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In this paper, we propose a semi-Lagrangian discontinuous Galerkin method coupled 
with Runge-Kutta exponential integrators (SLDG-RKEI) for nonlinear Vlasov dynamics. 
The commutator-free Runge-Kutta (RK) exponential integrators (EI) were proposed by 
Celledoni, et al. (FGCS, 2003). In the nonlinear transport setting, the RKEI can be used 
to decompose the evolution of the nonlinear transport into a composition of a sequence 
of linearized dynamics. The resulting linearized transport equations can be solved by 
the semi-Lagrangian (SL) discontinuous Galerkin (DG) method proposed in Cai, et al. 
(JSC, 2017). The proposed method can achieve high order spatial accuracy via the SLDG 
framework, and high order temporal accuracy via the RK EI. Due to the SL nature, 
the proposed SLDG-RKEI method is not subject to the CFL condition, thus they have 
the potential in using larger time-stepping sizes than those in the Eulerian approach. 
Inheriting advantages from the SLDG method, the proposed SLDG-RKEI schemes are mass 
conservative, positivity-preserving, have no dimensional splitting error, perform well in 
resolving complex solution structures, and can be evolved with adaptive time stepping 
sizes. We show the performance of the SLDG-RKEI algorithm by classical test problems for 
the nonlinear Vlasov-Poisson system, as well as the Guiding center Vlasov model. Though 
that it is not our focus of this paper to explore the SLDG-RKEI scheme for nonlinear 
hyperbolic conservation laws that develop shocks, we show some preliminary results on 
schemes’ performance on the Burgers’ equation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following two nonlinear Vlasov models. The first is the nonlinear Vlasov-Poisson system

ft + v fx + E(x, t) f v = 0, (1.1)

E(x, t) = −φx, −φxx(x, t) = ρ(x, t). (1.2)
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Here x and v are the coordinates in the phase space (x, v) ∈ �x × R; the electron distribution function f (x, v, t) is the 
probability distribution function describing the probability of finding a particle with velocity v at position x and at time 
t . The electric field E = −φx , where the self-consistent electrostatic potential φ is determined by Poisson’s equation (1.2). 
ρ(x, t) = ´

R f (x, v, t)dv − 1 denotes charge density, with the assumption that infinitely massive ions are uniformly dis-
tributed in the background. The second model is the guiding center Vlasov model which describes a highly magnetized 
plasma in the transverse plane of a tokamak [46,21]:

ρt + ∇ · (E⊥ρ) = 0, (1.3)

−�� = ρ, E⊥ = (−�y,�x), (1.4)

where the unknown variable ρ denotes the charge density of the plasma, and the electric field E depends on ρ via the 
Poisson equation. Both models can be written in the form of

ut + ∇ · (P(u;x, t)u) = 0, (x, t) ∈Rd × [0, T ], (1.5)

where u :Rd × [0, T ] →R, P(u; x, t) = (P1(u; x, t), · · · , Pd(u; x, t))T with Pi :R ×Rd × [0, T ] →R, i = 1, · · · , d are velocity 
fields that are u-dependent for nonlinear dynamics.

Popular mesh-based approaches for the above mentioned nonlinear transport models are the Eulerian and semi-
Lagrangian (SL) approaches. Eulerian methods are usually built by a spatial discretization coupled by a temporal time 
discretization of the partial differential equations via the method-of-lines approach; while SL methods are designed tak-
ing into account characteristics tracing. Despite the complication in building in the characteristics tracking mechanism, 
when properly designed, SL methods can circumvent the stringent C F L constraint in an Eulerian approach, thus achieve 
computational savings by taking larger time-stepping sizes. In particular, when performing a time integration of a system, 
one would take �t to be min(�tacc, �tstab), where �tacc stands for the time stepping size from accuracy consideration, 
while �tstab is the time stepping size from stability consideration. By working with the SL approach, �tstab could be greatly 
relaxed, so that one can take the time stepping size with accuracy consideration only, leading to computational savings by 
taking a larger time stepping size. The computational savings, result from a larger time stepping size, could become even 
more significant for a nonlinear model such as the guiding-center Vlasov model, where the dominant computational cost in 
a time step is the elliptic solver for the Poisson equation.

The semi-Lagrangian approach is becoming attractive in many application domains including the plasmas simulations 
[47,3,20,27,33], climate modeling [37,34], fluid mechanics [52,43,14,4,38], and kinetic modeling [24,28]. Besides the capa-
bility of large time step size, the scheme should also be high order and mass conservative for satisfying the demand for 
applications. Recently, a high order conservative SL finite difference WENO scheme is proposed in [41]; it can be applied for 
high dimensional problems via the dimensional splitting method. However, in the frame of the finite difference scheme, it 
is highly nontrivial to propose a high order conservative SL schemes without dimensional splitting error. Thus finite volume 
schemes or discontinuous Galerkin (DG) schemes are used as the spatial discretization of the semi-Lagrangian method since 
mass conservation can be assured conveniently. It is well known that the Runge-Kutta (RK) discontinuous Galerkin method 
(DG) [19] is popular for the problems (1.5) because of its low numerical dissipation, compactness, flexibility for boundary 
and parallel implementation, superconvergence, high resolution for discontinuities. Then semi-Lagrangian DG schemes are 
proposed for achieving the goal of overcoming the CFL condition constraint and inheriting as many good properties from 
DG as possible. There are two classes of SLDG methods: one is base on the weak Galerkin form from the upstream cells for 
which the mass conservation comes from proper trace of upstream elements [44,7], the other is base on the flux function, 
where the flux functions are evaluated following characteristics [43,42] and the mass conservation follows naturally from 
the unique definition of fluxes at element interfaces. The proposed method in this paper belongs to the first class. Recently, 
many SLDG schemes are proposed based on a dimensional splitting strategy (see [42,22,44,32,29,2,25] and the references 
therein). For problems (e.g. the guiding center Vlasov model), the dimensional splitting error of these schemes may dom-
inate the computational errors [10]. Because of this, the authors use a non-splitting SLDG algorithm in [7] for its mass 
conservation, up to third order spatial accuracy, compactness, non-oscillatory as well as positivity preserving (PP); we refer 
the reader to [43,48,35,5] for the references of other nonsplitting SLDG schemes. The formulation of the SLDG scheme in [7]
is similar in spirit to the characteristic Galerkin weak formulation in the ELLAM where the treatments of general boundary 
conditions are given [12,49,50,16]. For convergence and error analysis, the optimal convergence and superconvergence of 
SLDG schemes for linear convection equations in one space dimension are shown in [53]; the convergence of high order nu-
merical schemes is discussed in [26] for nonlinear Vlasov dynamics. Theoretical study of the proposed method for nonlinear 
dynamics will be the subject of our future investigation.

