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Abstract: In this paper, we completely determine the spectrum of edge balanced H-designs, where H
is a 3-uniform hypergraph with 2 or 3 edges, such that H has strong chromatic number χs(H) = 3.
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1. Introduction

Let K(3)
v = (X, E) be the complete hypergraph, uniform of rank 3, defined on a vertex set

X = {x1, . . . , xv}, so that E is the set of all triples of X. Let H = (V,F ) be a sub-hypergraph of K(3)
v .

We call 3-edges the triples of V contained in the family F and edges the pairs of V contained in the
3-edges of F . Such pairs will be denoted by [x, y].

An H-decomposition of K(3)
v is a pair Σ = (X,B), where B is a collection of hypergraphs all

isomorphic to H that partition the edge set of K(3)
v . An H-decomposition is also called a H-design of

order v and the elements of B are called blocks
If Σ = (X,B) is a H-design, for any x ∈ X, we call degree of the vertex x the number d(x) of blocks

of B containing x; for any x, y ∈ X, x 6= y, we call degree of the edge [x, y] (see [1]) the number d(x, y) of
blocks of B containing the edge [x, y].

Given a hypergraph H = (X,F ), there exists an induced action of the automorphism group
Aut(H) of H on the set of the 2-subsets of the triples of F . We call edge orbits the orbits of Aut(H) on
this set.

Following the classical definition of balanced designs, it is possible to define balanced H-designs.

Definition 1. An H-design Σ is said to be balanced if the degree d(x) of each vertex x ∈ X is a constant.

In [2], generalizing this idea, the concept of edge balanced designs has been introduced:

Definition 2. An H-design is called edge balanced if for any x, y ∈ X, x 6= y, the degree d(x, y) is constant.

We will call a balanced hypergraph design vertex balanced, in order to make a distinction with
edge balanced hypergraph designs. The concept of balanced G-design, in the case that G is a graph,
was introduced by Hell and Rosa in [3]. Later, a lot of work has been done in this field (see, for
example, [2–14]) both for graph designs and hypergraph designs.

A hypergraph is called linear if any two 3-edges have at most one vertex in common. It is trivial to
see that any H-design, with H a linear hypergraph, is edge balanced of constant degree v− 2. In this
paper, continuing the problem introduced in [2], we study edge balanced H-designs, where H is one
of the following hypergraphs:
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balanced G-design, in the case that G is a graph, was introduced by Hell and
Rosa in [15]. Later, a lot of work has been done in this field (see for example
[1, 3–7,9–12,14–16]) both for graph designs and hypergraph designs.

A hypergraph is called linear if any two 3-edges have at most one vertex in
common. It is trivial to see that any H-design, with H a linear hypergraph,
is edge balanced of constant degree v − 2. In this paper, continuing the
problem introduced in [9], we study edge balanced H-designs, where H is
one of the following hypergraphs:
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We denote the above hypergraphs P (3)(2, 4) by [1, 2, 3, 4]P (3)(2,4), S
(3)(2, 5)

by [1, 2, 3, 4, 5]S(3)(2,5), S
(3)(2, 4)+E by [1, 2, 3, 4, 5, 6]S(3)(2,4)+E , P (3)(2, 5) by

[1, 2, 3, 4, 5]P (3)(2,5) and P (3)(2, 4)+E by [1, 2, 3, 4, 5, 6]P (3)(2,4)+E . From now

on by H we will denote one of these hypergraphs. We will denote by m(H)
be the number of triples in H, so that:

m(H) =

{
2 for H = P (3)(2, 4)

3 for H ∈ {S(3)(2, 5), S(3)(2, 4) + E,P (3)(2, 5), P (3)(2, 4) + E}.

For the hypergraphs P (3)(2, 4), S(3)(2, 5), S(3)(2, 4) + E and P (3)(2, 4) + E

we denote by A the edge orbit corresponding to the edge [1, 2]; for P (3)(2, 5)
by A we denote the edge orbit corresponding to the edges [1, 2] and [1, 3].

