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1. Introduction

This booklet is a brief exposition of my lectures given at the summer school
MYSAGA 2018 at ITB - Bandung.

The aim of the lectures is to give a brief account on the problem of regularity
for linear elliptic PDEs of the second order. This goal is too ambitious to be covered
in a few lectures so we suggest the interested reader to study also some classical
books like [9], [16] or [8]. The focus is on divergence form equations and on the
minimal assumptions regarding the lower order terms. No smoothness assumption
is required to the leading coefficients.

I hope this can be of some utility to young researchers and PhD students and
anybody interested in the regularity theory for elliptic equations.

Any suggestion or warning about misprints and typos is welcome from every-
body. You may send your remarks to me by email.

I wish to thank all the organizers for the warm hospitality, nice atmosphere
and useful conversation I had with many interested students and colleagues. Special
thanks to Professor Hendra Gunawan, Denny Ivanal Hakim, Ifronika, Muh. Nur,
Nicky K. Tumalun and Harmanus Batkunde. Thanks to the other lecturers for
important opportunity to share common knowledge and new ideas. Thanks to all
the participants because without any of them and us the school could not happen.
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2. Linear Elliptic PDEs and Their Solutions

In this chapter we introduce linear elliptic partial differential equations and
several notions of solution. Indeed, classical solutions very often do not exist. For
this reason in the literature many different kind of solution have been introduced.
In particular we will focus on weak and very weak solutions.

2.1. Uniformly elliptic equations. Let us consider a partial differential equation
of the following kind

div(A(x)∇u) + b(x) · ∇u+ div(ud(x)) + V (x)u = f(x) + div g(x) (1)

in a given domain Ω ⊂ Rn where b, c, d, V , f and g are given measurable functions.
In general we are interested in the regularity properties of generalized solutions of an
equation like (1). In order to make sense to (1) we will make suitable assumptions
on the coefficients that we will make precise later. The simplest equations of the
kind (1) are Laplace equation ∆u = 0 and Poisson equation ∆u = f .

Let A be a n×n matrix with bounded and measurable entries {aij}. Although
it is not really needed, we will assume that the matrix is symmetric. In what follows
we also assume an important condition on the function A, the so called uniform
ellipticity condition.

Definition 2.1 (Ellipticity). We say that equation (1) is uniformly elliptic in Ω if
the following condition is satisfied

∃ν > 0 : ν|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ ν−1|ξ|2 ∀ξ ∈ Rn a.e. x ∈ Ω. (2)

Condition in Definition 2.1 is said uniform ellipticity because the ν does not
depend on x. To simplify the notation we will refer to Definition 2.1 as ellipticity
and the number ν will be called ellipticity constant. The prototype of elliptic
equations is Laplace equation.

2.2. Weak solutions and classical results. Since our interest is to allow dis-
continuity in the functions A and B we have to define what we mean by solution
of the equation (1). Indeed, under this generality, classical solutions do not exist.

Definition 2.2 (Weak Solution). Let us consider the elliptic equation (1) in a
domain Ω ⊂ Rn where b, c, d, V , f and g are given measurable functions. We say
that a function u ∈ W 1,2(Ω) is a weak solution of (1) if and only if the following
identity hold true∫

Ω

A(x)∇u∇ϕdx+

∫
Ω

b(x)ϕ∇u dx+

∫
Ω

d(x)u∇ϕdx+

∫
Ω

V (x)uϕdx

= −
∫

Ω

f(x)ϕdx+

∫
Ω

g(x)∇ϕdx ∀ϕ ∈W 1,2
0 (Ω). (3)

In the following A will be a symmetric elliptic matrix of bounded measurable
functions in Ω.

Moreover - to keep the exposition simple - we will set

V = 0 b = d = g = 0
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so the equation will contain only the leading term A and the known term f that
usually is an element of W−1,2(Ω)

Lu ≡ div(A(x)∇u) = f (4)

which is called variational (or divergence form) equation in principal part.

It is a very well known and classical result that if f ∈W−1,2(Ω) then a unique
weak solution exists. Indeed it is an easy consequence of Riesz representation
Theorem.

Once we know that the weak solution exists we would like to know if the
solution enjoys good regularity properties. The most outstanding classical result
about regularity is given by the Theorem of De Giorgi - Nash - Moser for linear
homogeneous elliptic equations (see [4], [18] and [19]).

Theorem 2.3 (De Giorgi - Nash - Moser). Any weak solution of the equation
Lu = 0 is α Hölder continuous in Ω. The exponent α is a function of n and ν only.
Moreover, for any ball BR0

(y) b Ω there exists a constant c = c(n, ν) such that the
following estimate holds true

osc
BR(y)

u ≤ c
(
R

R0

)α(
�
∫
BR0

(y)

|u|2 dx

)1/2

∀R < R0 .

Remark 2.4. Two very important points are the following.

1. The constant c does not depend on the solution. It depends on the operator
via its ellipticity constant ν.

2. We do not require any continuity assumption on the function A. Without
further notice the function A will be a bounded measurable function in Ω.

Theorem 2.3 is a very important result in the theory of elliptic PDEs and it
has been extended to several different kind of elliptic equations. It is one of the
fundamental tools to attack some classes of non linear problems.

If we focus on equation (4) and we want to allow unbounded and discontinuous
term f we are leaded to assume some integrability conditions. This has already
been done and now it is something that is considered as a classic in the theory of
regularity.

Before stating some classical results we focus on the following examples (see
the book [16]).

Example 2.5. The function

u(x) = log | log |x|| ∀0 < |x| < R < 1/e

for suitably small R is a weak solution of

∆u =
n− 2

|x|2 log |x|
− 1

|x|2 log2 |x|

We notice that the right hand side belongs to Lp for p < n/2. Moreover, the
solution is not locally bounded and then we cannot have any regularity on u.
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We can also exhibit the bad behavior of the Dirichlet problem when the
coefficients are not much integrable.

Example 2.6. The functions u(x) and v(x) = log | logR| for any R < 1/e are both
weak solutions of the Dirichlet problem{

∆u+ b · ∇u = 0 0 < |x| < R

u = log | logR| |x| = R

where b = −F (x) log |x|x and F (x) =
n− 2

|x|2 log |x|
− 1

|x|2 log2 |x|
so the Dirichlet

problem does not have uniqueness.

The following is a result that parallels De Giorgi Theorem and refers to
differential equation with lower order terms. We quote here a reduced version of
Stampacchia Theorem adapted to equation (4).

Theorem 2.7 (Stampacchia see [25]). Let f ∈ Lp(Ω) with p > n/2. Then any
weak solution of the equation (4) is Hölder continuous in Ω.

Previous examples and Stampacchia Theorem show that there exists an in-
tegrability threshold depending on dimension such that below the threshold there
is no regularity. Moreover, this phenomena does not depend on the smoothness of
the function A. Looking at the examples and Theorem 2.7 it seems that we can
have regularity if - and only if - the function f belongs to Lp with p > n/2. This is
true if we consider Lebesgue spaces as the only spaces where to put the coefficients
of our differential equation.