For the use of high order SL methods for nonlinear dynamic such as (1.5), the tracking of characteristics with high order 
temporal accuracy is still a nontrivial issue. Research efforts have been made to accurately track characteristics for nonlinear 
Vlasov dynamics [40]; yet the problem-dependent procedures become more and more complicated when higher order 
temporal accuracy is desired. On the other hand, a class of commutator-free Runge-Kutta (RK) exponential integrator (EI) 
are proposed in the context of SL schemes to solve the nonlinear convection-dominated problems [15]. The RKEI framework 
constructs schemes by decomposing the nonlinear dynamic process into a sequence of linearized linear solvers; and the high 
order temporal accuracy is achieved by matching order conditions. The RKEI schemes are represented in the form of Butcher 
2
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tableaus; as such, the schemes can be implemented in a black-box manner, as in implementing the RK time discretization 
in an Eulerian approach. In this paper, we propose to apply the SLDG algorithm for linear transport problems [7] to couple 
with the RKEI for nonlinear Vlasov dynamics. When the velocity field in a nonlinear problem is being linearized around 
the DG solution at that time step, the velocity field becomes discontinuous with jumps at element edges. If issues from 
discontinuous velocity field arise, one possible remedy is to apply smoothness-increasing accuracy-conserving filters as in 
[36,17] to DG solutions for the velocity field, which is one of our future directions to further pursue. Finally, we would 
like to mention an alternative approach in treating the nonlinearity in characteristics tracing. In [31,30], characteristics are 
approximated to a first order, where the error of such approximation is being taken into account by a correction term by 
the flux function.

The rest of this paper is organized as follows. In Section 2, we propose to couple the SLDG and RKEI method; in Section 3, 
the performance of the proposed method is shown through extensive numerical tests. Finally, concluding remarks are made 
in Section 4.

2. SLDG-RKEI schemes

In this section, we will present the proposed SLDG-RKEI method that combines the SLDG schemes [7] with the high 
order RKEI in [15] for solving nonlinear transport problems. We will first review the SLDG scheme for linear transport 
problems. To extend this SLDG solver for nonlinear transport problems, we start by illustrating a first order SLDG-RKEI 
scheme that updates the solution by using the SLDG to solve a linearized transport equation. In order to achieve high order 
accuracy in time, the SLDG is coupled with the high order RKEI that decomposes the nonlinear transport problem into a 
sequence of linearized transport equations. This section ends with the algorithm flowcharts of SLDG-RKEI with the adaptive 
time-stepping algorithm for the nonlinear Vlasov-Poisson and guiding center Vlasov systems.

2.1. The SLDG scheme for linear transport problems

We consider the general nonlinear transport equation in the form of (1.5) for two-dimensional problems in a rectangular 
domain �. For the scope of this paper, we only consider the problems with the periodic boundary conditions. In the special 
case when P(u; x, t) = (P1(x, y, t), P2(x, y, t)) does not depend on u, the model problem (1.5) is linear and can be evolved 
by the SLDG scheme [7] by accurately tracking characteristics with the velocity field P.

We partition the domain � by a set of non-overlapping tensor-product rectangular elements A j , j = 1, . . . , J , and define 
the finite dimensional DG approximation space, Vk

h = {vh : vh|A j ∈ Pk(A j)}, where Pk(A j) denotes the set of polynomials of 

degree at most k over A j = [xl
j, x

r
j] × [yb

j , y
t
j], where element centers and sizes are x j = xl

j+xr
j

2 , y j = yb
j +yt

j
2 , �x j = xr

j − xl
j , 

�y j = yt
j − yb

j respectively. In the SLDG framework, we let the test function ψ(x, y, t) satisfy the adjoint problem with 
� ∈ Pk(A j),®

ψt + P1(x, y, t)ψx + P2(x, y, t)ψy = 0,

ψ(t = tn+1) = �.
(2.1)

Here we adopt the scaled Legendre polynomials. For instance, for a P 2 polynomial, � varies the base in 
{

1, x−x j
�x j

, y−y j
�y j

,(
x−x j
�x j

)2 − 1
12 , (x−x j )(y−y j )

�x j�y j
, 
(

y−y j
�y j

)2 − 1
12

}
. Then, we have the identity

d

dt

ˆ

Ã j (t)

u(x, y, t)ψ(x, y, t)dxdy = 0, (2.2)

where Ã j(t) is the dynamic cell, moving from the Eulerian cell A j at tn+1, i.e., A j = Ã j(tn+1), backward in time by following 
the characteristics trajectories, see eq. (2.4). We denote Ã j(tn) as A	

j , i.e., the upstream cell bounded by the red curves in 
Fig. 2.1. The SLDG method is defined as follows. Given un ∈ Vk

h , we seek un+1 ∈ Vk
h , such that for ∀� ∈ Pk(A j), j = 1, . . . , J ,

ˆ

A j

un+1�dxdy =
ˆ

A	
j

unψ(x, y, tn)dxdy. (2.3)

To update un+1, we need to properly evaluate the right-hand side (RHS) of (2.3), the procedure of which we briefly review 
below. In particular, we only review P 1 SLDG with quadrilateral approximation; to achieve third order accuracy, one can 
use the quadratic-curved quadrilateral approximation and P 2 polynomial solution space, see [7] for more details regarding 
implementation. For completeness, the procedure of the quadratic-curved approximation is given in Appendix B.
3
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Fig. 2.1. Schematic illustration of the SLDG formulation in two dimension: quadrilateral approximation to an upstream cell. (For interpretation of the colors 
in the figures, the reader is referred to the web version of this article.)

1. Characteristics tracing. Denote cq , q = 1, · · · , 4 as the four vertices of A j with the coordinates (x j,q, y j,q). We trace 
characteristics backward in time to tn for the four vertices by numerically solving the characteristics equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx(t)
dt = P1(x(t), y(t), t),

dy(t)
dt = P2(x(t), y(t), t),

x(tn+1) = x j,q,

y(tn+1) = y j,q,

(2.4)

and obtain c	
q with the new coordinate (x	

j,q, y
	
j,q), q = 1, · · · , 4. For example, see c4 and c	

4 in Fig. 2.1. In our imple-
mentation, a fifth order Runge-Kutta method [6] is used for solving (2.4). The upstream cell A	

j can be approximated by 
a quadrilateral determined by the four vertices c	

q , which yields a second order approximation to sides of A	
j .

2. Evaluating the integrals over the upstream cells. Note that un is a piecewise polynomial based on the partition. Then 
the integral over A	

j has to be evaluated subregion-by-subregion. To this end, we denote A	
j,l as a non-empty overlapping 

region between the upstream cell A	
j and the background grid cell Al , i.e., A	

j,l = A	
j ∩ Al , A	

j,l 	= ∅, and define the index 
set ε	

j := {l|A	
j,l 	= ∅}, see Fig. 2.1 (b). The detailed procedure of detecting A	

j,l can be found in [7]. The integral over the 
upstream cell A	

j is broken up into the following integrals,
ˆ

A j

un+1�dxdy =
∑

l∈ε	
j

ˆ

A	
j,l

unψ(x, y, tn)dxdy. (2.5)

Furthermore, ψ(x, y, tn) is not a polynomial in general, posing additional challenges for evaluating the integrals on the 
RHS of (2.5). On the other hand, if the velocity field P is smooth, then ψ(x, y, tn) is smooth accordingly and can be well 
approximated by a polynomial. The following procedure is then proposed.
(a) Least-squares approximation of test function ψ(x, y, tn). We use a least-squares procedure to approximate the test 

function ψ(x, y, tn) by a polynomial, based on the fact that ψ stays constant along characteristics. In particular, for 
k = 1, we reconstruct a P 1 polynomial �	(x, y) by least-squares with the interpolation constraints

�	(x	
j,q, y	

j,q) = �(x j,q, y j,q), q = 1, . . . ,4.