Note that for P (3)(2, 4), S(3)(2, 4) +E and P (3)(2, 4) +E the edge [1, 2] has

degree 2 and all the others degree 1; for S(3)(2, 5) the edge [1, 2] has degree

3 and all the others degree 1; for P (3)(2, 5) the edges [1, 2] and [1, 3] have
degree 2 and all the others degree 1.

Given a hypergraph H, a strong vertex coloring of H assigns distinct
colors to the vertices of a 3-edge of H. The minimum number k such that

We denote the above hypergraphs P(3)(2, 4) by [1, 2, 3, 4]P(3)(2,4), S(3)(2, 5) by [1, 2, 3, 4, 5]S(3)(2,5),

S(3)(2, 4) + E by [1, 2, 3, 4, 5, 6]S(3)(2,4)+E, P(3)(2, 5) by [1, 2, 3, 4, 5]P(3)(2,5) and P(3)(2, 4) + E by
[1, 2, 3, 4, 5, 6]P(3)(2,4)+E. From now on by H we will denote one of these hypergraphs. We will denote
by m(H) be the number of triples in H, so that:

m(H) =

{
2 for H = P(3)(2, 4)

3 for H ∈ {S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E}.

For the hypergraphs P(3)(2, 4), S(3)(2, 5), S(3)(2, 4)+ E and P(3)(2, 4)+ E we denote by A the edge
orbit that corresponds to the edge [1, 2]; for P(3)(2, 5) by A we denote the edge orbit corresponding to
the edges [1, 2] and [1, 3]. Note that, for P(3)(2, 4), S(3)(2, 4) + E and P(3)(2, 4) + E, the edge [1, 2] has
degree 2 and all the others degree 1; for S(3)(2, 5), the edge [1, 2] has degree 3 and all the others degree
1; for P(3)(2, 5), the edges [1, 2] and [1, 3] have degree 2 and all of the others degree 1.

Given a hypergraph H, a strong vertex coloring of H assigns distinct colors to the vertices of
a 3-edge of H. The minimum number k such that there exists a strong vertex coloring of H with k
colors is called strong chromatic number of H and denoted by χs(H) (see [1,15,16]). In this paper, we
consider H-designs, with H hypergraph with 2 or 3 edges, such that χs(H) = 3.

In the constructions we will use the following remarks:

• if X and Y are disjoint sets, with |X| = 2k + 1, for some k ∈ N, X = {x1, . . . , x2k+1},
the triples {x1, x2, y}, with x1, x2 ∈ X, x1 6= x2, and y ∈ Y, are all of the type {xi, xi+r, y},
with i = 1, . . . , 2k + 1, r = 1, . . . , k and y ∈ Y, where the indices are taken mod 2k + 1;

• if X and Y are disjoint sets, with |X| = 2k, for some k ∈ N, X = {x1, . . . , x2k}, the triples
{x1, x2, y}, with x1, x2 ∈ X, x1 6= x2, and y ∈ Y, are all of the type either {xi, xi+r, y},
with i = 1, . . . , 2k, r = 1, . . . , k− 1, and y ∈ Y or {xi, xi+k, y}, with i = 1, . . . , k, where the indices
are taken mod 2k;

• if X, Y and Z are pairwise disjoint sets, such that |X| = |Y| = v, X = {x1, . . . , xv} and
Y = {y1, . . . , yv}, the triples {x, y, z}, with x ∈ X, y ∈ Y and z ∈ Z, are of type {xi, yi+r, z},
with i = 1, . . . , v, r = 0, . . . , v− 1 and z ∈ Z.

2. Necessary Conditions

Let H be one of the hypergraphs listed before and let Σ = (X,B) be an H-design. Using the
previous notation, for any x, y ∈ X, x 6= y:

• we denote by C(x, y) the number of blocks containing [x, y] as an element of the edge orbit A; and,
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• we denote by C′(x, y) the number of blocks containing [x, y] as an element of all the other edge orbits.

