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Abstract 

The diffusion of smart infrastructures for smart cities provides new opportunities for the improvement of both road infrastru cture monitoring and 

maintenance management. 

Often pavement management is based on the periodic assessment of the elastic modulus of the bound layers (i.e., asphalt concrete layers) by means of 

traditional systems, such as Ground Penetrating Radar (GPR) and Falling Weight Deflectometer (FWD). Even if  these methods are reliable, well-known, 

and widespread, they are quite complex, expensive, and are not able to provide updated information about the evolving structu ral health condition of the 

road pavement. Hence, more advanced, effective, and economical monitoring systems can be used to solve the problems mentioned above.  

Consequently, the main objective of the study presented in this paper is to present and apply an innovative solution that can  be used to make smarter 

the road pavement monitoring. In more detail, an innovative Non-Destructive Test (NDT)-based sensing unit was used to gather the vibro-acoustic signatures 

of road pavements with different deterioration levels (e.g. with and without fatigue cracks) of an urban road. Meaningful fea tures were extracted from the 

aforementioned acoustic signature and the correlation with the elastic modulus defined using GPR and FWD data was investigated. 

Results show that some of the features have a good correlation with the elastic moduli of the road section under investigation. Consequently, the 

innovative solution could be used to evaluate the variability of elastic modulus of the asphalt concrete layers, and to monitor with continuity the deterioration 

of road pavements under the traffic loads. 
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1. Introduction 

Smart roads will provide new opportunities for sustainable, 

efficient, safe and resilient transportation infrastructures. By 

improving both monitoring and maintenance processes (e.g., 

moving from failure-based to a condition- or prediction-based 

approach exploiting systems able to carry out continuous 

monitoring), pavement needs can be timely identified and this 

leads to reduce total costs and extend service life [1-3]. Reliability 

and effectiveness of traditional approaches both in-lab analysis of 

pavement samples as cores or slabs and NDT on-site investigations 

(e.g. Ground Penetrating Radar, GPR, Falling Weight 

Deflectometer, FWD, and Light Weight Deflectometer, LWD) are 

well-known. Nevertheless, they lack in cost (i.e., are based on 

expensive devices or destructive tests), in safety (i.e., implying the 

closure  of  the   road   section   under   test,   negatively   affecting  

traffic and road safety)  and in continuity  (i.e., are based on stand- 
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alone devices). Based on the limitations listed above, the concept 

of Intelligent Transportation Systems [4] emerged and a multitude 

of solutions have been proposed. Usually, sensor-based devices 

and technologies are used as in-vehicle equipment for automatic 

and continuous assessment, or are embedded or positioned on the 

pavement to form a network. 

More extensively, in terms of classification and analysis of 

monitoring, it is possible to highlights the following different 

solutions for road pavements: 

1. embedded [5-7] and non-embedded sensor-based systems 

[8,9]; 

2. mobile [10-12] and stationary systems [13-14]; 

3. wireless [15,16], wired [17,18] and self-powered systems 

[19,20]; 

4. traditional [21,22] and smart data management [23-25]; 

Despite the promising advantages of the sensor-based solutions, 

and the growing need of infrastructures in the Internet of Things 

(IoT) world, it must be underlined that these solutions are 

sometimes in an early stage of investigation, and that there is a lack 

of applications in real contexts. Based on the above, the main 

objective  of  the  presented  study  is  to  validate the results of an 

innovative  road  pavement  monitoring solution with data derived
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using traditional methods (i.e., GPR, FWD). In more detail, (1) 

different sections of the same road pavement with different 

damage levels were selected and characterized in terms of 

thickness using a GPR; (2) dynamic loads of different intensity 

were applied and deflections recorded with the FWD while (3) an 

innovative NDT solution was used to gather the vibro-acoustic 

signature of road sections during the load test; finally, (4) elastic 

moduli and innovative acoustic parameters (features) were 

extracted and analyzed in order to investigate the existence of a 

correlation between traditional and innovative pavement 

parameters. 