By using a different approach we will see that this can be improved very
much allowing a different family of spaces to be chosen as family of spaces where
to assume the coefficients of the equation.

2.3. Weak solutions and the modern results. The first result in a different
direction is contained in the paper by Aizenman & Simon (see [1]) where they
showed - by using probabilistic arguments - that the weak solutions of the equation

∆u+ V u = 0

are continuous. The assumption in [1] regarding V is the following

Definition 2.8 (Stummel-Kato class). Let V be an integrable function in Rn. Let

η(r) = sup
x∈Rn

∫
Br(x)

|V (y)|
|x− y|n−2

dy .

We say that V belongs to the Stummel - Kato classes S̃ or S if the function η is
bounded or infinitesimal in a neighborhood of zero respectively. The function η is
called the Stummel - Kato modulus of V . If Ω is a domain we say V ∈ S(Ω) or

V ∈ S̃(Ω) means V (x)χΩ(x) belongs to S or S̃ respectively. In the case n = 2,
log |x− y| replaces 1

|x−y|n−2 in the definition.
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In general it is not easy to check if a function belongs to these classes. In the
special case of radial functions we have the following result.

Theorem 2.9. (see [1]) Let V be a radial function in Rn. Then, V belongs to S
if and only if ∫

0+

r |V (r)| dr < +∞ .

Some years later - in 1986 - Chiarenza, Fabes & Garofalo (see [3]) gave ana-
lytic proof of Aizenman & Simon result for any uniformly elliptic equation

div(A(x)∇u) + V u = 0 (5)

assuming V in the Stummel - Kato class S(Ω).

Theorem 2.10 (Chiarenza Fabes Garofalo). Let u be a weak solution of the equa-
tion (5) in Ω ⊂ Rn, n ≥ 2. Let us assume V in the Stummel - Kato class S(Ω).
Then, any weak solution u is continuous in Ω.

To better understand Stummel - Kato class we introduce a family of function
spaces introduced by C.B.Morrey in [17] that will be very useful in the sequel. In
order these spaces to be more handy we will make the following assumption on the
boundary of the given domain Ω.

Definition 2.11 (Domain of type A). A domain Ω ⊂ Rn is said to be of type A if
for every x ∈ ∂Ω there exists a constant A > 0 such that

|Ω ∩Br(x)| ≥ A|Br(x)|

for any 0 < r < diam(Ω) and any x ∈ ∂Ω.

It is easy to realize that the geometric meaning of the Definition is to avoid
outward cusps.

Definition 2.12 (Morrey spaces - see [12]). Let f be a locally integrable function
in a type (A) domain Ω ⊂ Rn, 1 ≤ p < ∞ and 0 < λ < n. We say that f belongs
to the Morrey space Lp,λ(Ω) if

‖f‖pp,λ ≡ sup
x∈Ω

0<r<diamΩ

1

rλ

∫
Ω∩B(x,r)

|f(y)|p dy <∞.

There is a simple relation between Morrey spaces and the Stummel class.

Theorem 2.13 ([5] and [6]). The following inclusions hold true

Lp ⊂ S(Ω) p > n/2

and

L1,λ ⊂ S n− 2 < λ < n.

Moreover, the inclusions are strict.
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Proof. The first inclusion is a consequence of Hölder inequality∫
B(x,r)

|f(y)|
|x− y|n−2

dy ≤ ‖f‖p

(∫
B(x,r)

|x− y|(n−2)p′ dy

)1/p′

and the last integral is finite because p > n/2. In fact, evaluating it in polar
coordinates we get

η(r) ≤ c ‖f‖pr2−n/p.

To prove the second inclusion we use Hedberg trick (see [11]) and Hölder
inequality to obtain∫
B(x,r)

|f(y)|
|x− y|n−2

dy =

+∞∑
k=0

∫
B(x,r/2k)\B(x,r/2k+1)

|f(y)||x−y|2−n dy ≤ ‖f‖1,λ
+∞∑
k=0

( r
2k

)λ−n+2

where the series is convergent because λ > n− 2.

Finally we get

η(r) ≤ c ‖f‖1,λrλ−n+2

�

In view of the development of the theory a natural question then is: ”Can we
obtain better regularity results assuming f in suitable Morrey spaces?”

Morrey spaces are not so easy to handle as Lebesgue spaces are. Here follows
some negative properties.

1: Morrey spaces are not the closure of smooth functions.
2: Mollifiers do not converge in Morrey spaces.
3: The Morrey norm does not have the absolute continuity property i.e.
‖u‖Lp,λ(BR) is not infinitesimal with R.

4: For any 1 ≤ p < ∞ there exists a function u in Lp,λ such that u /∈ Lq for
any q > p.

Despite of that we will see that

1: Morrey spaces imply regularity.
2: If the function f has a sign they are also necessary for regularity.

In the following sections we will show that regularity can be obtained even if
the integrability of the coefficients is lower than the integrability required by the
classical theory.

3. Very weak solution and Green function

We will introduce a different definition of solution. It will be called very weak
solution and it is much more general than that of weak solution.

Our motivation for that is an important result due to Littman, Stampacchia
& Weinberger (see [15]) stating that equation (4) has a weak solution if and only
if f belongs to W−1,2(Ω). This is very important for us because in general Lp,λ is
not contained in W−1,2 and then weak solutions may not exist.
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3.1. Very weak solution. We introduce the definition of very weak solution as
in [25] and [15].

Definition 3.1 (Very weak solution). Let Ω be a bounded domain in Rn and let µ
be a bounded variation measure in Ω. A function u ∈ L1(Ω) is a very weak solution
of the Dirichlet problem {

Lu = µ in Ω

u = 0 on ∂Ω
(6)

if, for any ϕ ∈W 1,2
0 (Ω) ∩ C0(Ω) such that Lϕ ∈ C0(Ω), we have∫

Ω

uLϕdx =

∫
Ω

ϕdµ.

Remark 3.2. The class of test functions is non empty by De Giorgi and Stampac-
chia regularity Theorems.

Indeed, let ψ be a C0(Ω) given function. Then, there exists a Hölder con-

tinuous weak solution ϕ of the equation Lϕ = ψ so ϕ ∈ W 1,2
0 (Ω) and then ϕ ∈

C0(Ω) ∩W 1,2
0 (Ω).

Remark 3.3. Very weak solution is unique. Indeed, if u is a very weak solution
of the homogeneous problem {

Lu = 0 in Ω

u = 0 on ∂Ω

then u = 0. To show this, let ψ ∈ C0(Ω) and ϕ in W 1,2
0 (Ω) ∩ C0(Ω) such that

Lϕ = ψ. Since

∫
Ω

uLϕdx = 0 i.e.

∫
Ω

uψ dx = 0 for any continuous ψ, we have

u = 0 in Ω.

3.2. Green function. In this section we introduce a very important tool for linear
differential operators that is the Green function. Since our exposition follows closely
the paper [15] we first define the Green operator.