Proposition 1. Let Σ = (X,B) be an edge balanced H-design of order v and let m = m(H). Subsequently,
the following conditions hold:

(1) for any x, y ∈ X, x 6= y:

d(x, y) =





5(v− 2)
6

for H = P(3)(2, 4)

7(v− 2)
9

for H ∈ {S(3)(2, 5), P(3)(2, 5)}

8(v− 2)
9

for H ∈ {S(3)(2, 4) + E, P(3)(2, 4) + E};

(2) v ≡ 2 mod 3m, v > 2;
(3) for any x, y ∈ X, x 6= y

C(x, y) =





v− 2
6

for H = P(3)(2, 4)

v− 2
9

for H ∈ {S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 4) + E}

2(v− 2)
9

for H = P(3)(2, 5);

and

C′(x, y) =





2(v− 2)
3

for H ∈ {P(3)(2, 4), S(3)(2, 5)}

7(v− 2)
9

for H ∈ {S(3)(2, 4) + E, P(3)(2, 4) + E}

5(v− 2)
9

for H = P(3)(2, 5).

Proof. For any H let r be the number of its edges. Let:

p =

{
2 for H ∈ {P(3)(2, 4), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E}
3 for H = S(3)(2, 5).

If any edge [x, y], for any x, y ∈ X, x 6= y, is contained in exactly d blocks of B, because |B| = (v
3)
3

we have:

d
(

v
2

)
= r|B| ⇒ d =

r(v− 2)
3m

.

By the fact that r and m are always coprime, we immediately get that v ≡ 2 mod 9, v ≥ 11, if
m = 3 and v ≡ 2 mod 6, v ≥ 8, if m = 2. For any x, y ∈ X, x 6= y, we also have:





C(x, y) + C′(x, y) = d

pC(x, y) + C′(x, y) = v− 2.

This leads us easily to the statement.

Remark 1. Note that, keeping the previous notation, in order to prove that an H-design of order v is edge
balanced, it is sufficient to show that there exists c ∈ N, such that C(x, y) = c for any x, y ∈ X, x 6= y.
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In this paper, we want to prove that the necessary conditions for the existence of an edge balanced
H-design are also sufficient:

Theorem 1. There exists an edge balanced H-design of order v if and only if either v ≡ 2 mod 6, v ≥ 8,
if H = P(3)(2, 4) or v ≡ 2 mod 9, v ≥ 11, if H ∈ {S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E}.

3. Decompositions of Multipartite Hypergraphs

In this section, and for all the rest of the paper, we denote by H an hypergraph in
the set {P(3)(2, 4), S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E}. Now, we want to provide
decompositions of multipartite hypergraphs that will be used in the proof of the main result. Note that
this type of decomposition is possible, because the hypergraphs considered here have χs(H) = 3.

If X1,. . . ,Xs, with s ≤ r, are pairwise disjoint sets, we denote by K(r)
X1,...,Xs

the multipartite hypergraph
having X1 ∪ · · · ∪ Xs as vertex set and edge set the set of all r-subsets of X1 ∪ · · · ∪ Xs containing at
least one vertex from every Xi, for i = 1,. . . ,s.

We prove the following:

Proposition 2. Let m = m(H) and let X, Y and Z be three disjoint sets such that |X| = |Y| = |Z| = m.
Subsequently, there exists a decomposition of K(3)

X,Y,Z in copies of H in such a way that:

• if H ∈ {P(3)(2, 4), S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 4) + E} then ∀x ∈ X, y ∈ Y, z ∈ Z:

C(x, y) = 1

C(x, z) = C(y, z) = 0;

• if H = P(3)(2, 5) then ∀x ∈ X, y ∈ Y, z ∈ Z:

C(x, y) = C(x, z) = 1

C(y, z) = 0.

Proof. Let X = {x1, . . . , xm}, Y = {y1, . . . , ym} and Z = {z1, . . . , zm}. Subsequently, we get the
statement by taking the following blocks:

• if H = P(3)(2, 4), then take [xi, yj, z1, z2]P(3)(2,4) for any i, j = 1, 2;

• if H = S(3)(2, 5), then take [xi, yj, z1, z2, z3]S(3)(2,5) for any i, j = 1, 2, 3;

• if H = S(3)(2, 4) + E, then take [yj, xi, zj+1, zj+2, xi+1, zj]S(3)(2,4)+E for any i, j = 1, 2, 3;

• if H = P(3)(2, 5), then take [xi, yj, zj, zj+1, yj+1]P(3)(2,5) for any i, j = 1, 2, 3;

• if H = P(3)(2, 4) + E, then take [xi, yj, zj, zj+1, xi+1, yj+1]P(3)(2,4)+E for any i, j = 1, 2, 3,

where the indices are takenmod m.