The paper is so organized: the introduction is followed by a brief 

description of the methodological approach associated with each 

equipment used in the study, with more detail to the new vibro-

acoustic sensor. The third section defines the experiment in the 

road where the test was carried out. The fourth section provides a 

description and discussion of data analysis and statistical 

correlation between traditional parameters and acoustic features. 

Finally, conclusions resume main results and focus on gaps and 

possible directions that future research could follow to allow the 

use of the proposed sensor for pavement health condition 

monitoring. 

2. Methodological approach 

2.1. Ground Penetration Radar (GPR)   

The ground penetrating radar is a geophysical radar system that 

can provide a fast, non-destructive measurement technique for 

evaluating asphalt layer thickness and presence of infrastructural 

interferences within the pavement [26]. 

Since urban pavements present thin layers, it is often challenging 

to differentiate the reflection from the top and bottom of the layer. 

Antennas with a centre frequency of 2000 MHz can provide a 

sufficient resolution to measure a minimum layer thickness less 

than 2.5 cm (1 in.) with an accuracy of 0.25 cm (0.1 in.) (ASTM 

D4748) [27]. Moreover, when GPR approaches above a pipe, a 

cable duct or a manhole, the two-way travel time versus travel 

distance has a parabolic shape [28], so it is possible to highlight 

the presence of these types of interferences. The GPR used in the 

present study uses two antennas with 600 MHz and 2000 MHz 

frequencies to estimated layer thickness. The K2_FW® 

acquisition software [29] is used to manage the phases of radar 

acquisition and to review the data acquired directly in the field to 

select test sites without underground interferences. 

2.2. Falling Weight Deflectometer (FWD)  

The FWD is used for non-destructive field tests, which is 

designed to simulate the load conditions of a moving heavy vehicle 

and estimates the pavement’s response by measuring the deflection 

basin with several sensors. The device allows a variable weight 

from 50 to 400 kg to be dropped from a variable height. The 

conventional FWD is able to apply loads in the range of 7÷140 kN, 

even if the standard load used for structural pavement analysis is 

usually 30÷50 kN over a circular load plate. The generated 

duration of the half sine pulse is typically 30 ms, corresponding to 

the loading time produced by a truck moving at 40 km/h. The FWD 

used in the present study is equipped with a loading plate of 300 

mm diameter, 9 geophones positioned in the direction of the road, 

a load of 250 kg and 4 standard drop heights able to produce loads 

in the range 37-125 kN [30]. 

2.3. Vibro-acoustic sensors  

The innovative solution mentioned above consists of a system 

and a method (Fig. 1) designed bearing in mind concepts such as 

innovation, sustainability, efficiency, and intelligence. The 

proposed solution aims at monitoring the Structural Health Status 

(SHS) of road pavements using the vibro-acoustic signature of the 

road gathered using a sensor network [1,31-33].  

In more detail (Fig. 1): 1) The proposed monitoring method 

considers the road pavement as an “acoustic filter” with a given 

SHS. 2) The SHS depends on the presence of damages (e.g. cracks), 

which are usually produced by the traffic, and are generated inside 

the road (i.e., they may be hidden or not, usually localized under 

the wheel paths between bound and unbound layers). 3) The 

aforementioned method aims at detecting the variation of the SHS 

of a road pavement due to the occurrence or the propagation of also 

hidden damages (i.e., before they propagate to the road surface), 

which modify the “acoustic filter”. 4)  A network of sensing units 

is attached (non-destructive test, NDT, or non-destructive 

evaluation, NDE) on several sections of the road to monitor. 5) 

Seismic waves (ground-borne sounds and vibrations) are produced 

by different sources (e.g., vehicles - uncontrolled loads during the 

continuous monitoring - or deflectometers - controlled loads 

during a periodic assessment -), and propagate into the road layers. 