Let us consider the problem{
Lu = T in Ω

u = 0 on ∂Ω.
(7)

By the definition of very weak solution, there exists a linear application

G : W−1,2(Ω)→W 1,2
0 (Ω) (8)

defined by G(T ) = u. This is what we call the Green operator. Now, by the
local boundedness and the local Hölder continuity Theorems we have that (8) hold
true and for any T ∈W−1,2(Ω) the function

u = G(T )

is the unique weak solution in W 1,2
0 (Ω) of the Dirichlet problem (7).
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Theorem 3.4. For any bounded variation measure µ on Ω there exists a unique
solution of the equation Lu = µ that is zero on the boundary ∂Ω. Moreover it

belongs to W 1,p′

0 (Ω) for any p > n.

Moreover, the operator G maps continuously W−1,p(Ω) in C0(Ω). Indeed, if
p > n, by De Giorgi - Nash - Moser Theorem we have

G : W−1,p(Ω)→ C0(Ω)

and there exists c such that

max
Ω̄
|G(ψ)| ≤ c ‖ψ‖−1,p ∀ψ ∈W−1,p(Ω) .

Then, u is a very weak solution of Lu = µ vanishing on ∂Ω if and only if∫
Ω

uψ dx =

∫
Ω

G(ψ) dµ

for all ψ ∈ C0(Ω) and∣∣∣∣∫
Ω

uψ dx

∣∣∣∣ =

∣∣∣∣∫
Ω

G(ψ) dµ

∣∣∣∣ ≤ c∫
Ω

|dµ|‖ψ‖−1,p

for all ψ ∈ C0(Ω).

By density we have

‖u‖W 1,p′ ≤ c
∫

Ω

|dµ|

for p > n. The application µ 7→ u is the adjoint of G, i.e. u = G∗(µ).

Since
G : W−1,p → C0(Ω)

is continuous by duality we have that G∗ is also continuous from the space M of

the measures with bounded variation in Ω to W 1,p′

0 (Ω). For any µ ∈ M we have

G∗(µ) ∈W 1,p′

0 (Ω).

Now we are ready to compare the notions of weak and very weak solutions.

Theorem 3.5 (Littman - Stampacchia - Weinberger). Let Ω ⊂ Rn be a bounded
domain and µ be a bounded variation measure. Let u ∈ L1(Ω) be the very weak
solution of the Dirichlet problem (6). Then u is a weak solution if and only if
µ ∈W−1,2(Ω).

Proof. Let u be the unique weak solution in W 1,2
0 (Ω) of equation Lu = µ. We have∫

Ω

A(x)∇u∇φdx =

∫
Ω

φdµ ∀φ ∈W 1,2
0 (Ω)

and then, ∣∣∣∣∫
Ω

φdµ

∣∣∣∣ ≤ ν ‖∇u‖2‖∇φ‖2 ∀φ ∈W 1,2
0 (Ω)

which means that µ ∈W−1,2(Ω).

Now, if µ ∈W−1,2(Ω) there exist f0, f whose components are L2(Ω) functions
such that µ = f0 +div f. If Ω is bounded (which is our case) we may assume f0 = 0.
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Then we can say that equation Lu = div f has a weak solution by classical Hilbert
space approach. �

Definition 3.6 (Green function). If y ∈ Ω the Dirac mass at y, δy is a bounded
variation measure. Then we may consider the very weak solution g(·, y) of the
Dirichlet problem in the case µ ≡ δy. Such a function will be called the Green
function for the operator L with respect to the domain Ω with pole at y.

Remark 3.7. The Green function satisfies∫
Ω

g(x, y)Lϕ(x)dx =

∫
Ω

ϕ(x)dδy(x)

for all ϕ ∈ C0(Ω) ∩W 1,2
0 (Ω) such that Lϕ ∈ C0(Ω). Then, by definition of δy, we

have

ϕ(y) =

∫
Ω

g(x, y)Lϕ(x)dx .

It is worth to mention that the concept of Green function has been deeply
revisited in 1982 in a famous paper by Grüter & Widman. We summarize here
some of their results.

Theorem 3.8 (Grüter & Widman - see [10]). There exists a unique function G :
Ω× Ω \ {x = y} → R ∪ {∞} such that

1. G(x, y) ≥ 0 where it is defined.
2. For any y ∈ Ω and any r > 0 such that Br(y) ⊂ Ω the function G(·, y)

belongs to W 1,2(Ω \Br(y)) ∩W 1,1
0 (Ω).

3. The following relation holds true∫
Ω

A(x)∇xG(x, y)∇ϕdx = ϕ(y)

for all ϕ ∈ C∞0 (Ω). Moreover, if we set G(x) ≡ G(x, y), the function G
satisfies the following properties

4. G belongs to the space L
n/(n−2)
w (Ω) with bounds depending on the ellipticity

and dimension only.

5. ∇xG belongs to the space L
n/(n−1)
w (Ω) with bounds depending on the ellip-

ticity and dimension only.

6. G belongs to the space W 1,s
0 (Ω) for any 1 ≤ s < n

n− 1
with bounds depend-

ing on the ellipticity, dimension and the exponent s only.
7. There exists a positive constant c depending on the ellipticity and dimension

only such that G(x, y) ≤ c|x− y|2−n for all x, y ∈ Ω , x 6= y.
8. There exists a positive constant c depending on the ellipticity and dimension

only such that

G(x, y) ≥ c|x− y|2−n

for all x, y ∈ Ω such that 0 < |x− y| ≤ 1

2
d(y, ∂Ω) , x 6= y.
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Remark 3.9. The Green function defined in [15] and in [10] come in very different
ways.

We have the following result.

Theorem 3.10. The Green function g defined by Stampacchia and the one G
defined by Grüter & Widman are the same function.

Proof. If y ∈ Ω and % > 0 consider the family of functions

f%(x) ≡ |B%|−1χB%(y)(x)

where χI(x) denotes the characteristic function of the set I.

The set of solutions G%(x, y) of the problems{
Lu = f% in Ω

u = 0 on ∂Ω
(9)

is bounded in W 1,p
0 (Ω), 1 ≤ p < n/(n− 1) because of the estimate

‖G%(x, ·)‖1,p ≤ C‖f‖1 = C

due to [15]. Moreover it is easy to see that f% converges weakly∗ to the Dirac mass
i.e. ∫

Ω

ϕ(x)f%(x)dx→
∫

Ω

ϕ(x)dδ ∀ϕ ∈ C0(Ω) ∩ L∞(Ω).

Following [10] we select the sequence {G%k(x, y)} that converges weakly in W 1,p
0 (Ω)

(1 ≤ p < n/(n− 1)) to G(x, y) as k →∞. Moreover we may assume that G%k(x, y)
converges to G(x, y) in L1(Ω). The function G%k(x, y) is the variational solution,
and then the very weak one, of (12) with %k in place of % so that∫

Ω

G%k(x, y)Lϕ(x)dx =

∫
Ω

ϕ(x)f%k(x)dx ∀k ∈ N ∀ϕ ∈ TL.

Here we write TL to denote the class of test functions related to the operator L as
in the Definition 3.1.

Now if k → +∞ we get∫
Ω

G(x, y)Lϕ(x)dx =

∫
Ω

ϕ(x)dδy ∀ϕ ∈ TL

that is G(x, y) is the very weak solution of{
Lu = δy in Ω

u = 0 in ∂Ω.