Now we can prove the following:

Proposition 3. Let m = m(H) and let X1, X2 and X3 be three disjoint sets such that |X1| = |X2| = |X3| =
3m. Subsequently, there exists a decomposition of K(3)

X1,X2,X3
in copies of H in such a way that:

C(x, x′) =

{
1 if H ∈ {P(3)(2, 4), S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 4) + E}
2 if H = P(3)(2, 5)

for any x ∈ Xi, x′ ∈ Xj, with i 6= j.
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Proof. Let X1 = X1,1 ∪ X1,2 ∪ X1,3, X2 = X2,1 ∪ X2,2 ∪ X2,3 and X3 = X3,1 ∪ X3,2 ∪ X3,3, where |Xi,j| =
m for any i, j = 1, 2, 3.

Consider now X′1 = {x′1,1, x′1,2, x′1,3}, X′2 = {x′2,1, x′2,2, x′2,3} and X′3 = {x′3,1, x′3,2, x′3,3} pairwise
disjoint sets. When considering the following family F of paths:

[x′2,i, x′1,i, x′3,i], [x
′
1,i, x′2,i, x′3,i+1], [x

′
1,i, x′3,i+2, x′2,i],

[x′2,i+1, x′1,i, x′3,i+2], [x
′
1,i, x′2,i+1, x′3,i], [x

′
1,i, x′3,i, x′2,i+2],

[x′3,i, x′2,i, x′1,i+1], [x
′
2,i, x′3,i, x′1,i+2], [x

′
2,i+2, x′1,i, x′3,i+1],

where i = 1, 2, 3 and the indices are takenmod 3. Note that the set:

{{x′i1,j1 , x′i2,j2 , x′i3,j3} | [x
′
i1,j1 , x′i2,j2 , x′i3,j3 ] ∈ F}

is the edge set of K(3)
X′1,X′2,X′3

.

Let H = P(3)(2, 5). For any path Pr = [x′i1,j1
, x′i2,j2

, x′i3,j3
] ∈ F , for r = 1, . . . , 27, by Proposition 2

we can consider a family Br of copies of H decomposing K(3)
Xi1,j1

,Xi2,j2 ,Xi3,j3
such that:

• C(x, x′) = 1 for any x ∈ Xi2,j2 and x′ ∈ Xi1,j1 ∪ Xi3,j3 ;
• C(x, x′) = 0 for any x ∈ Xi1,j1 and x′ ∈ Xi3,j3 .

Let B =
⋃27

r=1 Br. Then the blocks of B provide the required decomposition of K(3)
X1,X2,X3

.

Let H ∈ {P(3)(2, 4), S(3)(2, 5), S(3)(2, 4)+ E, P(3)(2, 4)+ E}. For any path Pr = [x′i1,j1
, x′i2,j2

, x′i3,j3
] ∈

F , for r = 1, . . . , 27, by Proposition 2, we can consider a family Br of copies of H decomposing
K(3)

Xi1,j1
,Xi2,j2 ,Xi3,j3

such that:

• C(x, x′) = 1 for any x ∈ Xi1,j1 and x′ ∈ Xi3,j3 ;
• C(x, x′) = 0 for any x ∈ Xi2,j2 and x′ ∈ Xi1,j1 ∪ Xi3,j3 .

Let B =
⋃27

r=1 Br. Subsequently, the blocks of B provide the required decomposition of K(3)
X1,X2,X3

.