6) The vibro-acoustic signatures, i.e., the acoustic responses of the 

road pavement sections to the given loads are recorded. In more 

detail, the variation of the air pressure inside each sensing unit 

(which consists of a microphone contained in an air-borne noise 

insulating coating) are detected and recorded. 7) The recorded 

signals are analysed in order to detect the worsening of the SHS of 

the road pavement (acoustic filter modification/deterioration). In 

the analyses, the variation of meaningful parameters (herein called 

features), extracted from the recorded signals, is used to represent 

the variation of the SHS of the monitored road in a simple and 

effective way.  

In this study, a system consisting of a single sensing unit was 

used. In more detail, the system consists of the following devices: 

1) Omnidirectional pre-polarized microphone “Audix TM1” 

(frequency response: 20-25 kHz ± 2 dB, sensitivity: 6 mV/Pa at 1 

kHz, dynamic range: 112 dB), acoustically isolated using a plastic 

box filled with insulating material and modelling clay (used also 

to attach the box to the road). 2) External sound card “Roland 

quad-capture UA-55”. 3) Recorder/Analyzer: ASUS ZenBook 

(model: UX433F, Intel® Core™ i7-8565U, RAM: 16 GB, 64bit 

x64) running MATLAB codes that allow recording acoustic 

signals with a sampling frequency of 192 KHz.  

 

Fig 1. Schematic representation of the innovative monitoring 

solution. 



 

 S. Cafiso et al.  / International Journal of Pavement Research and Technology 13 (2020) 573-580 575 
 

 
 

It is important to underline that the sensing system used in this 

study is one of the possible systems that can be used as a receiver 

able to apply the method above. This is going to be improved to 

obtain a self-powered wireless sensor network in order to address 

some of the objectives of the ongoing Italian project USR342-

PRIN 2017-2022. 

3. Road trial test  

In order to identify the sites to be investigated during the road 

test, the Ground Penetrating Radar was used. About 300 meters 

long urban road in Catania (Italy) were covered in both directions, 

for a total of about 600 meters. 

The thickness of the asphalt layer was analysed along the entire 

path with a step of 1 meter and the presence of any underground 

services was identified. Only the areas without underground 

facilities and with asphalt layer thickness more than 15 cm were 

taken into account. Through a visual inspection, four sections were 

selected, two without surface cracking and two with alligator 

cracks (Fig. 2). In each of the identified pavement areas, the test 

was carried out by loading the pavement with the FWD following 

the schema reported in the right part of Fig. 3.  

In particular, once the vibro-acoustic sensor has been positioned 

on the pavement area under consideration, the load tests were 

carried out with the FWD plate in line with the microphone at a 

distance of 1.5 meters. Then, for the sections 1 and 2, other two 

load tests were carried out moving the plate one meter back and 

the one meter forward along the direction of travel. 

During the tests carried out with the FWD, the mass was dropped 

with two series of 4 different heights in order to obtain 4 loads of 

about 40-56-84 and 120 kN. Therefore, for each load and position 

the FWD test was performed 4 times (i.e. 2 drops for each of the 

two series). 

4. Data analysis 

4.1. Load deflection data  

As a preliminary part of the data analysis, the collected 128 FWD 

load/deflection data were verified, in order to discard the measures 

that did not respect the following conditions [34]: 

1. Load variation consistency. This refers to the conditions 

where the drop load varies by more than 0.18 kN (40.5 lbf) 

plus 2% of the average load.  

2. Deflection variation consistency. This refers to deviations 

from the same drop height that vary by more than 2 μm (0.08 

mils) plus 1% of the mean deflection. 

104 FWD tests were selected for the moduli back-calculation 

with the ELMOD® software [35]. The structure of the pavement 

was defined as a double layer composed of a subgrade and an 

asphalt surface layer with thickness equal to 150 mm in the first 

section, 130 mm in the second, 181 mm in the third and 175 mm 

in the fourth, as identified by the GPR output. A Finite Element 

Method (FEM) analysis was carried out to calculate the moduli of 

the asphalt layer taking into account the non-linear subgrade 

behaviour. Fig. 4 shows the average moduli in each drops sequence 

for the different sections and plate positions (Fig. 3). 

