_{Z^{* *}}$ be a net such that weak*-lim $j^{* *}\left(z_{\alpha}^{* *}\right)=0$. Assume that $\left(z_{\alpha}^{* *}\right)$ is not weak-star null. Then every subnet has a weak-star Cauchy subnet, so this subnet must be weak-star convergent and its limit has to be 0 by the injectivity of $j^{* *}$. Therefore, the original net $\left(z_{\alpha}^{* *}\right)$ is itself weak-star null. So $B_{Z^{* *}}$ and $j^{* *}\left(B_{Z^{* *}}\right)$ are weak-star homeomorphic.

Let $\left(g_{\alpha}^{* *}\right) \subset B_{G^{* *}}$ be a net such that

$$
S^{* *}\left(g_{\alpha}^{* *}\right) \xrightarrow{\mathrm{w}^{*}} x^{* *} \in E^{* *} .
$$

Since $S^{* *}\left(B_{G^{* *}}\right)$ is weak-star compact, we can find $g^{* *} \in B_{G^{* *}}$ so that $x^{* *}=S^{* *}\left(g^{* *}\right)$. Let $z_{\alpha}^{* *} \in B_{Z^{* *}}$ with $S^{* *}\left(g_{\alpha}^{* *}\right)=j^{* *}\left(z_{\alpha}^{* *}\right)$ and $z^{* *} \in B_{Z^{* *}}$ so that $S^{* *}\left(g^{* *}\right)=j^{* *}\left(z^{* *}\right)$. By the above weak-star homeomorphism, we have weak ${ }^{*}-\lim z_{\alpha}^{* *}=z^{* *}$.

By (c), $j\left(B_{Z}\right)$ is a DP set (see the proof in [GG1, Proposition 3.1]). By [GG1, Proposition 3.6 and Theorem 3.5], the polynomial $Q \circ j$ is weakly continuous on bounded subsets of Z. By [ACG, Theorem 7.1], its Aron-Berner extension $\widetilde{Q} \circ j^{* *}$ is weak-star continuous on bounded sets of $Z^{* *}$, and

$$
\widetilde{Q} \circ S^{* *}\left(g_{\alpha}^{* *}\right)=\widetilde{Q} \circ j^{* *}\left(z_{\alpha}^{* *}\right) \underset{\alpha}{\longrightarrow} \widetilde{Q} \circ j^{* *}\left(z^{* *}\right)=\widetilde{Q} \circ S^{* *}\left(g^{* *}\right) .
$$

Corollary 2.3. Given a polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ and an operator $S \in \mathcal{D} \mathcal{P}(G, E)$ so that $\widetilde{P} \circ S^{* *}\left(G^{* *}\right) \subseteq F$, we have that \widetilde{P} is weak ${ }^{*}$-to-weak continuous on $S^{* *}\left(B_{G^{* *}}\right)$ and so the polynomial $\widetilde{P} \circ S^{* *}$ is weakly compact.

Proof. Consider the commutative diagram:

where k_{E} and k_{G} are the canonical isometric embeddings. Let $\left(g_{\alpha}^{* *}\right) \subset B_{G^{* *}}$ be a net and $g^{* *} \in B_{G^{* *}}$ so that

$$
S^{* *}\left(g_{\alpha}^{* *}\right) \xrightarrow{\mathbf{w}^{*}} S^{* *}\left(g^{* *}\right) .
$$

By Proposition 2.2, we have for all $f^{*} \in B_{F^{*}}$,

$$
\begin{gathered}
\left(f^{*} \circ \widetilde{P}\right)\left(S^{* *}\left(g_{\alpha}^{* *}\right)\right)=\widehat{f^{*} \circ P}\left(S^{* *}\left(g_{\alpha}^{* *}\right)\right) \\
\underset{\alpha}{\longrightarrow} \widetilde{f^{*} \circ P}\left(S^{* *}\left(g^{* *}\right)\right)=\left(f^{*} \circ \widetilde{P}\right)\left(S^{* *}\left(g^{* *}\right)\right) .
\end{gathered}
$$