4. Proof of the Main Result

Before proving Theorem 1, we need to decompose multipartite hypergraphs, as in the
following result:

Proposition 4. Let m = m(H) and let X, Y and Z be three disjoint sets, such that |X| = |Y| = 3m and
|Z| = 2. Given

s =

{
2 if H = P(3)(2, 5)

1 if H ∈ {P(3)(2, 4), S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 4) + E},

there exists a decomposition of K(3)
X,Y,Z ∪ K(3)

X,Y in copies of H in such a way that for any x, x′ ∈ X, x 6= x′,
y, y′ ∈ Y, y 6= y′, and z ∈ Z:

• C(x, x′) = C(y, y′) = C(x, z) = C(y, z) = s;
• C(x, y) = 2s.

Proof. Case 1. Let H = P(3)(2, 4). Let X = {x1, . . . , x6}, Y = {y1, . . . , y6} and Z = {z1, z2}. In this
case we get the statement by taking the following family of blocks:



Mathematics 2020, 8, 1353 6 of 10

• for i = 1, . . . , 6 and r = 1, 2

[xi, zr, yi, yi+1]P(3)(2,4), [yi, zr, xi+3, xi+1]P(3)(2,4),

[xi, xi+r, yi+r, yi+2r]P(3)(2,4), [yi, yi+r, xi+r, xi+2r]P(3)(2,4)

• [xi, xi+3, yi, yi+3]P(3)(2,4) and [yi, yi+3, xi, xi+3]P(3)(2,4) for i = 1, 2, 3;
• [xi, yi+r, xi+1, xi+2]P(3)(2,4) for i = 1, . . . , 6 and r = 0, 3, 5;
• [xi, yi+r, yi+r+1, yi+r+2]P(3)(2,4) for i = 1, . . . , 6 and r = 0, 1, 3;
• for i = 1, . . . , 6

[xi, yi+1, xi+2, xi+3]P(3)(2,4), [xi, yi+5, yi+1, yi+2]P(3)(2,4),

[xi, yi+4, xi+1, yi+1]P(3)(2,4), [xi, yi+2, xi+3, yi+3]P(3)(2,4)

• [xi, yi+r, z1, z2]P(3)(2,4) for i = 1, . . . , 6 and r = 2, 4.

Case 2. Let H = S(3)(2, 5). Let X = {x1, . . . , x9}, Y = {y1, . . . , y9} and Z = {z1, z2}. Let Ar =

{i ∈ {1, 2, 3, 4} | r 6≡ i mod 4} for r = 0, . . . , 8. If Ar = {j1, j2, j3}, we get the statement by taking the
following family of blocks for i = 1, . . . , 9:

• for r = 3, . . . , 8

[xi, yi+r, xi+j1 , xi+j2 , xi+j3 ]S(3)(2,5)

[yi, xi+r, yi+j1 , yi+j2 , yi+j3 ]S(3)(2,5);

• for r = 0, 1, 2, where j1, j2 6= r + 1 (and so j3 = r + 1)

[xi, yi+r, xi+j1 , xi+j2 , z1]S(3)(2,5)

[yi, xi+r, yi+j1 , yi+j2 , z2]S(3)(2,5);

• for r = 1, 2, 3

[xi, xi+r, yi+r−1, yi+r, yi+r+4]S(3)(2,5)

[yi, yi+r, xi+r−1, xi+r, xi+r+4]S(3)(2,5);

• [xi, xi+4, yi, yi+4, yi+8]S(3)(2,5) and [yi, yi+4, xi, xi+4, xi+8]S(3)(2,5);
• [xi, z1, yi+3, yi+7, yi+8]S(3)(2,5) and [xi, z2, yi+1, yi+2, yi+3]S(3)(2,5);
• [yi, zr, xi+3, xi+4, xi+5]S(3)(2,5) for r = 1, 2.

Case 3. Let H = S(3)(2, 4) + E. Let X = {x1, . . . , x9}, Y = {y1, . . . , y9} and Z = {z1, z2}. Consider
for any r = 1, 2, 3, 4:

A1 = {(0, 7), (2, 8)}
A2 = {(1, 1), (4, 2)}
A3 = {(6, 2), (7, 3)}
A4 = {(3, 1), (8, 2)}.