4.2. Acoustic signature data 

Fig. 5 shows two examples of vibro-acoustic signature of the 

road  pavement  under  investigation. Signals were recorded using 

 

Fig. 2. Selection of pavements in different conditions. 

 

Fig 3. Set of equipment composed by FWD and acoustic sensor. 

 

Fig. 4. Average Moduli E1 of the asphalt layer at different sections. 

the aforementioned NDT sensing unit, and are presented in two 

different domains of analysis, i.e., time (amplitude versus time, cf. 

5a and 5b) and frequency (Power Spectral Density, PSD, versus 

frequency in 1/3 octave bands, 5c and 5d). Fig. 5 shows an example 

of the vibro-acoustic signatures of the sections 1.2 and 2.2, loaded 

at 38 kN. Note that sections 1.2 and 2.2 are located in the position 

“2nd-FWD” in Fig. 3.  

The signals in Fig. 5 were selected aiming at showing how the 

signature of the same pavement varies if different sections (i.e., 

section 1.1 and 2.2) are considered. It is important to underline that 

the FWD produces impulse loads generated by a mass that falls on 

buffers which allow the mass to rebound several times until all the 

energy is dissipated. Hence, the impulse responses of the road 

pavement to the FWD loads consist of a “first rebound” followed 

by other rebounds. Note that in this study only the “first rebound” 

is used for the calculation of the elastic modulus, and, for this 

reason, this part of each signal was used as the vibro-acoustic 

signature of the road. Note that the main difference among the “all 

rebounds” spectra and the “first rebounds” spectra is that the PSD 

amplitude of the second ones is slightly greater than that of the first 

ones.  Based  on Figs. 5(a) and 5(b) 1) The amplitude of the signal  

Section 1 Section 2 Section 3 Section 4

[M
p

a]
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Fig. 5. Vibro-acoustic signatures: (a) section 1.2 (time domain), 

(b) section 2.2 (time domain), (c) section 1.2 (frequency domain), 

and (d) section 2.2 (frequency domain). 

related to section 2.2 is three times greater than the one of section 

1.2.  2) The damping of section 2.2-related signals is greater than 

the one of section 1.2-related signals. 

The differences in terms of amplitudes could be due to 1) The 

elastic moduli of the bound layers (on average, section 1.2 

modulus is about 1200 MPa greater than that of section 2.2). 2) 

The elastic moduli of the unbound layers (on average, section 1.2 

modulus is about 70 MPa greater than that of section 2.2). 3) The 

thickness of the bound layer (on average, section 1.2 thickness is 

about 2 cm greater than that of section 2.2).  

The differences in terms of signal length could be due to the 

energy dissipation caused by different structural health conditions 

of the sections under test, which, in turn, could be related to elastic 

moduli (especially for bound layers) and to the extracted features. 

Based on the previous studies [31,36] and on the shape of the 

vibro-acoustic signatures of the sections under investigation (cf. 

Fig. 5), five features were extracted. In more detail, the following 

two features were identified and extracted in the time domain (see 

Fig. 6(a)):  

1. Feature 1 (F1), i.e., the difference between the absolute 

maximum P and the absolute minimum N of the vibro-

acoustic signature amplitudes (arbitrary unit, a.u.); 

2. Feature 2 (F2), i.e., the time delay between P and N 

(milliseconds); while, the following ones were recognized 

and used in the frequency domain (see Fig. 6(b)):  

3. Feature 3 (F3), i.e., the spectral centroid of the spectrum (see 

the star in Fig. 6(b)) in the frequency range 16÷2500 Hz, 

which can be defined as the “centre of mass” of a spectrum 

[37] (Hz); 

4. Feature 4 (F4), i.e., the slope of the linear regression model 

applied on the spectrum (PSD vs. frequency) in 16÷2500 Hz 

(dBW);  

5. Feature 5 (F5), i.e. the maximum of the spectrum in 16÷2500 

Hz (dBW/Hz).  