By uniqueness of the very weak solution and the fact that g(x, y) satisfies to the
same problem it follows that

g(x, y) = G(x, y).

�
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3.3. Representation formula. In this section we will prove a representation by
using our knowledge about the Green function. The formula is going to be very
useful to prove our regularity results.

Indeed, let us consider ψ ∈ C0(Ω). Since C0(Ω) ⊂W−1,2(Ω) the problem{
Lϕ = ψ in Ω

ϕ = 0 on ∂Ω

has a unique weak solution that we call ϕ and it belongs to W 1,2
0 (Ω). By De Giorgi

Theorem we have ϕ ∈ C0(Ω). The Definition of very weak solution now yields∫
Ω

g(x, y)ψ(x)dx =

∫
Ω

ϕ(x)dδy(x)

i.e.

ϕ(y) =

∫
Ω

g(x, y)ψ(x)dx .

We can represent the very weak solution of the Dirichlet problem (6).

Theorem 3.11 (Representation formula). Let µ be a bounded variation measure
in a bounded domain Ω ⊂ Rn and let u ∈ L1(Ω) be the very weak solution of the
Dirichlet problem (6). Then, the following representation formula holds true

u(x) =

∫
Ω

g(x, y)dµ(y)

where g(x, y) is the Green function for the operator L with respect to Ω with pole
at y ∈ Ω.

Proof. Existence and uniqueness have already been proven. We simply verify the
formula. Let ϕ ∈W 1,2

0 (Ω) ∩ C0(Ω) be such that Lϕ ∈ C0(Ω). Then∫
Ω

ϕ(y)dµ(y) =

∫
Ω

(∫
Ω

g(x, y)Lϕ(x)dx

)
dµ(y)

=

∫
Ω

(∫
Ω

g(x, y)dµ(y)

)
Lϕ(x)dx

=

∫
Ω

u(x)Lϕ(x)dx

and then

∫
Ω

u(x)Lϕ(x)dx =

∫
Ω

ϕ(x)dµ(x) for any ϕ ∈W 1,2
0 (Ω) ∩ C0(Ω) such that

Lϕ ∈ C0(Ω) that is the result. �

Representation formula will give us important information about the regu-
larity of the very weak solution.

4. Regularity

In this section we apply what we know from previous sections to deduce
regularity properties of the very weak and weak solutions.
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4.1. Sufficient conditions for the regularity. In this section we give some suffi-
cient conditions for the regularity of the very weak solution of the Dirichlet problem{

Lu = f in Ω

u = 0 on ∂Ω.
(10)

First we recall the following Chiarenza–Frasca Theorem (see [2]) which is a
generalization of the Hardy – Littlewood maximal Theorem to the case of Morrey
spaces.

Theorem 4.1 (Chiarenza – Frasca). Let 1 < p < +∞ and 0 < λ < n. Then, there
exists a constant c which depend on n, p and λ such that

‖Mf‖Lp,λ ≤ c‖f‖Lp,λ .
If p = 1 we have the following weak type estimate

t| {y ∈ Br(x) : Mf(y) > t} | ≤ c rλ‖f‖L1,λ .

For 1 ≤ p ≤ +∞, 0 < λ < n the function Mf is finite for almost all x ∈ Rn. Here
M is the maximal Hardy – Littlewood operator.

It is convenient to give here the following Definition.

Definition 4.2 (Weak Morrey space). Let Ω ⊂ Rn, 1 ≤ p < ∞, 0 < λ < n. We
say that a locally integrable function f belongs to the weak Morrey space Lp,λw (Ω) if
there exists a constant c such that

tp|{x ∈ Ω : |f(x)| > t} ∩Br(x)| ≤ crλ ∀t > 0 .

Remark 4.3. It is quite simple to check that

Lp,λw (Ω) ⊂ Lq,λ(Ω) for any q such that 1 ≤ q < p .

Theorem 4.4 (Extra integrability of very weak solutions). Let 0 < λ < n − 2,
f ∈ L1,λ(Ω) and let u be the very weak solution of the Dirichlet problem (10). Then,
u ∈ Lpλ,λw (Ω) where the exponent pλ is given by the relation

1

pλ
= 1− 2

n− λ
.

As a consequence, u ∈ Lp(Ω) for any 1 ≤ p < pλ. Moreover, there exists c ≥ 0
such that ‖u‖Lp ≤ c ‖f‖L1,λ where c does not depend on u and f .

Proof. By the representation formula we have

|u(x)| ≤
∫

Ω

g(x, y) |f(y)|dy ≤ c
∫

Ω

|x− y|2−n|f(y)|dy

a.e. in Ω where g(x, y) is the Green function of L with respect to Ω with pole at
y ∈ Ω and c is a constant which depends on n and ν. Since Br(x) ⊂ B2r(x) ⊂ Ω
we have∫

Ω

|f(y)|
|x− y|n−2

dy =

∫
B2r(x)

|f(y)|
|x− y|n−2

dy +

∫
Ω\B2r(x)

|f(y)|
|x− y|n−2

dy ≡ I + II.
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We estimate the two integrals by using Hedberg trick (see [11]) and so we have

I =

∞∑
k=0

∫
B(x;r/2k−1)\B(x;r/2k)

|f(y)|
|x− y|n−2

dy ≤ c
∞∑
k=0

( r
2k

)2

Mf(x) = c r2Mf(x)

where Mf(x) is the Hardy-Littlewood maximal function of f at x ∈ Ω. Now
estimate II. We have

II =

∞∑
k=1

∫
r2k+1≤|x−y|<r2k

|f(y)|
|x− y|n−2

dy ≤ c
∞∑
k=0

(
2kr
)λ−n+2 ‖f‖1,λ = c rλ−n+2‖f‖1,λ .

Then, for any r > 0,∫
Ω

|f(y)|
|x− y|n−2

dy ≤ c
(
r2Mf(x) + rλ−n+2‖f‖1,λ−n+2

)
for r > 0. By taking the minimum of the right hand side we get∫

Ω

|f(y)|
|x− y|n−2

dy ≤ c (Mf(x))
1/pλ ‖f‖

2
n−λ
1,λ

so that

|u(x)| ≤ c ‖f‖
2

n−λ
1,λ (Mf(x))

1/pλ

a.e. in Ω and the result follows by Chiarenza - Frasca Theorem 4.1. �

We would like to point out that if λ→ n− 2 then pλ →∞. Because of that
we would expect that f ∈ L1,n−2(Ω) should imply u ∈ L∞(Ω). Unfortunately this
is not true as the following example shows.

Example 4.5. Let Ω = {x ∈ Rn : 0 < |x| < 1}, n ≥ 3. Then the very weak
solution of the Dirichlet problem∆u =

n− 2

|x|2
in Ω

u = 0 on ∂Ω

is the function u(x) = log |x |.

The example suggests that f ∈ L1,n−2 implies u ∈ BMO. This is indeed the
case as the following Theorem shows.