Then,
∑

l∈ε	
j

ˆ

A	
j,l

unψ(x, y, tn)dxdy ≈
∑

l∈ε	
j

ˆ

A	
j,l

un�	(x, y)dxdy. (2.6)

(b) Line integral evaluation via Green’s theorem. Note that the integrands on the RHS of (2.6) are piecewise polynomials. To 
further simplify the implementation, we make use of Green’s theorem. We first introduce two auxiliary polynomial 
functions P (x, y) and Q (x, y) such that

−∂ P

∂ y
+ ∂ Q

∂x
= u(x, y, tn)�	(x, y).

Then area integral 
´

A	
j,l

un�	(x, y)dxdy can be converted into line integrals via Green’s theorem, i.e.,

ˆ

A	

u(x, y, tn)�	(x, y)dxdy =
˛

∂ A	

Pdx + Q dy, (2.7)
j,l j,l

4
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Fig. 2.2. Searching algorithm for outer (left) and inner (right) segments.

see Fig. 2.1 (b). Note that the choices of P and Q are not unique, but the value of the line integrals is independent 
of the choices. These line integrals are organized into line integrals along inner segments and outer segments, for 
which numerical quadrature rules are applied to evaluate the line integrals, see Fig. 2.2.

3. A positivity-preserving (PP) limiter [52,7] is added to preserve the positivity of the solution, e.g. for the Vlasov-Poisson 
system. It can be implemented as follows. The numerical solution u(x, y, tn) in the cell A j is modified by ũ(x, y),

ũ(x, y) = θ(u(x, y, tn) − u) + u, θ = min{
∣∣∣∣ u

m′ − u

∣∣∣∣ ,1},

where u is the cell average of the numerical solution and m′ is the minimum value of u(x, y, tn) over A j . Due to the PP 
limiter, the proposed conservative SLDG schemes can guarantee the L1 stability of the Vlasov-Poisson solution, and the 
proof follows a similar argument in [42].

Remark 2.1. Note that the upstream cell may be traced to a location out of the computational domain. For problems with the 
periodic boundary conditions, we define a set of ghost elements and fetch information from the other sides of the domain. 
For inflow type boundary condition, the SLDG scheme can be formulated accordingly over the boundary characteristics 
elements. General treatment of boundary conditions will be the subject of our future investigation.

Remark 2.2. To better approximate ψ(x, y, tn), one could use polynomials of degree higher than k by sampling more traced 
back points. In this paper, we found the least square approximation by the polynomial with the same order k sufficient.

2.2. SLDG for nonlinear models using Runge-Kutta exponential integrators

For a general nonlinear model in the form of (1.5), per time step evolution from tn to tn+1, if we freeze the velocity field 
P(u) at tn , the nonlinear problem is linearized around un as follows

ut + ∇ · (P(un)u) = 0. (2.8)

One can apply a SL scheme (e.g. the SLDG method described above) to the linearized model (2.8), for which we adopt the 
notation of SLDG(P(un), �t) for the update of solution from un to un+1, i.e.

un+1 = S LDG(P(un),�t)(un). (2.9)

Notice that due to the linearization of the velocity field P around un , there is a first order local truncation error in the 
temporal direction. To realize a high order temporal discretization, one could develop some strategies to track characteristics 
of the nonlinear dynamics, see [8] for nonlinear Vlasov-Poisson and [9] for the nonlinear guiding center Vlasov models. 
However, these strategies are problem-dependent and could be very algebraically involved for implementations. Here in this 
paper, we propose to adopt the RKEI scheme, which offers a unified framework and a black-box procedure for achieving 
high order temporal accuracy when coupled with the SLDG method for solving nonlinear problems. We will first review the 
RKEI to solve the ordinary differential equations (ODEs) [15]; then it is recognized that the exponential integrator for linear 
ODEs is equivalent to a semi-Lagrangian update of the solution for linear transport problems, if the spatial dimensions are 
kept continuous without numerical discretizations. With these observations, one can couple the high order RKEI with SLDG 
scheme for nonlinear dynamics.

Review of the RKEI for nonlinear ODE systems. Consider a nonlinear ODE model of size N in the form of

dY (t) = C(Y )Y , Y (t = 0) = Y0, (2.10)

dt

5
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Table 2.1
A Butcher tableau for RKEI method, where aik = ∑ J (i)

l=1 αk
i,l and bk =

∑ Jn+1

l=1 βk
l , which merges J (i) rows into one row in each stage i.

c A

b

where C(Y ) is a matrix-value function of size N × N that may depend on the solution Y (t). In each time step, if we freeze 
C(Y ) at C(Y n), then we have a linearized problem dY (t)

dt = C(Y n)Y
.= CnY , for which one can apply an exponential integrator 

to update the solution from Y n to Y n+1 with a first order local truncation error:

Y n+1 = exp(Cn�t)Y n. (2.11)

To improve the accuracy of the above first order scheme, a class of commutator-free exponential integrators can be used. 
The idea is to achieve high order temporal accuracy via taking composition of a sequence of linear solvers by freezing 
coefficients, which can be explicitly computed as a linear combination of C(Y ) from previous RK stages. In particular, the 
algorithm flowchart for the RKEI method is summarized as follows.

Algorithm 1: The commutator-free RKEI method [15].
p = Y n

for r = 1 : s do
Yr = exp(�t

∑
k αk

r J (r) C(Yk)) · · · exp(�t
∑

k αk
r1C(Yk))p

end
Y n+1 = exp(�t

∑
k βk

J C(Yk)) · · · exp(�t
∑

k βk
1 C(Yk))p

Here J (r) represents the number of exponentials one has to take per RK stage. The RKEI method can be represented by 
the Butcher tableau in Table 2.1. It is shown, in [13] by matching order conditions, that Butcher tableaus of many first and 
second order RK methods give the RKEI methods of the same order; but for third order RKEI method J for some RK stages 
must be at least 2. In this paper, we will also consider some other Butcher Tableaus from [15,13] as listed in Appendix A.

Example 2.3. A simple example is a first order exponential integrator, which is represented in Table 2.2.

Table 2.2
CF1 [39].

0 0

1

It gives a simple first order method for the nonlinear model (1.5),

Y (1) = Y n

Y n+1 = exp
Ä
�tC(Y (1))

ä
Y n. (2.12)

A third order RKEI method in [13] can be represented by the following Butcher tableau, 

Table 2.3
CF3G.

0
1
2

1
2

1 -1 2
1

12
1
3 - 1

4
1

12
1
3

5
12

with which, the RKEI scheme for the nonlinear ODE system (2.10) reads

Y (1) = Y n

Y (2) = exp
Å

1

2
�tC(Y (1))

ã
Y n

Y (3) = exp
Ä
�t(−C(Y (1)) + 2C(Y (2)))

ä
Y n
6



X. Cai, S. Boscarino and J.-M. Qiu Journal of Computational Physics 427 (2021) 110036
Y n+1 = exp
Å

�t(
1

12
C(Y (1)) + 1

3
C(Y (2)) + 5

12
C(Y (3)))

ã
exp

Å
�t(

1

12
C(Y (1)) + 1

3
C(Y (2)) − 1

4
C(Y (3)))

ã
Y n.