Finally, Table 1 provides an overview of the features extracted 

for each section of the road pavement under test.  

4.3. Correlations 

88 out of the 104 FWD load tests were selected to analyse the 

capability of the acoustic features to capture the variability in the 

pavement elastic modulus. Sixteen tests were excluded because of 

signal saturations occurred during the measurements in section 2. 

The summary statistics of the measures derived from the 

collected data (Table 2) show a wide range of moduli E1 with 

standardized skewness and kurtosis in the range -2 to +2 indicating 

a shape in accordance with a normal distribution. In the test 

sections we can assume homogeneous asphalt concrete mixtures. 

As first attempt to analyse the existence of correlation between 

actual elastic moduli determined by the load-deflection data with 

the different features derived from the acoustic signatures of the 

pavement sections, we analysed the results of the correlation 

 

 

Fig. 6. Graphical representation of the features extracted in the (a) 

time and the (b) frequency domains of analysis. 

(a) 

(b) 

(a) 

(b) 

(c) 

(d) 
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matrix reported in Table 3. All the features showed a significant 

correlation with E1, with p-values less than 0.05. The higher 

correlation coefficients are for F2, F3, F4 and F5. These features 

are also significantly correlated to each other.  

Pearson correlation coefficient is traditionally used in a cross-

sectional study, because it is not theoretically appropriate in 

longitudinal studies with repeated-measure as it ignores the 

correlation of the outcomes within the same subject [38,39]. 

Moreover, the Pearson correlation statistic indicates the strength of 

a linear relationship between two variables, but it does not 

completely characterize the shape of the relationship. 

In the present study, tests were conducted with different loads 

applied in the same plate position. Therefore, observations may be 

interdependent, because different load tests nested in the same 

plate position are more likely to function in the same manner than 

tests that refer to different sections. If the observed outcomes are 

not independent, the effective sample size decreases, and thus, 

failure to account for the intra-cluster correlation in conventional 

analyses negatively affects the precision of the estimates. A 

generalized estimating equation (GEE) is a method based on quasi-

likelihood estimation for longitudinal marginal models that allows 

a valid inference by implicitly taking into account the correlation 

to obtain the correct standard errors of the regression coefficient 

estimates [40]. Therefore, a GEE study was carried out in order to 

account for the repeated measures and to define a more refined 

estimation of the correlation between the modulus and the acoustic 

signature of the pavement.  

In the GEE modelling, the total sample was composed of 24 tests 

(i.e., one for each load value), clustered in 8 plate positions with 

the number of load repetitions ranging from 1 to 4 (Table 4). 

Different linear regression models were evaluated for each 

feature applying variable transformations to improve the goodness 

of fit. We used the Quasi-likelihood under Independence model 

Criterion (QIC) to choose between different variable 

transformations. The models that obtain smaller QIC are "better" 

according to this criterion.  

Moreover, in order to show a more usual goodness-of-fit 

measure  like  the  R-squared  in ordinary least squares regression, 

Table 1 

Feature statistics. 

Feature Section Statistics 
   

  
Max Min Average St.dev. 

F1 [a.u] 1 0.532 0.078 0.277 0.143  
2 0.922 0.274 0.587 0.201  
3 0.578 0.317 0.422 0.090  
4 0.527 0.179 0.320 0.124 

F2 [ms] 1 12.042 3.344 7.599 2.906  
2 3.516 2.969 3.249 0.189  
3 3.115 2.839 3.038 0.099  
4 10.552 4.563 6.940 2.654 

F3 [Hz] 1 724.000 641.000 679.833 18.788  
2 689.000 620.000 651.929 22.705  
3 694.000 624.000 654.700 22.961  
4 706.000 627.000 669.063 23.258 