Theorem 4.6. If f ∈ L1,n−2(Ω) the very weak solution u of the Dirichlet prob-
lem (10) belongs to BMO locally in the following sense. Let Ω′ b Ω and d =
dist(Ω′, ∂Ω). Then, there exists a constant C ≡ C(n, ν, d) > 0 such that

�
∫
Br(x)

∣∣u(y)− uBr(x)

∣∣ dy ≤ C‖f‖1,n−2 .

for all 0 < r <
d

2
and x ∈ Ω′.
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Proof. For any x0 ∈ Ω′ and 0 < r < d/2 let us consider B ≡ Br(x0), B∗ ≡ B2r(x0)
and f1 = fχB∗ , f2 = f(1 − χB∗). Let us denote by u1 and u2 the very weak
solutions of the following Dirichlet problems{

Lu = f1 in Ω

u = 0 on ∂Ω

{
Lu = f2 in Ω

u = 0 on ∂Ω

respectively. By representation formula we have

u1(x) =

∫
Ω

g(x, y)f1(y)dy, u2(x) =

∫
Ω

g(x, y)f2(y)dy

and then

u1(x) + u2(x) =

∫
Ω

g(x, y)f(y)dy

so by uniqueness we get

u1 + u2 = u .

We perform separate estimates for u1 and u2. We first estimate u1.

�
∫
B

|u1(x)− u1B | dx ≤ 2|u1|B = 2�
∫
B

∣∣∣∣∫
Ω

f1(y)g(x, y)dy

∣∣∣∣ dx
≤ c�
∫
B

∫
B∗

|f(y)|
|x− y|n−2

dydx

= c

∫
B∗
|f(y)|

(
�
∫
B

|x− y|2−ndx
)
dy

≤ c

|B|

∫
B∗
|f(y)|

(∫
B2r(y)

|x− y|2−n dx

)
dy

= cr2−n
∫
B∗
|f(y)|dy ≤ c ‖f‖1,n−2

that is

�
∫
B

|u1 − u1B |dx ≤ c‖f‖1,n−2 .

We now estimate u2 by using the representation formula. Then we get

�
∫
B

|u2(x)− u2B |dx = �
∫
B

∣∣∣∣∣
∫

Ω\B∗
g(x, y)f(y)dy −

−�
∫
B

∫
Ω\B∗

g(z, y)f(y)dydz

∣∣∣∣∣ dx
= �
∫
B

∣∣∣∣∣
∫

Ω\B∗
f(y)

[
g(x, y)−�

∫
B

g(z, y)dz

]
dy

∣∣∣∣∣ dx
≤
∫

Ω\B∗
|f(y)|

(
�
∫
B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx) dy ≡ I + II
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where

I =

∫
(Ω\B∗)∩{y:|x0−y|≤d}

|f(y)|
(∫

B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx) dy
II =

∫
(Ω\B∗)∩{y:|x0−y|>d}

|f(y)|
(∫

B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx) dy .
To estimate I we note that g(·, y) is a weak solution of Lu = 0 in B and by De
Giorgi Theorem it is α-Hölder continuous for some 0 < α < 1. Let x∗ be a point

in B such that g(x∗, y) = �
∫
B

g(z, y) dz.

Then

�
∫
B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx = �
∫
B

|g(x, y)− g(x∗, y)| dx

≤ c

(
�
∫
B|x0−y|/2(x0)

g2(x, y)dx

) 1
2 (

2r

|x0 − y|

)α
.

Since g(·, y) is a positive weak solution we may apply Harnack inequality in
B|x0−y|/2(x0) and then

g(x, y) ≤ max
B|x0−y|/2(x0)

g(x, y) ≤ C min
B|x0−y|/2(x0)

g(x, y)

≤ Cg(x0, y) ≤ C|x0 − y|2−n .
By using the previous estimates we can bound the integral involving the Green
function

�
∫
B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx ≤ cn,ν |x0 − y|2−n−α rα

so we get

I ≤ c rα
∫

(Ω\B∗)∩{|x0−y|≤d}

|f(y)||x0 − y|2−n−αdy

= Crα
∞∑
k=1

∫
{2kr<|x0−y|≤2k+1r}∩{|x0−y|≤d}

|f(y)||x0 − y|2−n−αdy ≤ C‖f‖1,n−2 .

Now we estimate II.

II ≤
∫

(Ω\B∗)∩{|x0−y|>d}

|f(y)|
(
�
∫
B

∣∣∣∣g(x, y)−�
∫
B

g(z, y)dz

∣∣∣∣ dx) dy
≤ Cd2−n

∫
(Ω\B∗)∩{|x0−y|>d}

|f(y)|dy ≤ C‖f‖1,n−2 .

Indeed, by triangle inequality we have

|x0 − y| ≤ |x0 − x|+ |x− y| < r + |x− y|
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and then

|x− y| ≥ |x0 − y| − r >
d

2
∀x ∈ B.

�

Up to now we have shown regularity properties for the very weak solution
because in this generality weak solutions do not exist. If we want to obtain more
regularity we need to make the assumptions on f stronger.

So now we show a very useful inclusion relation to prove that, from now on,
the very weak solution is indeed the weak solution.

Theorem 4.7. We have S̃(Ω) ⊂W−1,2(Ω).

Proof. We show that there exists a positive constant c such that

|〈f, ϕ〉| ≤ c η(f) ‖∇ϕ‖2 ∀ϕ ∈ C∞0 (Ω).

Indeed, by using the Fefferman inequality we have

|〈f, ϕ〉| ≤
(∫

Ω

|f | dx
)1/2(∫

Ω

|f |ϕ2 dx

)1/2

≤ c
(∫

Ω

|f | dx
)1/2

sup
r>0

η(r) ‖∇ϕ‖2.

�

We remark that the previous was so quick because we have used the following
inequality that is very useful for many results in PDEs and it is of independent
interest.

Theorem 4.8. (see [27]) Let 1 < p < n, Ω be a bounded domain in Rn and V

belongs to the class S̃(Ω). Then there exists a constant c such that(∫
B

|V (x)||u(x)|2 dx
)1/2

≤ c η(2R)

∫
B

|∇u(x)|2 dx ∀u ∈ C∞0 (Ω) (11)

where R is the radius of a ball B ≡ BR, containing the support of u.