SLDG-RKEI for nonlinear transport problems. It was recognized in [13] that the SL update of the solution (2.9) of a lin-
earized transport problem is equivalent to applying the exponential integrator to the linearized ODE system (2.11), as both 
of the methods evolve the differential equation exactly for a time step. Thus, the high order RKEI method developed in [15]
can be systematically coupled with the SLDG scheme described above for solving nonlinear dynamics (1.5) in a black-box 
manner. In particular, a first order RKEI scheme with Butcher tableau (2.2) gives rise to a first order scheme (2.9); and a 
third order RKEI scheme with Butcher tableau (2.3) coupling with the SLDG scheme reads as

u(1) = un

u(2) = S LDG
Å

1

2
P(u(1)),�t

ã
un

u(3) = S LDG
Ä
−P(u(1)) + 2P(u(2)),�t

ä
un

un+1 = S LDG
Å

1

12
P(u(1)) + 1

3
P(u(2)) + 5

12
P(u(3)),�t

ã
S LDG

Å
1

12
P(u(1)) + 1

3
P(u(2)) − 1

4
P(u(3)),�t

ã
un. (2.13)

The scheme is named as “SLDG-CF3G” for short. The scheme is of high order accuracy in both space and time.

2.3. Algorithm flowchart for nonlinear transport problems

Below we summarize the flowchart of the SLDG-RKEI method for the nonlinear transport problems, such as the nonlinear 
Vlasov-Poisson and the guiding center Vlasov systems. We borrow notations for RKEI schemes from Algorithm 1.

Algorithm 2: SLDG-RKEI algorithm to update solution from tn to tn+1 for nonlinear transport problems in the form 
of (1.5).

for r = 1 : s
• Let u[1] = un , and P(u(r)) be the velocity field P(u) frozen at the stage r.
for l = 1 : J (r)

• u[l+1] = SLDG(
∑

k αk
rlP(u(k)), �t)u[l].

end
• Let u(r) = u[ J (r)+1] .

end
• Let u[1] = un .
for l = 1 : J

• u[l+1] = SLDG(
∑

k βk
l P(u(k)), �t)u[l].

end
• un+1 = u[ J+1] .

We make the following two remarks on the flow chart for the Vlasov-Poisson system (1.1) and the guiding center Vlasov 
model (1.3) applications.

1. To freeze the velocity field, one can apply an LDG method in [1,18,11,44] for (1.2) and (1.4), respectively. The resulting 
velocity fields are discontinuous. In this paper, we take the average of the velocity field in tracking characteristics. A post-
processing technique [45] could be added for smoothing the discontinuous velocity field, for which we plan to explore in 
the future.

2. In [9], an adaptive time-stepping algorithm is introduced for the systems (1.1) and (1.3), based on controlling the L∞
norm of relative deviation of upstream cells’ area. This adaptive time-stepping algorithm is summarized as Algorithm 3
below and can be applied to each RK stage of the SLDG-RKEI algorithm in order to adaptively choose time stepping sizes.

3. Numerical results

3.1. Nonlinear Vlasov dynamics

In this section, we present numerical results of the SLDG-RKEI for the nonlinear Vlasov-Poisson system and the Guiding 
center Vlasov model. Unless otherwise noted, we use the following notations: the SLDG method with P k polynomial basis is 
7
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Algorithm 3: Adaptive Time-Stepping Algorithm in an SLDG-RKEI method.
Let A j be an Eulerian cell and A	

j be its upstream cell in a stage of the SLDG-RKEI scheme.

Compute θ = max j

∣∣∣∣ area
Ä

A	
j

ä
−area

(
A j

)
area

(
A j

) ∣∣∣∣.
Let δM and δm be prescribed thresholds for decreasing and increasing C F L number. In our simulations, δM = 1% and δm = 0.05%.

if θ > δM , then iref ine = 1 we decrease C F L (e.g. C F L = max(C F L − 1, C F Lmin)), and restart the SLDG-RKEI scheme with the updated CFL.
else if θ < δm , then iref ine = 0, we increase C F L (e.g. C F L = min(C F L + 1, C F Lmax)) and restart the SLDG-RKEI scheme with the updated CFL.
else Continue.
end if

Table 3.4
Strong Landau damping. T = 0.5. Use the time reversibility of the VP system. 
Order of accuracy in space for Pk SLDG(-QC)+CF3C03 scheme, k = 1, 2. We 
set C F L = 0.1 so that the spatial error is the dominant error.

Mesh L1 error Order L2 error Order L∞ error Order

P 1 SLDG+CF3C03
322 5.88E-04 1.21E-03 1.18E-02
642 1.50E-04 1.97 3.17E-04 1.94 3.49E-03 1.76
962 6.67E-05 1.99 1.42E-04 1.97 1.61E-03 1.91
1282 3.76E-05 2.00 8.06E-05 1.98 9.19E-04 1.95
1602 2.41E-05 2.00 5.17E-05 1.99 5.93E-04 1.97

P 2 SLDG+CF3C03
322 9.59E-05 2.18E-04 1.95E-03
642 2.43E-05 1.98 5.57E-05 1.97 5.05E-04 1.95
962 1.09E-05 1.98 2.50E-05 1.98 2.26E-04 1.99
1282 6.15E-06 1.99 1.41E-05 1.98 1.27E-04 1.99
1602 3.94E-06 1.99 9.07E-06 1.99 8.15E-05 2.00

P 2 SLDG-QC+CF3C03
322 3.69E-05 8.39E-05 1.09E-03
642 4.39E-06 3.07 1.03E-05 3.03 1.38E-04 2.98
962 1.28E-06 3.04 3.02E-06 3.02 4.09E-05 3.00
1282 5.37E-07 3.02 1.27E-06 3.01 1.71E-05 3.03
1602 2.74E-07 3.02 6.50E-07 3.01 9.97E-06 2.42

denoted as Pk SLDG; we use the notation without or with -QC to denote quadrilateral or quadratic-curved (QC) quadrilateral 
approximation to upstream cells. We set the time step as

�t = C F L
a

�x + b
�y

, (3.1)

where a and b are maximum transport speeds in x- and y-directions, respectively. For CPU time comparison, all simulations 
are performed on a computer with Intel® Xeon® CPU E5-2660 v3 @ 2.60 GHz.

Example 3.1 (VP system: strong Landau damping). Consider strong Landau damping for the VP system with the initial condition 
being a perturbed equilibrium

f (x, v, t = 0) = 1√
2π

(1 + α cos(kx)) exp

Ç
− v2

2

å
, (3.2)

where α = 0.5 and k = 0.5. The computational domain is [0, 4π ] × [−2π, 2π ]. This problem has been numerically investi-
gated by several authors, e.g. see [51,54,30].

In Table 3.4, we first test the spatial convergence of the SLDG methods with the third order temporal scheme, CF3C03, 
whose Butcher tableau is presented in the Appendix A. The well-known time reversibility of the VP system [23] is used 
to test the order of convergence. In particular, one can integrate the VP system forward to some time T , and then reverse 
the velocity field of the solution and continue to integrate the system by the same amount of time T . Then, the solution 
should recover the initial condition with reverse velocity field, which can be used as a reference solution. We show the L1, 
L2, and L∞ errors and the corresponding orders of convergence for P k SLDG(-QC)+CF3C03 scheme, k = 1, 2 with C F L = 0.1
in Table 3.4. We observe the second order convergence for P 1 SLDG scheme; we observe a second order convergence for 
P 2 SLDG scheme with quadrilateral approximation to upstream cells, and a third order convergence for the P 2 SLDG-QC 
scheme.