F4 (%)  1 -2.700 -4.099 -3.292 0.351 

[dbW] 2 -2.055 -3.407 -2.648 0.431  
3 -2.310 -3.491 -2.858 0.463  
4 -2.259 -3.711 -3.001 0.440 

F5  1 80.000 31.500 56.104 23.954 

[dbW/Hz] 2 315.000 25.000 202.857 93.746  
3 315.000 160.000 241.500 74.366  
4 160.000 20.000 54.344 34.641 

Symbols. St. dev. = Standard deviation; F1= Feature 1; a.u. = arbitrary unit; F2 

= Feature 2; ms = milliseconds; F3 = Feature 3; Hz = Hertz; F4 = Feature 4; 
dBW = decibel Watt; F5 = Feature 5z.

Table 2 

Summary statistics of the measures. 

 E1 [Mpa] F1 [a.u.] F2 [ms] F3 [Hz] F4 [dBW] F5 [dBW/H] Load [kN] H1[mm] 

Count 88 88 88 88 88 88 88 88 

Average 1599.62 0.35072 6.26876 670.58 -3.08714 100.199 71.4659 154.8 

Stnd. deviation 524.57 0.18526 3.11279 23.8832 0.468474 89.6515 30.9452 16.29 

c. of variation 32.79% 52.82% 49.65% 3.56% -15.17% 89.47% 43.30% 10.52% 

Minimum 570.5 0.07824 2.83854 620.0 -4.09893 20.0 37.0 130.0 

Maximum 2776.6 0.9222 12.0417 724.0 -2.05492 315.0 125.0 181.0 

Range 2206.1 0.8440 9.20313 104.0 2.04401 295.0 88.0 51.0 

Stnd. skewness 0.320 3.1002 2.07351 -0.77913 0.573674 5.78352 2.27127 0.904 

Stnd. kurtosis -1.316 1.0089 -2.4235 -0.67962 -0.65253 2.25939 -1.9121 -1.714 

Table 3 

Correlation coefficients and p-values (in italic). 

 F1 F2 F3 F4 F5 

E1 -0.2663 0.5628 0.5510 -0.4721 -0.5706 

(0.0122) (0.0000) (0.0000) (0.0000) (0.0000) 

F1  -0.0622 0.0881 0.2056 0.3666 

 (0.5651) (0.4144) (0.0546) (0.0004) 

F2   0.5394 -0.3855 -0.5147 

  (0.0000) (0.0002) (0.0000) 

F3    -0.8945 -0.6253 

   (0.0000) (0.0000) 

F4     0.6636 

    (0.0000) 
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Table 4 

Summary data for the GEE model. 

Data Summary 

Number of Levels Subject Effect Position 8 

Within-Subject Effect Load 4 

Number of Subjects 8 

Number of Measurements per Subject Minimum 1 

Maximum 4 

Correlation Matrix Dimension 4 

Table 5 

Results from the GEE models (All the model are in the form: E1=A + B∙X). 

Variable (X) P-value QIC Pseudo R2 MAPE Intercept (A) Coefficient (B) 

F1 0.011 5961702 14% 30.3% 1928.973 -1041.637 

Exp(F1) 0.002 5825225 16% 29.4% 2589.051 -708.197 

F2 0.000 4232128 39% 25.1% 867.753 112.132 

1/F2 0.000 3881310 44% 25.1% 2351.882 -3854.346 

F3 0.000 3756567 46% 26.2% -11487.748 19.456 

F4 0.000 3339880 52% 20.7% -2333.805 -1264.833 

F5 0.000 3313262 52% 23.3% 2072.377 -4.743 

Sqrt(F5) 0.000 3251594 53% 22.8% 2620.321 -108.485 

Intercept 0.000 6941307 0%  1540.938  

the Pseudo R2 is computed, assuming that the ratio of the log 

likelihoods of the model (LLmodel) to the one of the intercept model 

(LLintercpet) suggests the level of improvement over the intercept 

model offered by the full model [41]. McFadden’s Pseudo Rsquare 

is defined as R2 = 1-(LLmodel/LLintercpet). Results from the GEE 

models are reported in Table 5. 