Proof. Since u is a smooth compactly supported function we use the following
elementary sub representation formula

|u(x)| ≤
∫
Rn

|∇u(y)|
|x− y|n−1

dy ≡
∫
Rn
|∇u(y)|k(x, y)dy (12)

from which it follows that∫
B

|V (x)||u(x)|2 dx ≤ c
∫
B

|V (x)||u(x)|
(∫

B

|∇u(ξ)|k(x, ξ)dξ

)
dx

= c

∫
B

|∇u(ξ)|
(∫

B

|V (x)||u(x)|k(x, ξ) dx

)
dξ

≤ c
(∫

B

|∇u(ξ)|2dξ
)1/2

(∫
B

(∫
B

|V (x)||u(x)|k(x, ξ) dx

)2

dξ

)1/2
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By considering the last integral we can write(∫
B

|V (x)||u(x)|k(x, ξ) dx

)2

≤
(∫

B

|V (x)|k(x, ξ) dx

)
×

×
(∫

B

|V (x)||u(x)|2k(x, ξ) dx

)
and then, we obtain∫

B

|V (x)||u(x)|2 dx ≤
(∫

B

|∇u(ξ)|2 dξ
)1/2

×

×
(∫

B

(∫
B

|V (z)|k(z, ξ) dz

)∫
B

|V (x)|k(x, ξ)|u(x)|2 dx dξ
)1/2

=

(∫
B

|∇u(ξ)|2 dξ
)1/2

×

×
∫
B

|V (x)||u(x)|2
∫
B

k(x, ξ)

(∫
B

|V (z)|k(z, ξ) dz

)
dx

≤
(∫

B

|∇u(ξ)|2 dξ
)1/2

×
(∫

B

η(R)|V (x)||u(x)|2 dx
)1/2

= η1/2(R)

(∫
B

|∇u(ξ)|2 dξ
)1/2(∫

B

|V (x)||u(x)|2 dx
)1/2

from which (11) easily follows. �

Now we prove a regularity result concerning boundedness of the weak solution.
Indeed, because of Theorem 4.7 the very weak solution is the weak one.

Theorem 4.9. If f ∈ S̃(Ω) then the weak solution u of (10) is bounded in Ω.

Proof. For any x ∈ Ω we have

|u(x)| ≤
∫

Ω

g(x, y)|f(y)|dy ≤ c
∫

Ω

|f(y)||x− y|2−ndy

≤ c sup
r>0

∫
Ω∩Br(x)

|f(y)||x− y|2−ndy .

�

Now we restrict our assumption on f and prove the result about the continuity
of the weak solution. The proof is inspired by the Theorem of Chiarenza – Fabes
and Garofalo in [3].

Theorem 4.10. If f ∈ S(Ω), then any weak solution u of equation Lu = f is
continuous in Ω.

Before giving the proof of Theorem 4.10 we recall two important results in
the form we need for our argument.
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Theorem 4.11 (Caccioppoli). Let u be a weak solution of the equation Lu = 0.
Then there exists a constant c = c(n, ν) such that∫

Ω

|∇u|2ϕ2 dx ≤ c
∫

Ω

u2|∇ϕ|2 dx ∀ϕ ∈ C∞0 (Ω).

Theorem 4.12 (Harnack). Let u be a non negative weak solution of equation
Lu = 0. Then there exists a constant c = c(n, ν) such that, for any ball B such
that 2B b Ω we have

sup
B
u ≤ c inf

B
u

Now we can prove Theorem 4.10 about the continuity of weak solutions.

Proof. Let η be the Stummel modulus of f . By the embedding the solution is weak
and by inclusion of S in S̃ it is also bounded.

We have ∫
Ω

A(x)∇u∇ψdx =

∫
Ω

f(x)ψ(x)dx

for all ψ ∈ C∞0 (Ω). If Br is a ball such that B4r b Ω let φ be a cut-off function
C∞0 (Ω) such that 0 ≤ φ ≤ 1 in Ω, φ ≡ 1 in B3r/2, φ ≡ 0 out of B2r. Then uφ is a
weak solutions of

L(uφ) = fφ− div (A(x)u∇φ)−A(x)∇u∇φ .

By representation formula we get

u(x)φ(x) =

∫
Ω

f(y)φ(y)g(x, y)dy+

+

∫
Ω

∇yg(x, y)A(y)u(y)∇φ(y)dy

−
∫

Ω

∇u(y)A(y)∇φ(y)g(x, y)dy .

For any x ∈ Br/2(x0)

u(x)− u(x0) =

∫
Ω

f(y)φ(y) (g(x, y)− g(x0, y)) dy

−
∫

Ω

A(y)∇u∇φ (g(x, y)− g(x0, y)) dy

+

∫
Ω

(∇gy(x, y)−∇gy(x0, y))A(y)u(y)∇φdy

≡ I + II + III
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First estimate I. Let N > 1 to be chosen later.

|I| ≤
∫

{y∈Ω:|x0−y|>N |x−x0|}

|f(y)φ(y) (g(x, y)− g(x0, y))| dy

+

∫
{y∈Ω:|x0−y|≤N |x−x0|}

|f(y)φ(y) (g(x, y)− g(x0, y))| dy

≡ A+B.

To estimate A we use the remarkable information that the Green function is a weak
solution outside the pole. This means that g(·, y) is α-Hölder continuous out of the
pole because of the De Giorgi Theorem and moreover it satisfies Harnack inequality
because it is a positive solution. Then the following inequality hold true

|g(x, y)− g(x0, y)| ≤ C
(
|x0 − x|

r

)α(
�
∫
Br

|g(x, y)|2dx
) 1

2

≤ CN−α max
x∈Br

g(x, y) ≤ CN−α min
x∈Br

g(x, y)

≤ CN−αg(x0, y) ≤ CN−α|x0 − y|2−n

and then

A ≤ CN−α
∫
B2r(x0)

|f(y)|φ(y)|x0 − y|2−ndy ≤ CN−αη(2r).

Now estimate B by using Theorem 3.8.

|g(x, y)− g(x0, y)| ≤ C
(

1

|x− y|n−2
+

1

|x0 − y|n−2

)
Then, due to the domain of integration,

B ≤ C
∫

|x0−y|≤N |x−x0|

|f(y)|
|x− y|n−2

dy +

∫
|x0−y|≤N |x−x0|

|f(y)|
|x0 − y|n−2

dy

≤ C
∫

|x−y|≤(N+1)|x−x0|

|f(y)|
|x− y|n−2

dy + η(N |x− x0|) ≤

≤ Cη((N + 1)|x0 − x|) + η(N |x− x0|)

By choosing now N =

(
r

|x− x0|

) 1
2

we get

|I| ≤
(
|x− x0|

r

)α/2
η(2r)+

+ η(
√
r|x− x0|) + η(

√
r|x− x0|+ |x− x0|) .

Now we estimate II and III.

II =

∫
B2r\B3r/2

(g(x, y)− g(x0, y))A(y)∇u∇ϕdy
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By De Giorgi Theorem there exists α ≡ α(n, ν) > 0 such that

|g(x, y)− g(x0, y)| ≤ c
(
|x− x0|

r

)α
1

|x0 − y|n−2

if y ∈ B2r \B3r/2, so that

|II| ≤ c

r

(
|x− x0|

r

)α ∫
B2r\B3r/2

|∇u|
|x0 − y|n−2

dy

≤ cr1−n
(
|x− x0|

r

)α ∫
B2r

|∇u|dy

and then

|II| ≤ c(n, ν)

(
|x− x0|

r

)α
r

(
�
∫
B2r

|∇u|2dy
) 1

2

.

Then, by Caccioppoli inequality

|II| ≤ c(n, ν)

(
|x− x0|

r

)α(
�
∫
B4r

|u|2dy
) 1

2

.

Finally we estimate III.