We then test the temporal convergence of different temporal schemes by the strong Landau damping test case integrated 
to T = 5. In order to minimize the errors from the spatial discretization, we adopt the P 2 SLDG-QC scheme with a fixed 
8
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Fig. 3.3. Plots of error versus the C F L number (left) and error versus CPU (s) (right) for solving strong Landau damping at T = 5. Temporal order of con-
vergence in L1 norm of P 2 SLDG-QC scheme with various temporal schemes (denoted as P 2 SLDG-QC+temporal scheme) and Q 2 SLDG-split by comparing 
numerical solutions with a reference solution from the corresponding scheme with C F L = 0.1. The mesh of 160 × 160 is used. P 2 SLDG-QC+time3-E is P 2

SLDG-QC with the third order prediction correction method in [8]. Q 2 SLDG-split is the Q 2 SLDG with the Strang splitting in [10]. The Butcher tableaus of 
CF1, CF2, CF2L, CF3G, CF3, CF0C09, CF3C03 can be found in the previous section and the Appendix A.

mesh of 160 × 160 cells. The reference solution is computed by the P 2 SLDG-QC scheme with the same mesh but using 
a small C F L = 0.1. We report plots of L1 error versus the C F L number and L1 error versus CPU cost of different RKEI 
methods in Fig. 3.3. We make the following observations: (1) Expected temporal orders of convergence are observed for 
various SLDG-RKEI method. There is a plateau region for third order temporal schemes for CFL ranging from 5 to 10, for 
which we think is due to the interaction between spatial and temporal errors. (2) C F Ls can be taken to be as large as 50, 
which is much larger than that for an Eulerian RKDG method, whose C F L upper bound is 1/(2k +1) with k being the degree 
of the polynomial. (3) The error versus CPU plot is closely related to the error versus CFL plot, as the CFL number is linearly 
related to the number of time steps taken. When the CFL number is relatively large and the temporal errors dominate, we 
find that the schemes with higher-order temporal accuracy more efficient than the lower order ones; (4) For comparison, we 
plot results from the SLDG method coupled with a predictor-corrector way of tracking characteristics [8]. It is observed that 
third order temporal accuracy is numerically achieved for all third order time integrators; error magnitudes from SLDG-RKEI 
schemes are observed to be smaller. (5) To show the high order of convergence of the SLDG without operator splitting, the 
results of the Q 2 SLDG method with the Strang splitting method in [10] are presented. We observe that Q 2 SLDG-split is 
subject to the second order splitting error, while we observe the third order of convergence for the proposed schemes with 
the third order temporal methods. On the other hand, the CPU cost of the splitting algorithm is lower than that of the 2D 
algorithm.

There are several conserved quantities in the VP system which should remain constant in time. These include the L p

norm, kinetic energy and entropy:

• Lp norm, 1 ≤ p ≤ ∞:

‖ f ‖p =
Ñˆ

v

ˆ

x

| f (x, v, t)|p dxdv

é 1
p

, (3.3)

• Energy:

Energy =
ˆ

v

ˆ

x

f (x, v, t)v2dxdv +
ˆ

x

E2(x, t)dx, (3.4)

• Entropy:

Entropy =
ˆ

v

ˆ

x

f (x, v, t) log( f (x, v, t))dxdv. (3.5)

In Fig. 3.4, we plot the time evolution of the relative deviation of L1 and L2 norms of the solution as well as the discrete 
kinetic energy and entropy. Here we choose to present only a few representative RKEI schemes and run our simulations 
9
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Fig. 3.4. Strong Landau damping. Time evolution of the relative deviation of L1 (upper left) and L2 (upper right) norms of the solution as well as the 
discrete kinetic energy (lower left) and entropy (lower right). We use a mesh of 160 × 160 cells and C F L = 10. P 2 SLDG-QC+time3-E is P 2 SLDG-QC with 
the third order prediction correction method in [8].

with C F L = 10. A few observations can be made: (1) due to the truncation of the velocity domain, the error for the relative 
deviation of L1 norm is on the order of 10−9; (2) the SLDG with higher degree polynomial does a better job in conserving 
these physical norms than the SLDG with lower degree polynomial; (3) there is little difference in the performance of 
preserving norms for the Pk SLDG with various same order temporal scheme including the prediction-correction method. In 
Fig. 3.5, we present the surface plots of the solutions at T = 40 computed by P k SLDG (k = 1, 2) with the mesh of 160 ×160
elements. The numerical solution of P 2 SLDG outperforms that of P 1 SLDG in terms of resolution.

Example 3.2 (VP system: Landau damping). In this example, we assess the optimal convergence and superconvergence prop-
erty of the 2D SLDG scheme. We first consider weak Landau damping for the VP system. The initial condition is the same 
as the strong one (3.2), but with a smaller perturbation parameter α = 0.01. In this example, we show the optimal and 
superconvergence of SLDG scheme for the VP system. We first recall the optimal convergent and superconvergent rates of 
SLDG for the 1D linear transport problem in [53]. It is shown that, if the solution is smooth enough, the L2 norm of the 
SLDG error has the following estimate,

‖u − uh‖L2 ≤ C1hk + C2h2k+1t, (3.6)

where h and k are the mesh size and the approximation order for spatial discretization, C1 and C2 are constants independent 
of the mesh size and t is the integration time. The first term in (3.6) is the projection error that is time independent and is 
10
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Fig. 3.5. Surface plots of the numerical solutions for the strong Landau damping at T = 40. We use a mesh of 160 × 160 cells and C F L = 10. Left: P 1

SLDG+CF2; right: P 2 SLDG-QC+CF3C03.

N Slope Order

P 1

202 1.32 × 10−5

302 4.23 × 10−6 2.81
402 1.88 × 10−6 2.83

Fig. 3.6. Weak Landau damping. The solution is evolved by repeatedly evolving the solution first going forward in time with T = 0.2 and then backward 
in time returning to T = 0. The errors are tracked at t = 0.4n, n = 1, 2, 3, · · · . P 1 SLDG+CF3C03 with C F L = 0.5. Uniform meshes have N = 202, 302, 402

elements.

the dominant error until time t becomes very large, while the second term is time dependent and has a super convergent 
rate of 2k + 1. Such phenomenon can be observed for the weak Landau damping test by repeatedly first going forward in 
time with time stepping size determined by C F L = 0.5 for a given mesh to T = 0.2 and then backward in time returning 
to T = 0, due to time reversibility of the VP system [23]. We adopt such strategy in the test so that the solution remains 
smooth enough, which is the key assumption of the error estimate. We test P 1 SLDG scheme with a third order temporal 
scheme CF3C03, with uniform meshes N = 202, 302, 402. In Fig. 3.6, we plot the errors of the solutions of the P 1 SLDG 
scheme at time t = 0.4n, n = 1, 2, 3, · · · . It is observed that (1) the error of the SLDG solution does not grow in time after 
very long time; (2) when the error starts to grow, we report the slope of the error with respect to time (i.e. C2h2k+1

according to (3.6)) in the Table on the right-hand panel of Fig. 3.6. These slopes are measured by the divided difference 
of error and time around the region where the error shows linear growth with time. Specifically, slope = error(t2)−error(t1)

t2−t1
, 

where (t1, t2) = (2000, 3000), (t1, t2) = (3000, 5000), (t1, t2) = (4000, 8000) for estimating the slopes for N = 202, 302, 402

respectively. Third order is observed from these slopes and is consistent with the error estimate in (3.6). On the other hand, 
we would like to point out that the superconvergence result is observed for VP system only at the “linear” regime. When 
the nonlinear effect becomes significant, e.g. the strong Landau damping, the superconvergent property is lost.