Based on the data reported in Table 5, the following results can 

be highlighted: 

1. The p-values of the features are less than 0.05 in all the 

regression models; 

2. F4 and F5 (i.e., Sqrt(F5)) resulted the best fitting parameters 

with the smallest QIC, the highest R2 and lowest mean 

absolute percentage error (MAPE); 

3. F3 and F2 (i.e., 1/F2) showed intermediate results; 

4. F1, even in the best variable transformation (i.e., Exp(F1)), 

performed worse than the other features.  

4.4. Discussion 

While, the GEE statistics shows the goodness of fit of the 

different features, this section refers to the shape of the regression 

curve between moduli and features derived using the statistical 

analysis reported in the previous section (cf. Table 5). In more 

detail, in Fig. 7 different indicators show the data sample in the 

four sections and dashed black lines show the best fit regression 

models derived for each feature. 

 

 

Fig. 7. FWD Elastic Moduli (E1) vs. vibro-acoustic features and best fit regression curves: (a) F1, (b) F2, (c) F3, (d) F4, and (e) F5.

(a) (b) 

(d) 

(c) 

(e) 
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Note that the elastic modulus varies in the range interval 

500÷3000 MPa and lower moduli in sections 2 and 3 can be 

associated with the existence of damages (surface and/or internal) 

in the asphalt concrete layers. Based on Fig. 7, it is possible to 

observe that: 

1. Sections 1 and 4 (which did not show surface damages) has 

the highest moduli, while sections 2 and 3 (where surface 

cracks were observed and where internal damages could be 

present) have the lowest moduli. 

2. Furthermore, several plots seem to suggest that there are two 

main clusters, i.e., cluster H (yellow squares & blue circles, 

i.e., sections 4 & 1) and cluster L (orange triangles & grey 

rhombuses, i.e., sections 2 & 3). The distance between these 

clusters is sometimes negligible (features 1, 3, and 4) but 

seems higher when considering the features number 2 and 5.  

3. Based on the above, features 2 and 5 seem to be able to better 

detect the presence of asphalt layer cracks (sections 2 & 3) 

and to better distinguish the cracked (2 & 3) from the 

uncracked (1 & 4) sections. 

4. As mentioned above, surface cracks mainly refer to sections 

2 and 3 and the features number 2 and 5 seem to detect this 

occurrence, but while higher crack-related damages refer to 

higher values of the feature number 5, they yield lower 

values of the feature number 2.  

Overall, even if several features appear to better interpret the 

structural health conditions, it is possible to observe that higher 

densities of cracks relate to higher   values in terms of the features 

1 and 4 (respectively, signal amplitude and PSD slope) and to 

lower values in terms of features 2, 3, and 5 (respectively, time lag, 

centroid and slope). 

5. Conclusions 

This study examined the possibility to use the features extracted 

from the vibro-acoustic signature of a road pavement to evaluate 

the structural health status and the elastic moduli of a road 

pavement. An innovative approach and NDT sensing device were 

used to gather the aforementioned signatures in terms of response 

to traffic loads simulated by a FWD. This device was also used to 

estimate the elastic modulus of pavement layers. 

Results show that some features have a good correlation with the 

elastic modulus and that both signals over time and spectra can 

offer insights in terms of moduli and structural health conditions. 

Consequently, these features could be used to recognize the 

worsening of the structural status of pavement layers associated 

with a reduction of the elastic modulus and propagation of cracks.   

The main challenge of the method proposed in this study is the 

selection of the features that should be able to recognize changes 

of elastic moduli and structural conditions. Experiments and data 

provided valuable information about the higher or lower 

dependence of acoustic features on loads and other boundary 

conditions. These observations could be crucial in terms of method 

potential and application. 

Future work will include the extension of the pavement sample 

and the investigation about the relationship between features and 

load intensity and frequency. 
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