Therefore,

$$
\widetilde{P}\left(S^{* *}\left(g_{\alpha}^{* *}\right)\right) \xrightarrow{\text { weak }} \widetilde{P}\left(S^{* *}\left(g^{* *}\right)\right) \quad \text { in } \quad F .
$$

Theorem 2.4. Let $S \in \mathcal{D P}(G, E)$ and $\left(P_{n}\right) \subset \mathcal{P}\left({ }^{k} E\right)$ be a sequence of polynomials such that, for every $g^{* *} \in G^{* *}$, we have $\widetilde{P_{n}} \circ S^{* *}\left(g^{* *}\right) \rightarrow 0$. Then we have

$$
\lim _{n} \sup _{g \in B_{G}}\left|P_{n} \circ S(g)\right|=0
$$

Proof. Assume the result fails. Then, passing to a subsequence if necessary, we can find a sequence $\left(g_{n}\right) \subset B_{G}$ and $\delta>0$ such that $\left|P_{n} \circ S\left(g_{n}\right)\right|>\delta$ for all $n \in \mathbb{N}$.
 P_{n}. Then,

$$
\left|A_{n}\left(S\left(g_{n}\right), \stackrel{(k)}{.}, S\left(g_{n}\right)\right)\right|>\delta \quad(n \in \mathbb{N})
$$

Since $S\left(B_{G}\right)$ is a DP set in the Banach space $\overline{S(G)}$, the sequence

$$
\left(A_{n}\left(S\left(g_{n}\right), \stackrel{(k-1)}{\cdots}, S\left(g_{n}\right), \cdot\right)\right)_{n=1}^{\infty}
$$

is not weakly null in $S(G)^{*}$. So, passing again to a subsequence if necessary, there are $x_{k}^{* *} \in S(G)^{* *}$ and $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|\widetilde{A_{n}}\left(S\left(g_{n}\right), \stackrel{(k-1)}{\cdots}, S\left(g_{n}\right), x_{k}^{* *}\right)\right|>\delta_{1} \quad(n \in \mathbb{N}) . \tag{4}
\end{equation*}
$$

Consider the operator $S_{1} \in \mathcal{L}(G, S(G))$. By [Me, Theorem 3.1.17], the operator

$$
S(G)^{*} \xrightarrow{S_{1}^{*}} G^{*}
$$

is injective, and the operator

$$
G^{* *} \xrightarrow{S_{1}^{* *}} S(G)^{* *}
$$

has weak-star dense range. Therefore, by the weak-star continuity of

$$
A_{n}\left(S\left(g_{n}\right), \stackrel{(k-1)}{\cdots}, S\left(g_{n}\right), \cdot\right)
$$

on $S(G)^{* *}$ and using (4), we can find $g_{k}^{* *} \in G^{* *}$ so that

$$
\left|\widetilde{A_{n}}\left(S\left(g_{n}\right), \stackrel{(k-1)}{\sim}, S\left(g_{n}\right), S^{* *}\left(g_{k}^{* *}\right)\right)\right|>\delta_{1} \quad(n \in \mathbb{N})
$$

Iterating the argument, the sequence

$$
\left(\widetilde{A_{n}}\left(S\left(g_{n}\right), \stackrel{(k-2)}{\cdots ?}, S\left(g_{n}\right), \cdot, S^{* *}\left(g_{k}^{* *}\right)\right)\right)_{n=1}^{\infty}
$$

is not weakly null in $S(G)^{*}$ so, passing to a subsequence if necessary, there are $x_{k-1}^{* *} \in S(G)^{* *}$ and $\delta_{2}>0$ such that

$$
\left|\widetilde{A_{n}}\left(S\left(g_{n}\right), \stackrel{(k-2)}{\because 2}, S\left(g_{n}\right), x_{k-1}^{* *}, S^{* *}\left(g_{k}^{* *}\right)\right)\right|>\delta_{2} \quad(n \in \mathbb{N})
$$

As above, we can find $g_{k-1}^{* *} \in G^{* *}$ so that

$$
\left|\widetilde{A_{n}}\left(S\left(g_{n}\right), \stackrel{(k-2)}{\sim}, S\left(g_{n}\right), S^{* *}\left(g_{k-1}^{* *}\right), S^{* *}\left(g_{k}^{* *}\right)\right)\right|>\delta_{2} \quad(n \in \mathbb{N})
$$