Example 3.3 (The guiding center Vlasov system: spatial accuracy and convergence test). Consider the guiding center Vlasov model 
on the domain [0, 2π ] × [0, 2π ] with the initial condition

ρ(x, y,0) = −2 sin(x) sin(y) (3.7)

and the periodic boundary condition. The exact solution stays stationary. We test the spatial convergence of the proposed 
SLDG methods with the third order temporal scheme, CF3C03, for solving the guiding center Vlasov model up to time T = 1
11
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Table 3.5
The guiding center Vlasov system on the domain [0, 2π ] × [0, 2π ] with the 
initial condition ω(x, y, 0) = −2 sin(x) sin(y). Periodic boundary conditions in 
two directions. T = 1. C F L = 1.

Mesh L1 error Order L2 error Order L∞ error Order

P 1 SLDG+P 2 LDG+CF3C03
202 1.39E-02 1.88E-02 1.06E-01
402 3.66E-03 1.93 4.97E-03 1.92 3.12E-02 1.76
602 1.65E-03 1.97 2.24E-03 1.97 1.44E-02 1.90
802 9.37E-04 1.96 1.27E-03 1.95 8.27E-03 1.93
1002 6.01E-04 1.99 8.17E-04 1.99 5.34E-03 1.96

P 2 SLDG+P 3 LDG+CF3C03
202 4.52E-03 6.61E-03 5.60E-02
402 1.02E-03 2.14 1.53E-03 2.11 1.49E-02 1.91
602 4.30E-04 2.14 6.37E-04 2.17 6.76E-03 1.95
802 2.54E-04 1.82 3.80E-04 1.79 3.89E-03 1.92
1002 1.52E-04 2.30 2.29E-04 2.27 2.52E-03 1.94

P 2 SLDG-QC+P 3 LDG+CF3C03
202 2.13E-03 2.77E-03 2.06E-02
402 2.73E-04 2.97 3.63E-04 2.93 4.72E-03 2.13
602 8.11E-05 2.99 1.09E-04 2.96 2.06E-03 2.04
802 3.48E-05 2.94 4.74E-05 2.91 1.14E-03 2.05
1002 1.77E-05 3.02 2.44E-05 2.98 7.28E-04 2.02

and report these results in Table 3.5. We observe the expected second order of convergence for P 1 SLDG+P 2 LDG in L1, 
L2, and L∞ norms. For P 2 SLDG scheme with quadrilateral approximation to upstream cells, the error magnitude will be 
reduced but still second order. For P 2 SLDG scheme with quadratic-curved quadrilateral approximation to upstream cells, 
we observe the third order of convergence in L1 and L2 norm but the second order of convergence in L∞ norm.

Example 3.4 (The guiding center Vlasov model: Kelvin-Helmholtz instability problem). This is the two-dimensional guiding center 
model problem (1.3) with the initial condition

ρ0(x, y) = sin(y) + 0.015 cos(kx) (3.8)

and periodic boundary conditions on the domain [0, 4π ] × [0, 2π ]. We let k = 0.5, which will create a Kelvin-Helmholtz 
instability [46], which is well studied numerically by many authors before (e.g. see [55,9]).

First, we test the temporal convergence of the proposed SLDG method with different temporal schemes by computing 
this problem up to T = 5. In order to minimize the errors from the spatial scheme, we adopt the P 2 SLDG-QC scheme with 
P 3 LDG method using a fixed mesh of 120 × 120 cells. The reference solution is computed by the same scheme with the 
same mesh but using a small C F L = 0.1. We report plots of L1 error versus the CFL number and L1 error versus CPU cost in 
Fig. 3.7. Some observations can be concluded from Fig. 3.7: (1) expected order of convergence is observed for all temporal 
schemes; and C F L number can be taken to be as large as 50; (2) by comparing the error magnitudes, CF2L performs better 
than CF2 and CF3C09 performs the best; (3) by comparing CPU cost, we find that the P 2 SLDG-QC schemes the third-order 
temporal accuracy much more efficient than the lower-order ones.

For this problem, the energy ‖E‖2
L2 = ´

�
E · Edxdy and enstrophy ‖ρ‖2

L2 = ´
�

ρ2dxdy should remain constant in time. 
Tracking relative deviations of these quantities provides a good measurement of the quality of numerical schemes. We 
evaluate the performance of proposed schemes with a large C F L = 5 for the Kelvin-Helmholtz instability for a long-time 
simulation. Fig. 3.8 shows surface plots of the numerical solutions for the Kelvin-Helmholtz instability at T = 40, and Fig. 3.9
reports the time evolution of the relative deviation of mass, energy and enstrophy of the numerical solutions. From Fig. 3.8, 
we can observe that P 2 SLDG-QC outperforms P 1 SLDG, with the same mesh. From Fig. 3.9, we can observe that (1) the 
mass is conserved up to machine precision for each time step of the presented schemes; (2) higher order schemes perform 
better than lower order ones in terms of enstrophy; and different RKEI schemes have comparable performances.

Next, we test the performance of proposed schemes with the larger time-stepping size for the Kelvin-Helmholtz instabil-
ity. Note that the SLDG schemes with the very large time-stepping size might be subject to extreme distortion of upstream 
cells. Due to the divergence-free constraint on the electric field of the guiding center Vlasov model, the areas of upstream 
cells should be preserved for the exact solution. If at the discrete level, the areas of upstream cells are preserved, the local 
maximum principle in terms of cell averages will be maintained; if the area of a numerical upstream cell greatly deviates 
from the actual area, unphysical numerical oscillations may appear. In particular, in Fig. 3.10, by comparing the relative 
deviation of area of P 2 SLDG-QC+P 3 LDG+time3 with C F L = 3 and P 2 SLDG-QC+P 3 LDG+CF3C09 with the larger C F L = 5, 
we observe that the latter one outperforms the former one. It shows that the SLDG schemes with the third order expo-
nential integrators can allow for a larger C F L. Then we test the performance of proposed schemes with a huge C F L = 15. 
We present surface plots of the numerical solutions of the schemes under C F L = 15 at T = 40 in Fig. 3.11. From Fig. 3.11, 
12



Fig. 3.7. Plots of error versus the C F L number (left) and error versus CPU time (s) (right) for solving the Kelvin-Helmholtz instability at T = 5. Temporal 
order of convergence in L1 norm of P 2 SLDG-QC+P 3 LDG with various temporal schemes (denoted by P 2 SLDG-QC+temporal scheme) by comparing 
numerical solutions with a reference solution from the corresponding scheme with C F L = 0.1. The mesh of 120 × 120 is used.