We get the statement by taking the following family of blocks for i = 1, . . . , 9:
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• for r = 1, 2, 3, 4 and (a, b) ∈ Ar

[xi, yi+a, xi+r, xi+5−r, yi+b−2r, xi−r]S(3)(2,4)+E

[yi, xi+a, yi+r, yi+5−r, xi+b−2r, xi−r]S(3)(2,4)+E;

• for r = 2, 3, 4

[xi+r, xi, yi+5−r, yi+r, xi+5, yi+5+r]S(3)(2,4)+E

[yi+r, yi, xi+5−r, xi+r, yi+5, xi+5+r]S(3)(2,4)+E;

• [xi, zr, yi+1, yi, yi+2, zs]S(3)(2,4)+E and [yi, zr, xi+6, xi+2, xi+3, zs]S(3)(2,4)+E, for (r, s) ∈ {(1, 2), (2, 1)};
• and

[xi+1, xi, yi+1, yi+4, z1, yi]S(3)(2,4)+E

[yi+1, yi, xi+1, xi+4, z2, xi+2]S(3)(2,4)+E

[xi, yi+4, z1, z2, xi+4, yi+5]S(3)(2,4)+E

[yi+5, xi, z1, z2, yi+1, xi+6]S(3)(2,4)+E.

Case 4. Let H = P(3)(2, 5). Let X = {x1, . . . , x9}, Y = {y1, . . . , y9} and Z = {z1, z2}. Consider for
any r = 1, 2, 3, 4:

A1 = {(2, 0), (3, 8)}
A2 = {(1, 6), (4, 7)}
A3 = {(5, 6), (8, 7)}
A4 = {(4, 0), (5, 8)}

and let b1 = 7, b2 = 2, b3 = 3, and b4 = 1. We get the statement by taking the following family of
blocks for i = 1, . . . , 9:

• for r = 1, 2, 3, 4 and (a, b) ∈ Ar

[xi, xi+r, yi+a, yi+b, xi+5−r]P(3)(2,5)

[yi, yi+r, xi+a, xi+b, yi+5−r]P(3)(2,5)

• for r = 1, 2, 3, 4

[yi+br , xi, xi+r, xi+5−r, xi+2r]P(3)(2,5)

[xi+br , yi, yi+r, yi+5−r, yi+2r]P(3)(2,5)

• [zr, xi, yi+4, yi+5, xi−2]P(3)(2,5) for r = 1, 2 and

[yi+1, xi, z1, z2, xi+1]P(3)(2,5), [yi+2, xi, z2, z1, xi+2]P(3)(2,5),

[xi, yi+7, z1, z2, yi+3]P(3)(2,5), [xi, yi+8, z2, z1, yi+3]P(3)(2,5).

Case 5. Let H = P(3)(2, 4) + E. Let X = {x1, . . . , x9}, Y = {y1, . . . , y9} and Z = {z1, z2}. Consider
for any r = 1, 2, 3, 4:
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A1 = {(0, 7), (2, 8)}
A2 = {(1, 2), (4, 1)}
A3 = {(6, 2), (7, 3)}
A4 = {(3, 1), (8, 2)}.

We get the statement by taking the following family of blocks for i = 1, . . . , 9:

• for r = 1, 2, 3, 4 and (a, b) ∈ Ar

[xi, yi+a, xi+r, xi+5−r, yi+b, xi+2r]P(3)(2,4)+E

[yi, xi+a, yi+r, yi+5−r, xi+b, yi+2r]P(3)(2,4)+E

• for r = 1, 2, 3, 4

[xi, xi+r, yi+5−r, yi+r, xi−r, xi+5−2r]P(3)(2,4)+E

[yi, yi+r, xi+5−r, xi+r, yi−r, yi+5−2r]P(3)(2,4)+E

• [xi, yi+4, z2, z1, xi+1, yi]P(3)(2,4)+E and [xi, yi+5, z1, z2, xi+1, yi]P(3)(2,4)+E;
• [xi, zr, yi+1, yi, xi−1, zs]P(3)(2,4)+E and [yi, zr, xi+6, xi+2, yi+3, zs]P(3)(2,4)+E, for (r, s) ∈ {(1, 2), (2, 1)}.