III =

∫
B2r\B3r/2

(∇gy(x, y)−∇gy(x0, y))A(y)∇ϕu(y)dy

By Cauchy Schwarz inequality and Caccioppoli inequality we have

|III| ≤ c

r

∫
B2r\B3r/2

|∇gy(x, y)−∇gy(x0, y)||u|dy

≤ c

r

(∫
B2r

|u|2dy
) 1

2

(∫
B2r\B3r/2

|∇gy(x, y)−∇gy(x0, y)|2dy

) 1
2

=
c

r2

(∫
B2r

|u|2dy
) 1

2

(∫
3
4 r<|x0−y|< 9

4 r

|g(x, y)− g(x0, y)|2dy

) 1
2

De Giorgi Theorem and pointwise estimates of Green function yield

|III| ≤ c
(
|x− x0|

r

)α(
�
∫
B2r

|u|2dy
) 1

2

Merging previous estimates we get

|u(x)− u(x0)| ≤ c

[
η(2r)

(
|x− x0|

r

)α/2
+ η(

√
r|x− x0|)

+ η(
√
r|x− x0|+ |x− x0|)

+

(
|x− x0|

r

)α(
�
∫
B2r

|u|2dy
) 1

2

]
→ 0

as x→ x0 because f ∈ S(Ω). �
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As L1,λ is contained in S we can hope better regularity if we assume f ∈ L1,λ,
λ > n− 2.

Theorem 4.13. If f ∈ L1,λ(Ω), n − 2 < λ < n, then any weak solution u of
Lu = f belong to C0,α(Ω) where α ≡ α(n, λ, ν, ‖f‖1,λ).

Proof. It is a refinement of the previous result because L1,λ is contained in S. In
order to show the result we use the fact that the function f belongs to the Morrey
space L1,λ with n− 2 < λ < n that implies the following estimate

η(r) ≤ c ‖f‖1,λrλ−n+2 .

By using the estimate we finally get

|u(x)− u(x0)| ≤ c ‖f‖1,λ

[(
|x− x0|

r

)α/2
rλ−n+2+

+
(√

r|x− x0|+ |x− x0|
)λ−n+2

]
+ c

(
|x− x0|

r

)α(
�
∫
B2r

|u|2dy
) 1

2

and then

|u(x)− u(x0)| ≤ c|x− x0|β

where

β =
1

2
min (λ− n+ 2, α)

where α is the Hölder exponent of the elliptic operator L arising from De Giorgi
Theorem. �

4.2. Necessary conditions for regularity. In this section we reverse the impli-
cation proven before under the additional assumption f ≥ 0 in Ω (see [7]).

We start with the result concerning Lp regularity.

Definition 4.14. Let 1 ≤ p ≤ ∞. The Schechter spaces Mp is the set of all
functions f ∈ L1(Ω) for which there exists δ > 0 such that

Mp,δ(f) ≡


(∫

Ω

(∫
Ω∩Bδ(x)

|f(y)|
|x−y|n−2 dy

)p
dx
) 1
p

if p <∞
sup
x∈Ω

∫
Ω∩Bδ(x)

|f(y)|
|x−y|n−2 dy, if p =∞

is finite. Local versions can be defined as usual. We say that f belongs to the local
Schechter space Mp

loc(Ω) if fχK ∈Mp(Ω) for any K b Ω.

Theorem 4.15. Let Ω be a bounded domain in Rn, n ≥ 3 and 1 ≤ p < q ≤ ∞
Then, M∞ ⊆Mq ⊆Mp

Theorem 4.16. Let f ∈ L1(Ω), f ≥ 0, 1 < p < ∞ and u ∈ L1(Ω) be the very
weak solution of the problem (10). Then, u ∈ Lploc(Ω) if and only if f ∈Mp

loc(Ω).
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Proof. Let K be a compact subset of Ω. Then, if u ∈ Lp(K) by representation
formula and the positivity of f we have∫

K

|u(x)|pdx =

∫
K

(∫
Ω

g(x, y)f(y)dy

)p
dx

≥
∫
K

(∫
{y∈Ω:|x−y|≥δ}

g(x, y)f(y)dy

)p
dx

≡
∫
K

|uδ(x)|pdx

where

uδ(x) ≡
∫
{y∈Ω:|x−y|≥δ}

g(x, y)f(y)dy , δ > 0 .

We have 0 ≤ uδ(x) ≤ u(x) for any δ > 0 and almost all x ∈ K. Thus, 0 ≤
u(x)− uδ(x) ≤ u(x) ∈ Lp(K) and then

lim
δ→0+

∫
K

|uδ(x)− u(x)|pdx = 0

that is

lim
δ→0+

∫
K

(∫
{y∈Ω:|x−y|<δ}

g(x, y)f(y)dy

)p
dx = 0 .

Now choose δ <
1

2
dist(K, ∂Ω) and apply Green function estimates to obtain

lim
δ→0+

∫
K

(∫
{y∈Ω:|x−y|<δ}

|x− y|2−nf(y)dy

)p
dx = 0 .

Thus, f ∈ Mp
loc(Ω). Let us assume now that f ∈ Mp

loc(Ω) and show that u ∈
Lploc(Ω). By representation formula we have

u(x) =

∫
{y∈Ω:|x−y|<δ}

f(y)

|x− y|n−2
dy

if we choose δ ≥ diamΩ. Meanwhile the integral belongs to Lp(K) for any K
compact subset in Ω by the definition of Scheter class Mp

loc(Ω). Thus u ∈ Lp(K)
for all compact sets K. �

Theorem 4.17. Let f ∈ L1(Ω), f ≥ 0 and u ∈ L1(Ω) be the very weak solution of

the problem (10). If f ∈ S̃loc(Ω) then u ∈ L∞loc(Ω).

Proof. We assume u to be locally bounded in Ω. Let K be a compact subset in Ω,
let x ∈ K and y ∈ Ω be such that |x− y| < δ ≤ 1

2dist(K, ∂Ω). By estimates on the
Green function we have∫
{y∈Ω:|x−y|<δ}

f(y)|x− y|2−ndy ≤ c
∫
{y∈Ω:|x−y|<δ}

f(y)g(x, y)dy ≤ c‖u‖L∞(K) .

�

Now we reverse the result about continuity of the weak solutions.
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Theorem 4.18. Let f ∈ L1(Ω), f ≥ 0 and u ∈ L1(Ω) be the very weak solution of
the problem (10). Then, u ∈ C0(Ω) if and only if f ∈ S(Ω).

Proof. We already know that S implies continuity of solution.

We show that if u ∈ C0(Ω) then f ∈ S(Ω). We apply Dini Theorem about
uniform convergence of sequences of continuous functions. If

uδ(x) =

∫
{y∈Ω:|x−y|≥δ}

f(y)g(x, y)dy

and x0 ∈ Ω, by estimates for the Green function we have

|f(y)||g(x, y)χBcδ(x)(y)− g(x0, y)χBcδ(x0)| ≤
c

δn−2
|f(y)| ∈ L1(Ω)

By Lebesgue dominated convergence Theorem we have

uδ(x)→ uδ(x0)

for δ > 0. Moreover, 0 ≤ uδ(x) ≤ u(x) and uδ → u everywhere in Ω.