Fig. 3.8. Surface plots of the numerical solutions for the Kelvin-Helmholtz instability at T = 40. We use a mesh of 100 × 100 cells and C F L = 5. Left: P 1

SLDG+P 2 LDG+CF2. Right: P 2 SLDG-QC+P 3 LDG+CF3C03.

we can find that P 2 SLDG-QC+P 3 LDG+CF3C09 performs best, while P 2 SLDG-QC+P 3 LDG+CF3 performs worst in correctly 
resolving solution structure. These observations show a good agreement with the accuracy comparison of these schemes 
presented in Fig. 3.7.
Numerical verification of the adaptive time-stepping algorithm for the nonlinear transport problems with the divergence-
free constraint. It is observed that different RKEI schemes with C F L = 5 have comparable performances, therefore we only 
present results from one second order and one third order RKEI schemes in Fig. 3.8; yet schemes with larger C F L = 15 are 
observed to perform differently as shown in Fig. 3.11. In Fig. 3.10, we plot the schemes’ performance in conserving the L∞
of the upstream area under various settings (different schemes, CFLs, etc.). It is observed that, compared to the scheme with 
C F L = 5, the area of upstream cells from the scheme with C F L = 15 has larger deviation. We adopt the relative deviation 
of areas of upstream cells as an indicator for the adaptive time-stepping algorithm in Section 2.3.

Now we test P 2 SLDG-QC+P 3 LDG+CF3C09 with the adaptive time-stepping algorithm. In our numerical experience, we 
find the choice of δM = 1% to be optimal for this test case with T = 40. We find the lower threshold δm is less sensitive 
to the upper one. In Fig. 3.12, we present the results of the scheme with δM = 1, and with two choices of δm = 0.1% and 
δm = 0.05%. The left part of Fig. 3.12 presents the 3D plots of the solution at T = 40; and the right part of Fig. 3.12 plots of 
the adaptive C F L versus time T , which showcases the effectiveness of the adaptive time stepping strategy when the solution 
gets more complex. Fig. 3.13 shows the time evolutions of the relative deviation of energy and enstrophy the scheme with 
different settings. The adaptive time-stepping scheme can conserve energy much better than the scheme with a fixed large 
C F L number.

3.2. Preliminary numerical tests on Burgers’ equation

The focus of the current paper is on the nonlinear Vlasov dynamics, yet the SLDG-RKEI scheme can be applied to general 
nonlinear hyperbolic conservation laws. In this subsection, we present our preliminary results on applying the SLDG-RKEI 
schemes to a simple Burgers’ equation with shock developments. Notice that for the nonlinear Vlasov dynamics, despite the 
development of filamentation structure as time evolves, shocks form from smooth initial data. We will show below that the 
development of shocks limits the time stepping size allowed for stability. We consider the 1D Burgers’ equation,
X. Cai, S. Boscarino and J.-M. Qiu Journal of Computational Physics 427 (2021) 110036
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Fig. 3.9. Time evolutions of the relative deviation of mass (top left and right), energy (bottom left) and enstrophy (bottom right) for the proposed SLDG 
schemes for the Kelvin-Helmholtz instability problem. The mesh of 100 × 100 cells is used.

Fig. 3.10. Kelvin-Helmholtz instability. Use a mesh of 100 ×100 cells. Performances of P 2 SLDG-QC with different C F Ls as well as the adaptive time-stepping 
algorithm in L∞ norm of the relative deviation of areas of upstream cells.
14



Fig. 3.11. Surface plots of numerical solutions for the Kelvin-Helmholtz instability at T = 40. We use a mesh of 100 × 100 cells and huge C F L = 15. Top left: 
P 2 SLDG-QC+P 3 LDG+CF3G. Top right: P 2 SLDG-QC+P 3 LDG+CF3. Bottom left: P 2 SLDG-QC+P 3 LDG+CF3C09. Bottom right: P 2 SLDG-QC+P 3 LDG+CF3C03.

ut +
Å

1

2
u2

ã
x
= 0, (3.9)

and rewrite it in the form of

ut + (P (u)u)x = 0, (3.10)

with P (u) = 1/2u. We first consider the initial condition u(x, 0) = 0.5 + sin(πx). When t = 0.5/π , the solution is still 
smooth. We present the errors and their corresponding orders of convergence in terms of L1, L2 and L∞ norms in Table 3.6. 
Expected orders of convergence are observed. Notice that the presented C F L for each scheme is the largest C F L allowed 
for numerical stability, chopped off to one decimal place; and �t = C F L�x

maxu f ′(u) . The maximum C F L allowed for the Burgers’ 
equation seems to be more limited than that for the nonlinear Vlasov dynamics; yet is still larger than those in a RKDG 
setting which is 1/(2k + 1) with k being the polynomial degrees. The left panel of Fig. 3.14 presents the solutions of the 
SLDG-RKEI schemes at t = 1.5/π after a shock develops using a mesh of N = 80 with C F L = 0.5. We also consider a 
discontinuous initial condition,

u(x,0) =
®

1 if − 1 ≤ x < 0,

0 if 0 ≤ x < 1,
(3.11)

with periodic boundary condition. The solution of this problem includes one shock and one rarefaction wave. The right 
panel of Fig. 3.14 presents the numerical solutions that well capture the exact solution. Note that the C F L numbers taken 
here are ad hoc from numerical tests, and the stability property of the scheme for nonlinear problems is still subject to 
further investigation.

4. Conclusion

In this paper, we propose a high order SLDG-RKEI method for nonlinear Vlasov dynamics. Compared with previous work 
on semi Lagrangian methods, the new method could be systematically built up to be high order accurate in both spatial 
and temporal directions, mass conservative, computationally efficient in allowing extra large time stepping sizes and highly 
effective in resolving nonlinear Vlasov dynamics. Applications of the method to nonlinear Navier-Stokes system will be 
investigated in our future work. We also test the scheme on the nonlinear Burgers’ equation and found CFL constraints 
similar to those from an Eulerian approach. Further study needs to be performed to better understand the stability of the 
method.
X. Cai, S. Boscarino and J.-M. Qiu Journal of Computational Physics 427 (2021) 110036
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Fig. 3.12. The numerical solution of P 2 SLDG-QC+P 3 LDG+CF3C09 with the adaptive time-stepping algorithm for the Kelvin-Helmholtz instability at T = 40, 
using a mesh of 100 × 100 cells. Parameters 1: δM = 1%, δm = 0.1%; Parameters 2: δM = 1%, δm = 0.05%. Top/bottom left: the 3D plot of the solution of the 
SLDG using Parameters 1/Parameters 2. Top/bottom right: the time evolution of C F L versus time of the SLDG using Parameters 1/Parameters 2.

Fig. 3.13. The time evolutions of the relative deviation of energy (left) and enstrophy (right) for P 2 SLDG-QC+P 3 LDG+CF3C09 with the adaptive time-
stepping algorithm for the Kelvin-Helmholtz instability problem, compared to that of the same scheme using a C F L = 5 as well as that of the same scheme 
using a larger C F L = 15.
16
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Table 3.6
Burgers’s equation ut + (u2/2)x = 0 with the initial condition u(x, 0) = 0.5 +
sin(πx), t = 0.5/π .