Now we are ready to prove Theorem 1.

Proof. By Proposition 1, we just need to prove that there exists an edge balanced H-design of order v if:

• H ∈ {S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E} and v ≡ 2 mod 9, v ≥ 11;
• H = P(3)(2, 4) and v ≡ 2 mod 6, v ≥ 8.

Let us first prove it in the case v = 8, if H = P(3)(2, 4), and v = 11, if H ∈ {S(3)(2, 5), S(3)(2, 4) +
E, P(3)(2, 5), P(3)(2, 4) + E}. We will use repeatedly (Theorem 3.3, [17]).

• Let H = P(3)(2, 4) and v = 8. Subsequently, this case follows by (Theorem 4.4, [2]).
• Let H = S(3)(2, 5) and v = 11. The statement follows by taking the H-design of order 11 on

X = {0, 1, . . . , 10} having as base blocks the following ones:

[0, 1, 2, 3, 4]S(3)(2,5), [0, 2, 4, 5, 6]S(3)(2,5), [0, 3, 2, 6, 7]S(3)(2,5),

[0, 4, 3, 5, 6]S(3)(2,5), [0, 5, 1, 3, 10]S(3)(2,5).

• Let H = S(3)(2, 4) + E and v = 11. The statement follows by taking the H-design of order 11 on
X = {0, 1, . . . , 10} having as base blocks the following ones:

[2, 1, 0, 8, 5, 9]S(3)(2,4)+E, [1, 3, 0, 10, 5, 7]S(3)(2,4)+E, [1, 4, 0, 5, 3, 9]S(3)(2,4)+E,

[5, 1, 0, 10, 2, 4]S(3)(2,4)+E, [1, 6, 0, 3, 4, 7]S(3)(2,4)+E.

• Let H = P(3)(2, 5) and v = 11. The statement follows by taking the H-design of order 11 on
X = {0, 1, . . . , 10} having as base blocks the following ones:

[1, 0, 2, 9, 4]P(3)(2,5), [2, 0, 4, 7, 8]P(3)(2,5), [3, 0, 6, 5, 1]P(3)(2,5),

[4, 0, 8, 3, 5]P(3)(2,5), [5, 0, 10, 1, 9]P(3)(2,5).
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• Let H = P(3)(2, 4) + E and v = 11. The statement follows by taking the H-design of order 11 on
X = {0, 1, . . . , 10} having as base blocks the following ones:

[1, 2, 0, 8, 3, 7]P(3)(2,4)+E, [1, 3, 0, 10, 2, 7]P(3)(2,4)+E, [1, 4, 0, 5, 2, 8]P(3)(2,4)+E,

[1, 5, 0, 10, 3, 6]P(3)(2,4)+E, [1, 6, 0, 3, 8, 10]P(3)(2,4)+E.

Now, let v = 3rh + 2, for some h ∈ N, h ≥ 2, where:

r =

{
2 if H = P(3)(2, 4)

3 if H ∈ {S(3)(2, 5), S(3)(2, 4) + E, P(3)(2, 5), P(3)(2, 4) + E}.

Let us consider X1,. . . ,Xh, Y, pairwise disjoint sets such that |Xi| = 3r for i = 1, . . . , h and |Y| = 2,
in such a way that |⋃Xi ∪Y| = v. We can consider the following families of blocks:

• for i = 1, . . . , h take an edge balanced H-design Σi = (Xi ∪Y,Bi) of order 3r + 2, by what we just
proved;

• for any edge {i, j, k} ∈ K(3)
h take a family of blocks Ci,j,k decomposing K(3)

Xi ,Xj ,Xk
and satisfying the

conditions of Proposition 3; and,

• for any i, j = 1, . . . , h, i 6= j, take a family Di,j decomposing K(3)
Xi ,Xj
∪ K(3)

X,Y,Z and satisfying the
conditions of Proposition 4.

Let F = ∪h
i=1Bi ∪

⋃ Ci,j,k ∪
⋃Di,j. Subsequently, it is easy to see that Σ = (X1 ∪ · · · ∪ Xh ∪Y,F )

is an edge balanced H-design of order v.
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