Then, for K compact subset of Ω, since u is continuous the convergence is
uniform in K by Dini Theorem. Then

sup
x∈K

(u(x)− uδ(x)) = sup
x∈K

∫
{y∈Ω:|x−y|<δ}

f(y)g(x, y)dy → 0

and, if 0 < δ <
1

2
dist(K, ∂Ω), we have

sup
x∈K

∫
{y∈Ω:|x−y|<δ}

f(y)

|x− y|n−2
dy ≤ c sup

x∈K

∫
{y∈Ω:|x−y|<δ}

f(y)g(x, y)dy → 0.

�

Our next step is to show the necessary condition for the local Hölder conti-
nuity. The result will be achieved by a suitable Caccioppoli type inequality. First
we recall that the solution is the weak one. Indeed, it is locally bounded and then
f ∈ S̃(Ω) ⊂ W−1,2(Ω). For any Ω′ b Ω the function u is the weak solution of the

equation Lu = f and u ∈W 1,2
loc (Ω). Indeed, if fk denote the truncation of f at level

k we have 0 ≤ fk ≤ fk+1 ≤ f . Denote by uk the weak solution of the Dirichlet
problem {

Luk = fk in Ω

u = 0 on ∂Ω

i.e. ∫
Ω

A∇uk∇ϕdx =

∫
Ω

fkϕdx ∀ϕ ∈W 1,2
0 (Ω)

Now simply take ϕ = uk and get

‖∇uk‖2 ≤ ν ‖fk‖1‖uk‖∞ ≤ ν ‖f‖1‖u‖∞ .

Since uk weakly converges in W 1,p
0 (Ω) for 1 < p ≤ n

n−1 then a subsequence will

converge in W 1,2
0 so it converges to u in W 1,2

0 .
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Theorem 4.19 (Caccioppoli type inequality). Let f ∈ L1(Ω), f ≥ 0, and u ∈
L1(Ω) be the weak solution of the problem (10). Then, for any ball Br ⊆ B2r b Ω,
we have ∫

Br

|∇u(x)|2 dx ≤ C
{
rα
∫
B2r

f(x)dx+ rn−2+2α

}
.

Proof. Let η be a cut-off function η(x) = 1 in Br, 0 ≤ η(x) ≤ 1, |∇η| ≤ c

r
. We can

use ϕ ≡ η2(x)(u(x)− u2r) as a test function in the definition so we obtain∫
Ω

A∇u∇ϕdx =

∫
Ω

f(x)ϕ(x)dx ∀ϕ ∈W 1,2
0 (Ω).

We have ∫
Ω

A∇u
(
2η∇η(u− u2r) + η2∇u

)
dx =

∫
Ω

f(x)η2(x)(u− u2r)dx

and by ellipticity assumption

ν−1

∫
B2r

|∇u(x)|2η2(x)dx ≤ 2

∫
B2r

aijuxiηxjη(x)|u(x)− u2r|dx

+

∫
B2r

f(x)η2(x)|u(x)− u2r|dx .

Using the elementary inequality

0 ≤ 2ab ≤ εa2 +
1

ε
b2 ∀ε, a, b > 0

taking ε =
1

4ν2
we get

2

∫
B2r

A∇u∇ηη(x)|u− u2r|dx ≤ ν
∫
B2r

2|∇u||∇η|η(x)|u− u2r|dx

≤ νε
∫
B2r

|∇u|2η2(x)dx+ ν
1

ε

∫
B2r

|∇η|2|u− u2r|2dx

=
1

4ν

∫
B2r

|∇u|2η2(x)dx+ 4ν3

∫
B2r

|∇η|2|u− u2r|2dx

we have

ν−1

∫
B2r

|∇u|2η2(x)dx ≤ 1

4ν

∫
B2r

|∇u|2η2(x)dx

+ 4ν3

∫
B2r

|∇η|2|u(x)− u2r|2dx

+

∫
B2r

f(x)η2(x)|u(x)− u2r|dx
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that is ∫
B2r

|∇u|2η2(x)dx ≤ C
(∫

B2r

|∇η|2|u(x)− u2r|2dx

+

∫
B2r

f(x)η2(x)|u(x)− u2r|dx
)

and by Hölder continuity of the solution u we get the inequality. �

The following lemma will be very useful at the end of the proof.

Lemma 4.20 (Stampacchia). Let ω : [0, R]→ R be an increasing function. Let us
assume that there exist 0 < η, α < 1 and H > 0 such that

ω(r) ≤ η ω(4r) +H rα ∀r ≤ R .
Then, there exist 0 < λ < 1 and c ≥ 0 such that

ω(r) ≤ c rλ ∀r ≤ R .

Proof. Let a =
η + 1

2
and β such that η4β = a < 1. We show that λ = min(α, β).

Let M = sup
]R/4,R[

ω(%)

%λ
i.e. ω(%) ≤M%λ for any % ∈]R/4, R[ and n ∈ N be such

that
R

4n+1
≤ % < R

4n
.

By iteration we have

ω(%) ≤ ηω(4%) +H%α ≤ ηω(4%) +H%λ

≤ η
{
ηω(42%) +H(4%)λ

}
+H%λ

= η2ω(42%) +H%λ(1 + 4λη) ≤

≤ ηnω(4n%) +H%λ(1 + 4λη + (4λη)2 + · · ·+ (4λη)n−1) ≤

≤ ηnM(4n%)λ +H%λ
1

1− 4λη

= %λ
(

(4λη)nM +
H

1− 4λη

)
≤ %λ

(
M +

H

1− a

)
.

�

Remark 4.21. Since β = log4

a

η
→∞, if η → 0+ by suitable choose of β we may

assume that λ = α.

Now we are ready to show the necessary condition for Hölder continuity.

Theorem 4.22. Let f ∈ L1(Ω), f ≥ 0, and let 0 < α < 1 be such that the weak
solution u of the problem (10) belongs to C0,α(Ω). Then f ∈ L1,n−2+α(Ω).
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Proof. As in the previous result, the solution is the weak one because it is locally
bounded. Indeed, if the solution is locally bounded, the function f must belong to
S̃ and then to W−1,2(Ω). Now let ε be a positive number to be chosen later and
let Br ⊆ B4r b Ω.

If ϕ ∈ C∞0 (B2r) 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Br, using the elementary inequality

2ab ≤ εr−αa2 +
1

ε
rαb2 ,

we easily get ∫
Br

f(x)dx ≤
∫
B2r

f(x)ϕ(x)dx =

∫
B2r

aij(x)uxiϕxjdx

≤ εCr−α
∫
B2r

|∇u|2dx+
1

ε
rα
∫
B4r

|∇ϕ|2dx .

Now, by Caccioppoli inequality we obtain∫
Br

f(x)dx ≤ c
{
ε

∫
B4r

f(x)dx+ εrn−2+α +
1

ε
rn−2+α

}
that means ∫

Br

f(x)dx ≤ c ε
∫
B4r

f(x)dx+ cεr
n−2+α.

We can choose ε =
1

2c
and then by Stampacchia Lemma 4.20 there exists c such

that ∫
Br

f(x)dx ≤ c rn−2+α

�
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