Mesh L1 error Order L2 error Order L∞ error Order

P 0 SLDG+CF1 with C F L = 1.2
40 2.75E-02 3.85E-02 1.72E-01
80 1.38E-02 0.99 1.96E-02 0.97 9.09E-02 0.92
160 6.96E-03 0.99 9.95E-03 0.98 4.71E-02 0.95
320 3.49E-03 1.00 5.02E-03 0.99 2.40E-02 0.97

P 1 SLDG+CF2 with C F L = 1.2
40 1.81E-03 2.89E-03 1.66E-02
80 4.73E-04 1.93 7.57E-04 1.93 4.15E-03 2.00
160 1.20E-04 1.98 1.94E-04 1.97 1.02E-03 2.03
320 3.00E-05 2.00 4.90E-05 1.98 2.50E-04 2.03

P 1 SLDG+CF2L with C F L = 1.2
40 1.79E-03 2.79E-03 1.15E-02
80 4.69E-04 1.94 7.37E-04 1.92 2.87E-03 2.00
160 1.19E-04 1.97 1.89E-04 1.96 7.00E-04 2.03
320 2.99E-05 1.99 4.78E-05 1.98 1.82E-04 1.95

P 2 SLDG+CF3G with C F L = 0.7
40 1.11E-04 2.50E-04 2.14E-03
80 1.70E-05 2.71 4.55E-05 2.46 4.94E-04 2.12
160 2.59E-06 2.71 8.31E-06 2.45 1.27E-04 1.95
320 3.79E-07 2.77 1.50E-06 2.47 3.10E-05 2.04

P 2 SLDG+CF3 with C F L = 0.4
40 1.11E-04 2.42E-04 2.10E-03
80 1.68E-05 2.72 4.47E-05 2.44 4.89E-04 2.10
160 2.54E-06 2.73 8.20E-06 2.45 1.27E-04 1.95
320 3.76E-07 2.75 1.49E-06 2.46 3.09E-05 2.04

P 2 SLDG+CF3C09 with C F L = 0.7
40 1.07E-04 2.40E-04 2.08E-03
80 1.65E-05 2.69 4.44E-05 2.43 4.88E-04 2.10
160 2.52E-06 2.72 8.18E-06 2.44 1.27E-04 1.95
320 3.73E-07 2.75 1.49E-06 2.46 3.09E-05 2.03

P 2 SLDG+CF3C03 with C F L = 0.7
40 1.08E-04 2.41E-04 2.10E-03
80 1.65E-05 2.70 4.45E-05 2.44 4.89E-04 2.10
160 2.51E-06 2.72 8.20E-06 2.44 1.27E-04 1.95
320 3.72E-07 2.76 1.49E-06 2.46 3.09E-05 2.04

Fig. 3.14. Burgers’s equation ut + (u2/2)x = 0. Left: initial condition u(x, 0) = 0.5 + sin(πx) at t = 1.5/π . Right: a discontinuous initial condition (3.11) and 
periodic boundary condition at t = 0.5. The meshes of 80 cells and C F L = 0.5 are used.
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Appendix A. Some commutator-free methods

In this appendix we present some different Butcher tableaus (Tables A.7–A.11) of commutator-free methods from [15,13], 
which are tested in this paper.

Table A.7
CF2.

0
1
2

1
2 0

0 1

Table A.8
CF2L. Here γ = 2−√

2
2 and 

δ = −2
√

2
3 .

0
γ γ
1 δ 1 − δ

0 1 − γ γ

Table A.9
CF3. Here γ = 3+√

3
6 and φ = 1

6(2γ−1) .

0
γ γ

1 − γ γ − 1 2(1 − γ )

0 1
2 − φ 1

2 + φ

0 φ −φ

Table A.10
CF3C09. Here σ = (α + β(1 − 2γ ) − 1

3 )/

(1 − 2γ ), α = 1
2 , 1

6 and γ = 3+√
3

6 .

0
γ γ

1 − γ γ − 1 2(1 − γ )

α β σ

−α 1
2 − β 1

2 − σ

Table A.11
CF3C03 [15].

0
1
3

1
3

2
3 0 2

3
1
3 0 0

− 1
12 0 3

4

Appendix B. The quadratic-curved quadrilateral approximation

We highlight key components in the quadratic-curved quadrilateral approximation to upstream cells:

Step 1. Characteristics tracing. Locate the nine vertices of upstream element A	
j : c

	
i , i = 1, . . . , 9 by tracking the characteristics 

backward to time tn , i.e., solving the characteristics equations, for the nine vertices of A j : ci, i = 1, . . . , 9 (see 
Fig. B.15 (a)).
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Fig. B.15. Schematic illustration of the SLDG formulation in two dimension. P 2 case.

Step 2. Reconstructing faces of upstream elements. Construct a quadratic curve to approximate each side of the upstream 
element. In particular, to construct the quadratic curve, ¸�c	

1, c	
2, c	

3 as shown in Fig. B.15 (b), we do the following.
(a) Construct a coordinate transformation x − y to ξ − η such that the coordinates of c	

1 and c	
3 are (−1, 0) and 

(1, 0) in ξ − η space, respectively (see Fig. B.15 (b)). Let (x	
1, y

	
1) and (x	

3, y
	
3) be the x − y coordinate of c	

1 and 
c	

3, then the coordinate transformation is obtained as®
ξ (x, y) = ax + by + c,

η(x, y) = bx − ay + d,
(B.1)

where

a = 2(x	
3 − x	

1)

(x	
1 − x	

3)2 + (y	
1 − y	

3)2
,b = 2(y	

3 − y	
1)

(x	
1 − x	

3)2 + (y	
1 − y	

3)2
,

c = (x	
1)2 − (x	

3)2 + (y	
1)2 − (y	

3)2

(x	
1 − x	

3)2 + (y	
1 − y	

3)2
,d = 2(x	

3 y	
1 − x	

1 y	
3)

(x	
1 − x	

3)2 + (y	
1 − y	

3)2
.

Its reverse transformation can be constructed accordingly:{
x = x	

3−x	
1

2 ξ + y	
3−y	

1
2 η + x	

3+x	
1

2 ,

y = y	
3−y	

1
2 ξ − x	

3−x	
1

2 η + y	
3+y	

1
2 .

(B.2)

(b) Get the ξ − η coordinate for the point c	
2 as (ξ2, η2). Based on (−1, 0), (ξ2, η2) and (1, 0), we construct the 

parabola,¸�c	
1, c	

2, c	
3 : η(x, y) = η2

ξ2
2 − 1

(ξ (x, y)2 − 1). (B.3)

Then substitute (B.3) into (B.2), we have

x(ξ ) = x	
3 − x	

1

2
ξ + y	

3 − y	
1

2

η2

ξ2
2 − 1

(ξ2 − 1) + x	
3 + x	

1

2
, (B.4)

y(ξ ) = y	
3 − y	

1

2
ξ − x	

3 − x	
1

2

η2

ξ2
2 − 1

(ξ2 − 1) + y	
3 + y	

1

2
. (B.5)

Step 3. Clipping algorithm. As mentioned in [7], we perform a clipping algorithm for an upstream element by searching its 
outer and inner segments, denoted as Lq and Sq .

Step 4. Line integral evaluation. The integral of inner line segments 
∑Ni

q=1

´
Sq

[Pdx + Q dy] can be evaluated in the simi-

lar way as P 1 case. The integral of outer line segments
∑No

q=1

´
Lq

[Pdx + Q dy] can be evaluated by the following 

parameterization on each side. Assume that Lq is the part of the side ċ	
1c	

2c	
3. Hence,

ˆ

Lq

[Pdx + Q dy] =
ξ (q+1)ˆ

ξ (q)

[P (x(ξ,η), y(ξ,η))x′(ξ ) + Q ((ξ,η), y(ξ,η))y′(ξ )]dξ, (B.6)

where (ξ (q), η(q)) and (ξ (q+1), η(q+1)) are the starting point and the end point of Lq in ξ −η coordinate, respectively. 
The above integral can be done by the three point Gaussian quadrature.
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