Proceeding up to the first variable, we can find $g_{1}^{* *} \in G^{* *}$ and $\delta_{k}>0$ so that

$$
\left|\widetilde{A_{n}}\left(S^{* *}\left(g_{1}^{* *}\right), \ldots, S^{* *}\left(g_{k}^{* *}\right)\right)\right|>\delta_{k} \quad(n \in \mathbb{N})
$$

By the polarization formula [Mu, Theorem 1.10], we obtain

$$
\begin{align*}
k!2^{k} \delta_{k} & <\left|\sum_{\epsilon_{j}= \pm 1} \epsilon_{1} \cdots \epsilon_{k} \widetilde{A_{n}} \circ S^{* *}\left(\epsilon_{1} g_{1}^{* *}+\cdots+\epsilon_{k} g_{k}^{* *}\right)^{k}\right| \\
& \leq \sum_{\epsilon_{j}= \pm 1}\left|\widetilde{A_{n}} \circ S^{* *}\left(\epsilon_{1} g_{1}^{* *}+\cdots+\epsilon_{k} g_{k}^{* *}\right)^{k}\right| \\
& =\sum_{\epsilon_{j}= \pm 1}\left|\widetilde{P_{n}} \circ S^{* *}\left(\epsilon_{1} g_{1}^{* *}+\cdots+\epsilon_{k} g_{k}^{* *}\right)\right| \quad(n \in N), \tag{5}
\end{align*}
$$

where we have used the notation

$$
\widetilde{A_{n}} \circ S^{* *}\left(g^{* *}\right)^{k}:=\widetilde{A_{n}}\left(S^{* *}\left(g^{* *}\right), \stackrel{(k)}{\left.\stackrel{1}{ }, S^{* *}\left(g^{* *}\right)\right)}\right.
$$

for $g^{* *} \in G^{* *}$. Since each summand of (5) tends to zero as n goes to ∞, we reach a contradiction.

Theorem 2.5. Given $S \in \mathcal{D} \mathcal{P}(G, E)$ and $P \in \mathcal{P}\left({ }^{k} E, F\right)$ with $B_{F^{*}}$ weak-star sequentially compact, assume that $\widetilde{P} \circ S^{* *}\left(G^{* *}\right) \subseteq F$. Then the polynomial $P \circ S$ is compact.

Proof. Suppose $P \circ S$ is not compact. Then its adjoint $S_{k}^{*} \circ P^{*}$ is not compact, so there is a sequence $\left(f_{n}^{*}\right) \subset B_{F^{*}}$ such that the sequence $\left(S_{k}^{*} \circ P^{*}\left(f_{n}^{*}\right)\right)_{n=1}^{\infty}$ does not have any convergent subsequence. By the weak-star sequential compactness of $B_{F^{*}}$, we can assume that $\left(f_{n}^{*}\right)$ is weak-star convergent. By linearity of $S_{k}^{*} \circ P^{*}$, we can assume that $\left(f_{n}^{*}\right)$ is weak-star null.

By passing to a subsequence if necessary, we can find a sequence $\left(g_{n}\right) \subset B_{G}$ and $\delta>0$ so that

$$
\begin{equation*}
\left|P^{*}\left(f_{n}^{*}\right)\left(S\left(g_{n}\right)\right)\right|=\left|S_{k}^{*} \circ P^{*}\left(f_{n}^{*}\right)\left(g_{n}\right)\right|>\delta \quad(n \in \mathbb{N}) \tag{6}
\end{equation*}
$$

Since $\widetilde{P} \circ S^{* *}\left(G^{* *}\right) \subseteq F$, Proposition 2.1 implies that $\Theta_{G} \circ S_{k}^{*} \circ \rho_{k} \circ P^{*}\left(f_{n}^{*}\right) \rightarrow 0$ pointwise on $G^{* *}$ so

$$
\widetilde{f_{n}^{*} \circ P}\left(S^{* *}\left(g^{* *}\right)\right)=\left(f_{n}^{*} \circ \widetilde{P}\right)\left(S^{* *}\left(g^{* *}\right)\right)=\Theta_{G} \circ S_{k}^{*} \circ \rho_{k} \circ P^{*}\left(f_{n}^{*}\right)\left(g^{* *}\right) \underset{n}{\longrightarrow} 0
$$

By Theorem 2.4 we have

$$
P^{*}\left(f_{n}^{*}\right)\left(S\left(g_{n}\right)\right) \underset{n}{\longrightarrow} 0
$$

in contradiction with (6).
Theorem 2.6. Let $P \in \mathcal{P}\left({ }^{k} E, F\right)$ be a polynomial such that $\widetilde{P}\left(E^{* *}\right) \subseteq F$. Then P is weakly continuous on DP sets of E.
Proof. Let $S \in \mathcal{D} \mathcal{P}(G, E)$. By Corollary 2.3, the polynomial $P \circ S$ is weakly compact. By [R2, Theorem 3.7], there are a reflexive Banach space Z, a polynomial $Q \in \mathcal{P}\left({ }^{k} G, Z\right)$ and an operator $U \in \mathcal{L}(Z, F)$ such that $P \circ S=U \circ Q$.

Let $X:=\overline{U(Z)} \subseteq F$ with embedding $i: X \hookrightarrow F$. Then X is weakly compactly generated [FHHMZ, page 575]. By [Di, Chapter XIII, Theorem 4], $B_{X^{*}}$ is weak-star sequentially compact. Denote by $U_{1} \in \mathcal{L}(Z, X)$ the operator given by $U_{1}(z):=U(z)$ for $z \in Z$.

Let $P_{1} \in \mathcal{P}\left({ }^{k} S(G), X\right)$ be the polynomial defined by $P_{1}(S(g)):=U_{1} \circ Q(g)$ for all $g \in G$.

We have $i \circ P_{1} \circ S=P \circ S$. Since Z is reflexive, we have $\widetilde{Q}\left(G^{* *}\right) \subseteq Z$, so $\widetilde{P_{1} \circ S}=\widetilde{P_{1}} \circ S^{* *}=U_{1} \circ \widetilde{Q}$ and $\widetilde{P_{1}} \circ S^{* *}\left(G^{* *}\right) \subseteq X$. By Theorem 2.5, the polynomial $P_{1} \circ S$ is compact. Hence, $P \circ S=i \circ P_{1} \circ S$ is compact. Since $S \in \mathcal{D} \mathcal{P}(G, E)$ is arbitrary, [GG1, Proposition 3.6] implies that P is weakly continuous on DP sets of E.

Corollary 2.7. Given a Banach space E and $k \in \mathbb{N}$, the following assertions are equivalent:
(a) E has the DPP;
(b) for every Banach space F, every polynomial $P \in \mathcal{P}\left({ }^{k} E, F\right)$ with $\widetilde{P}\left(E^{* *}\right) \subseteq F$ is completely continuous;
(c) every polynomial $P \in \mathcal{P}\left({ }^{k} E, c_{0}\right)$ with $\widetilde{P}\left(E^{* *}\right) \subseteq c_{0}$ is completely continuous.

Proof. (a) $\Rightarrow(\mathrm{b})$. If $\widetilde{P}\left(E^{* *}\right) \subseteq F$, Theorem 2.6 implies that P is weakly continuous on DP sets of E. Since E has the DPP, [GG1, Proposition 1.2] implies that P is weakly continuous on Rosenthal sets. By the comment preceding [GG1, Corollary 3.7], P is weakly uniformly continuous on Rosenthal sets and so P takes weak Cauchy sequences into norm convergent sequences.
(b) \Rightarrow (c) is obvious.
(c) \Rightarrow (a). Let $P \in \mathcal{P}\left({ }^{k} E, c_{0}\right)$ be a weakly compact polynomial. Then $\widetilde{P}\left(E^{* *}\right) \subseteq c_{0}$ so P is completely continuous. By [GG1, Theorem 3.14], E has the DPP.

3. The holomorphic DPP

Suppose now that E and F are complex Banach spaces. We denote by $\mathcal{H}_{\mathrm{b}}(E, F)$ the space of holomorphic mappings of bounded type from E into F, that is, every $f \in \mathcal{H}_{\mathrm{b}}(E, F)$ is bounded on bounded subsets of E. We refer the reader to Isidro's paper [I] for basic properties of this well-known space. Given $f \in \mathcal{H}_{\mathrm{b}}(E, F)$ with Taylor series expansion at the origin $f=\sum_{k=0}^{\infty} P_{k}$ where $P_{k} \in \mathcal{P}\left({ }^{k} E, F\right)$, f has F-valued Aron-Berner extension $\widetilde{f} \in \mathcal{H}_{\mathrm{b}}\left(E^{* *}, F\right)$ if and only if $\widetilde{P_{k}}$ is F-valued for all $k \in \mathbb{N}$ [GGMM, Theorem 3.3]. Using the arguments of [GV, §5], we obtain the following results:

Theorem 3.1. Given $f \in \mathcal{H}_{\mathrm{b}}(E, F)$ with F-valued Aron-Berner extension, f is weakly continuous on DP sets.
Corollary 3.2. A complex Banach space E has the DPP if and only if every $f \in$ $\mathcal{H}_{\mathrm{b}}(E, F)$ with F-valued Aron-Berner extension is completely continuous.

References

[An] K. T. Andrews, Dunford-Pettis sets in spaces of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
[AB] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24.
[ACG] R. M. Aron, B. J. Cole and T. W. Gamelin, Weak-star continuous analytic functions, Canad. J. Math. 47 (1995), 673-683.
[AS] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30.
[Ca] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), 359-372.
[CG] D. Carando and D. Galicer, Extending polynomials in maximal and minimal ideals, Publ. Res. Inst. Math. Sci. 46 (2010) 669-680.
[CL] D. Carando and S. Lassalle, Extension of vector-valued integral polynomials, J. Math. Anal. Appl. 307 (2005), 77-85.
[CGKM] Y. S. Choi, D. García, S. G. Kim, and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97-110.
[DG] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356.
[DFJP] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
[Di] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984.
[DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge 1995.
[DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI 1977.
[DGG] V. Dimant, D. Galicer, and R. García, Geometry of integral polynomials, M-ideals and unique norm preserving extensions, J. Funct. Anal. 262 (2012), 1987-2012.
[Di] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, Berlin 1999.
[FHHMZ] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Math., Springer, New York 2011.
[GGMM] P. Galindo, D. García, M. Maestre, and J. Mujica, Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55-76.
[GG1] M. González and J. M. Gutiérrez, Weakly continuous mappings on Banach spaces with the Dunford-Pettis property, J. Math. Anal. Appl. 173 (1993), 470-482.
[GV] J. M. Gutiérrez and I. Villanueva, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh 133A (2003), 549-566. See Corrigendum in [PVWY, §2].
[I] J. M. Isidro, Topological duality on the functional space $\left(H_{b}(U, F), \tau_{b}\right)$, Proc. Roy. Irish Acad. Sect. A 79 (1979), 115-130.
[Me] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Math. 183, Springer, Berlin 1998.
[Mu] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam 1986.
[PVWY] A. M. Peralta, I. Villanueva, J. D. Maitland Wright, and K. Ylinen, Quasi-completely continuous multilinear operators, Proc. Roy. Soc. Edinburgh 140A (2010), 635-649.
[R1] R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 373-379.
[R2] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190.
[Z] I. Zalduendo, Extending polynomials on Banach spaces-A survey, Rev. Un. Mat. Argentina 46 (2005), 45-72.

Dipartimento di Matematica, Facoltà di Scienze, Università di Catania, Viale Andrea Doria 6, 95125 Catania (Italy)

E-mail address: cilia@dmi.unict.it
Departamento de Matemática Aplicada, ETS de Ingenieros Industriales, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006 Madrid (Spain)

E-mail address: jgutierrez@etsii.upm.es

[^0]: 2010 Mathematics Subject Classification. Primary: 47H60. Secondary: 46G25, 46B03.
 Key words and phrases. Aron-Berner extension of polynomials, Dunford-Pettis property, completely continuous polynomials.

 Both authors were supported in part by Dirección General de Investigación, MTM2015-65825-P (Spain).

 The first named author was partially supported by GNSAGA (Italy).

